
1

1

BASIC EQUATIONS OF DIFFRACTIVE 
NANOPHOTONICS

There are several books on modern nanophotonics [1–5].The book [1] is devoted only 
to photonic crystals and does not address other important areas of nanophotonics.
Calculation of band gaps in photonic crystals [1] is based on solving Maxwell’s 
equations, rewritten in the form of a problem of the eigenvalues   and eigenvectors.

The book [2] deals with almost all areas of nanophotonics, but does not consider 
the mathematical methods of modelling the diffraction of light. The book [3] 
focuses on the near-field microscopy for the observation of quantum structures, 
molecules and biological systems. Analysis of the interaction of light with matter 
[3] is based on the dipole approximation, which applies to particles of matter with 
dimensions much smaller than the wavelength of light. The book [4] deals with 
only one field of nanophotonics and one modelling method. In [4], the authors 
consider only the localized plasmons as resonance vibrations of metal nanoparticles 
excited by electromagnetic radiation. Localized plasmons are different from surface 
plasmons, which are discussed in chapter 4 of this book. Localized plasmons in [4] 
are analyzed by means of the eigenfunctions of plasmon oscillations, which are 
the eigenfunctions of the Laplace equation. The book [5] is closest to the present 
book. The book [5] addresses many aspects of nanophotonics: near-field microscopy, 
photonic crystals, surface plasmons, quantum emitters, optical capture. The 
mathematical modelling methods in nanophotonics problems are discussed: the 
method of moments, the method of coupled dipoles, the Green’s function method.
However, the book [5] does not address important areas of nanophotonics, such as 
as photonic–crystal waveguides and lenses, subwavelength gratings with magnetic 
and metal layers. Also, the book [5] does not consider the most universal methods 
for simulation of light diffraction – difference methods for solving Maxwell’s 
equations: FDTD-method and the BPM-method.

Therefore, chapter 1 of this book presents the basic equations of diffractive 
nanophotonics, which are used in this book: Maxwell’s equations in integral 
and differential forms, and other differential and integral equations derived from 
Maxwell’s equations. Chapter 2 discusses the two main difference methods for 
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solving Maxwell’s equations: finite-difference time-domain method (FDTD-
method) and the beam propagation method (BPM-method).

1.1. Maxwell equations

1.1.1. Mathematical concepts and notations

In the Cartesian coordinate system with unit vectors ex, ey, ez we determine the 
differential operators grad, div, rot and Δ with respect to the scalar f and vector F 
functions as follows:

 
grad ,x y z

f f ff f
x y z
∂ ∂ ∂

≡ ∇ = + +
∂ ∂ ∂

e e e

 
div ,y zx F FF

x y z
∂ ∂∂

≡ ∇⋅ = + +
∂ ∂ ∂

F F

 
rot ,y yz zx x

x y z
F FF FF F

y z z x x y
∂ ∂   ∂ ∂ ∂ ∂

≡ ∇× = − + − + −    ∂ ∂ ∂ ∂ ∂ ∂    
e e eF F

 

2 2 2
2

2 2 2 ,f f ff f
x y z

∂ ∂ ∂
∆ ≡ ∇ = + +

∂ ∂ ∂

 ∆ ≡ ∇ = −F F F F2 grad div rot rot .

For a cylindrical coordinate system with unit vectors eρ, eφ, ez:

 

1grad ,z
f f ff

zρ ϕρ ρ ϕ
∂ ∂ ∂

= + +
∂ ∂ ∂

e e e

 
( )1 1div ,zF F

F
z

ϕ
ρρ

ρ ρ ρ ϕ
∂ ∂∂

= + +
∂ ∂ ∂

F

 
( )1 1 1rot ,z z

z
F F FF F

F
z z
ϕ ρ ρ

ρ ϕ ϕρ
ρ ϕ ρ ρ ρ ρ ϕ

∂ ∂ ∂     ∂ ∂ ∂
= − + − + −     

∂ ∂ ∂ ∂ ∂ ∂     
e e eF

 

2 2

2 2 2
1 1 .f f ff

z
ρ

ρ ρ ρ ρ ϕ
 ∂ ∂ ∂ ∂

∆ = + + ∂ ∂ ∂ ∂ 
 In a spherical coordinate system with unit vectors er, eθ, eφ the following representa-
tions apply:

 

1 1grad ,
sinr

f f ff
r r rθ ϕθ θ ϕ
∂ ∂ ∂

= + +
∂ ∂ ∂

e e e

 
( ) ( )2

2
1 1 1div sin ,

sin sinr
F

r F F
r r rr

ϕ
θθ

θ θ θ ϕ
∂∂ ∂

= + +
∂ ∂ ∂

F



 Basic Equations of Diffractive Nanophotonics 3

 

( )

( )

( )

θ
ϕ

ϕ θ

θ ϕ

θ
θ θ θ ϕ
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∂ ∂
= − ∂ ∂ 

∂ ∂
+ − ∂ ∂ 

∂ ∂ 
+ − ∂ ∂ 

F 1 1rot sin
sin sin

1 1      
sin

1 1     ,

r
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F
F

r r

F
rF

r r r

F F
rF

r r r
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e

e

 

2
2

2 2 2 2 2
1 1 1sin .

sin sin
f f ff r

r rr r r
θ

θ θθ θ ϕ
∂ ∂ ∂ ∂ ∂   ∆ = + +   ∂ ∂ ∂ ∂ ∂   

The most important integral relationships of vector analysis are:
The Gauss–Ostrogradskii theorem:

 
( ) ,

V S

div dv ds=∫ ∫F F, n

where n is the unit vector of the external normal; V is a region of space bounded by 
the surface S.
      Stokes‘ theorem:

 

rot ,
S L

ds dl=∫ ∫F F

where L is the contour bounding the surface S.

1.1.2 Maxwell‘s equations in differential form

The electromagnetic theory of light is based on a system of Maxwell‘s equations 
[1]:

 

1 4 4rot ,cmc t c c
∂ π π

= + +
∂
DH j j

 
(1.1)

 
1rot ,
c t
∂

= −
∂
BE

 
(1.2)

 div 4 ,πρ=D  (1.3)

 div 0.=B  (1.4)
The names of the electromagnetic quantities appearing in (1.1)–(1.4) are given 

in Table 1.1.
Functions E = E(r, t), H = H(r, t), D = D(r, t), B = B(r, t) describe the 

electromagnetic field in an environment characterized by parameters ε = ε (E, r, t),  
μ = μ(H, r, t), ρ = (r, t), j = j(E, r, t) (r are the spatial coordinates, t is time), and 
external current je, the use of which will be stipulated separately.

Assuming that the processes are local and instantaneous (at each point the state is 
independent of neighbouring points and at each moment of time of ‘prehistory’), we 
associate the characteristics of the field and the medium by material equations [1]
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 D = E, (1.5)
 B = H, (1.6)
 j = E,  (1.7)
and the law of conservation of charge

 
div .

t
ρ∂

= −
∂

j
 

(1.8)

It is also assumed that the paremeters of the medium are independent of the 
vectors of the field and do not change with time: ε = ε(r), μ = μ(r) (linear medium), are 
scalar (isotropic medium), the field does not cause polarization and magnetization 
of the medium. 

If the electric and magnetic vectors can be expressed as E = Re (E exp(–iωt)), H 
= Re (H exp(–iωt)), where E = E (r), H = H (r) are the complex functions [1], ω is 
the cyclic frequency, i is the imaginary unit, we speak of a monochromatic field for 
which (1.1) and (1.2) take the form:
 0rot ik ε= −H E,  (1.9)

 0rot ik µ=E H,  (1.10)

where i σε ε
ω

= − , 0
2k

c
ω π

λ
= = -  the wave number.

1.1.3 Maxwell's equations in integral form

Integrating (1.1) (1.2) on the surface S, bounded by L, and applying the Stokes 
theorem, we obtain the equation:

 

π
= +∫ ∫

1 4 ,
L S

ddl ds
c dt c

H D I
 

(1.11)

 

= −∫ ∫

1 d .
d

L S

dl ds
c t

E B
 

(1.12)

Equations (1.3) (1.4) are integrated over the volume V, bounded by the surface 
S. Then, applying the Gauss–Ostrogradskii theorem, we obtain:

Table 1.1. Electromagnetic quantities in the Gaussian CGS system

Name Designation
Charge q
Current I
Charge density ρ
Current density j
Conductivity σ
Electric vector E
Magnetic vector H
Electric displacement D
Magnetic induction B
Permittivity ε
Magnetic permeability µ
Speed of light in vacuum с

εω ρ
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( ), d 2 ,

S

s qπ=∫ D


n

 
(1.13)

 
( ), d 0.

S

s =∫ B


n

 
(1.14)

The system (1.11)–(1.14) is called the Maxwell equations in integral form.

1.1.4. Fields at interfaces

Applying Maxwell‘s equations in integral form for an infinitely small contours 
and volume at the interface between two media, we obtain the following boundary 
conditions [1] for the electromagnetic fields:

 ((D1–D2), ey) = 4, (1.15)
 ((E1–E2), ez) = 0, (1.16)
 ((B1–B2), ey) = 0, (1.17)
                                                  ((H1– H2), ez) = 4(η, i) ,                                 (1.18)

where 
0

lim
S

q
S

ξ
∆ →

∆
=

∆
 is the surface charge density, 

∆ →

∆
=

∆0
lim xl

e
l

η I
 is the density of the  

 
surface current (the plane separating media 1 and 2 perpendicular to the vector ey).

1.1.5. Poynting’s theorem

Multiplying (1.1) by E, and (1.2) by H, we obtain:

 
( ) ( )1 4,rot , , ,

c t c
∂ = + ∂ 

DE H E E jπ

 
( ) ∂ = −  ∂ 

1,rot , .
c t

BH E H

Subtracting the second equation from the first, we obtain the Poynting theorem 
[1], in which

 
( ) ∂ ∂   = − − −        ∂ ∂    

1 4div , , , , .
c t t c

πB DE H H E j E
 

(1.19)

In the integral form

 
( ) ( ) ∂ ∂   = − + −        ∂ ∂    ∫ ∫ ∫n


1, , , , ,
4 4

S V V

c ds dv dv
t tπ π
B DE H H E j E

 

(1.20)

we have the energy balance equation of the electromagnetic field in the volume  
 
V. The energy in the volume V is ( ) ( )( )= +∫1 , ,

8
V

W dv
π

H B E D , the consumed power  
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( )= ∫ ,
V

P dvj E , and [ ],
4
c
π

E HΠ =  is the Umov–Poynting vector indicating the 

direction of energy movement and equal in magnitude to the density of its flux.

The monochromatic field is described using the complex Umov–Poynting vector 
*,

8
c   π

E HΠ = , where the asterisk denotes complex conjugation, and the average 

value of the Umov–Poynting is equal to the real part of the complex.

1.2. Differential equations of optics

1.2.1. The wave equation

In Maxwell‘s equations, we eliminate from consideration the currents and charges 
which usually absent in the problems of optics. Then, equations (1.1) and (1.2) take 
the form:

 
rot ,

c t
∂

=
∂
EH ε

 
(1.21)

 
rot .

c t
∂

=
∂
HE µ

 
(1.22)

Divide both sides of (1.22) by m and apply the operator rot

 

1 1rot rot 0.rot
c t

  ∂
+ =  ∂ 

HE
µ  

(1.23)

Equation (1.21) is differentiable with respect to time in order to eliminate the 
second term of equation (1.23):

 

2

2 2
1rot rot 0.

c t
  ∂

+ = 
∂ 

EE ε
µ

Then, given that

 = +   α α αrot rot grad ,u u u and

we obtain:

 
( )( )∂

∇ − + × − =
∂

εµ µ
2

2
2 2 grad ln rot grad div 0

c t
EE E E

 
(1.24)

To the equation div(εE) = 0 we apply the identity div αu =  α div u + (u, grad 
α),and obtain ε div E + (E, grad ε) = 0. Expressing from the last equation divE, we 
substitute it into (1.24), writing the wave equation [1] for the electric field in an 
inhomogeneous dielectric medium

 
( ) ( )( )∂  ∇ − + + = ∂

εµ µ ε
2

2
2 2 grad ln ,rot grad ,grad ln 0.

c t
EE E E

 
(1.25)

Similarly, we obtain the wave equation for the magnetic field vector H:
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( ) ( )( )∂  ∇ − + + = ∂

εµ ε µ
2

2
2 2 grad ln , rot grad , grad ln 0.

c t
HH H H

 
(1.26)

For a homogeneous medium, electric ε and magnetic µ permeability are constant 
and the wave equations take the form

 

2
2

2 2 0,
c t
εµ ∂

∇ − =
∂

EE
 

(1.27)

 

2
2

2 2 0.
c t
εµ ∂

∇ − =
∂

HH
 

(1.28)

1.2.2.  Helmholtz equations
The wave equations written for the complex amplitudes (monochromatic waves), 
called the Helmholtz equation. For an inhomogeneous medium, they have the form:

 ( ) ( )( ) ∇ + + + = E E E E,εµ µ ε2 2
0 grad ln ,rot grad grad ln 0,k

 
(1.29)

 ( ) ( )( )2 2
0 grad ln , rot grad grad ln 0,k εµ ε µ ∇ + + + = H H H H,

 
(1.30)

and for a homogeneous one

 
2 2

0 0,k εµ∇ + =E E  (1.31)

 
2 2

0 0.k εµ∇ + =H H  (1.32)

Equations (1.31) and (1.32) can be solved independently for each projection of 
the electric and magnetic vectors E and H, and these projections can be described 
by a single scalar function U:

 
2 2

0 0.U k Uεµ∇ + =  
(1.33)

1.2.3. The Fock–Leontovich equation

We represent the function U as U = U exp (ik0z) and substitute it into equation (1.33)  
 
for the vacuum. Assuming that 

2

0k
zz

∂ ∂
<<

∂∂ 2
U U

, we obtain the Fock–Leontovich  
 
parabolic wave equation 

 
02 0,ik U

z ⊥
∂

+ ∆ =
∂
U

 
(1.34)

where 
2 2

2 2 .
x y⊥

∂ ∂
∆ = +

∂ ∂
U UU

The parabolic equation (1.34) in the scalar optics is used to describe paraxial 
optical fields, which are distributed mainly along a certain direction in space in a 
small solid angle.
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1.2.4. Eikonal and transport equations 
We write the function U as U = U0exp (ik0ψ), where ψ = ψ (x, y, z) – eikonal,  U0 is 
the amplitude (real function). Substituting it into (1.33), we obtain:

 

ψ ψ ψ

ψ ψ ψ

ψ ψ ψ εµ

 ∂ ∂ ∂ ∂ ∂ ∂∂ ∂ ∂
+ + + + + + ∂ ∂ ∂ ∂ ∂ ∂∂ ∂ ∂  
 ∂ ∂ ∂

+ + −  ∂ ∂ ∂ 
  ∂ ∂ ∂    − + + + =     ∂ ∂ ∂     

2 2 2
0 0 0 0 0 0

02 2 2

2 2 2

0 0 2 2 2

22 2
2 2
0 0 0 0

2

0.

U U U U U U
ik

x x y y z zx y z

ik U
x y z

k U k U
x y z

Equating to zero the imaginary part, we obtain the transport equation:

 

2 2 2
0 0 0

0 2 2 22 0.U U U U
x x y y z z x y z
ψ ψ ψ ψ ψ ψ  ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂

+ + + + + =    ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂     
(1.35)

The remaining terms amount to the following equation:

 

    ∂ ∂ ∂ ∂ ∂ ∂    + + − + + + =         ∂ ∂ ∂∂ ∂ ∂        

22 22 2 2
0 0 0

0 02 2 2 2
0

1 0,U U U U U
x y zk x y z
ψ ψ ψ εµ

from which, putting λ→0 (geometrical optics approximation), we obtain the eikonal 
equation, 

 

22 2
2 ,n

x y z
ψ ψ ψ ∂ ∂ ∂   + + =    ∂ ∂ ∂      

(1.36)

where  n εµ=  is the refractive index of the medium.

1.3. Integral theorems of optics

Analysis of the electromagnetic field can be carried out not only by means of 
differential equations of Maxwell, Helmholtz, and others, but also with the help of 
equivalent integral equations and transformations. In this case, the Maxwell equations 
for monochromatic light in a homogeneous region of space are equivalent to the 
Stratton–Chu vector integral equations. The solution of the differential Helmholtz 
equation is convenient to study with the help of the Kirchhoff–Helmholtz integral 
expression (third Green’s formula), and the Fock–Leontovich paraxial equation is 
equivalent to the Fresnel integral transform.

1.3.1. Green’s formulas
For two continuous functions unctions u (x, y, z) and v (x, y, z) together with their 
derivatives in region V, bounded by a piecewise smooth surface S, there is the 
second Green formula [1]:
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( ) ( ) .
n n

V S

v uu v v u dV u v dS∂ ∂
∆ − ∆ = −

∂ ∂∫ ∫
 

(1.37)

where n is the vector of the outer  normal to surface S, 
2 2 2

2
2 2 2x y z

∂ ∂ ∂
∆ = ∇ = + +

∂ ∂ ∂
 

is the Laplace operator or Laplacian.
With the help of Green’s formula (1.37) the solution of the Helmholtz equation 

at interior points of a homogeneous region V can be expressed in terms of values   
of the solution and its derivatives on the boundary S using the third Greens formula 
(Helmholtz–Kirchhoff integral [2])

 

  ∂ ∂ = −    ∂ ∂   
∫1 ( ')( ) ( ') ,

4

ikR ikR

S

u x e eu x u x dS
n R n Rπ

 

(1.38)

where R is the distance between points x Î V and x'ÎS, u (x, y, z) is the solution of 
the Helmholtz equation in a homogeneous space
 

2( ) ( , , ) 0,k u x y z∆ + =

k = 2π/λ is thewave number of light with wavelength λ 
The function

 4

ikReG
Rπ

=
 

(1.39)

describes a spherical wave, is the Green function of a homogeneous space and 
satisfies the inhomogeneous Helmholtz equation with a point source

 ∆ + = −2( ) ( , ') ( ').k G x x x xδ  (1.40)

In regions of space with a constant refractive index and without sources, the 
integral representation (1.38) holds for any Cartesian component of the vector of 
the strength of the electric field

 

  ∂ ∂ = −    ∂ ∂   
∫1 ( ') e e( ) ( ') .

4

ikR ikR

S

dS
R Rπ

E xE x E x
n n

 

(1.41)

Diffraction of scalar waves on a dielectric object
For example, consider the scalar problem of diffraction of electromagnetic waves 
in a homogeneous dielectric object [3]. Let the function E1(x) and E2 (x) satisfy the 
two Helmholtz equations inside the region V (inside the object) and on the outside:

 

2
1 1
2
2 2

( ) ( ) 0, ,

( ) ( ) ,

k E V

k E g V S

∆ + = ∈

∆ + = − ∉ +

x x

x x  
(1.42)

the boundary conditions

 1 2( ) | ( ) | ,S SE E=x x  (1.43)

 
1 2( ) ( )| |S S

E E∂ ∂
=

∂ ∂
x x

n n
and the Sommerfeld radiation conditions at infinity
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2
2 2

( ) 1( ) , .E ik E o r
r

∂  − = →∞ ∂  

x x
n   

(1.44)

where o(x) is a function whose order of magnitude is larger than x when x ® 0.
In equations (1.42), the function g describes the density of light sources outside 

the region V, occupied by an object; there are no sources within the object. With the 
help of Green’s theorem (1.37) and (1.38) the solution of (1.42) with the conditions 
taken into account (1.43) and (1.44) can be reduced to solving a Fredholm integral 
equation of the second kind

 

−
= + ∈∫ ∫

2 22 2
1 2

1 1

'

e 1 e( ) ( ') ( ) , ,
4 4

ik R ik R

V V

k kE E dV g dV V
R Rπ π

x x y x

 

(1.45)

where x and x' belong to the object region V, and point y belongs to V', external to 
the region V. The second term in equation (1.45) describes the complex amplitude of 
the light incident on the object field, which in diffraction problems can be regarded 
as a known function:

 

= ∫
2

0

'

1 e( ) ( ) .
4

ik R

V

E g dV
Rπ

x y

 

(1.46)

Solving the equation (1.45), the diffraction field outside the object (in region V') 
we find, using the integral transform

 

−
= + ∈∫

22 2
1 2

2 1 0
e( ) ( ') ( ), '.

4

ik R

V

k kE E dV E V
Rπ

x x x x
 

(1.47)

Equations (1.45) and (1.47) for the two-dimensional problem (∂/∂z = 0) have the 
form:

 

2 2
(2)1 2

1 1 0 2 0

1/22 2

( )( , ) ( ', ') ( ) ( , ), ( , ) ,
4

( ') ( ') ,

V

i k kE x y E x y H k r dV E x y x y V

r x x y y

−
= + ∈

 = − + − 

∫

 

(1.48)

 

2 2
(2)1 2

2 1 0 2 0
( )( , ) ( ', ') ( ) ( , ), ( , ) ',

4
V

i k kE x y E x y H k r dV E x y x y V−
= + ∈∫

 

(1.49)

where H0
(2) (x) is the Hankel function of second kind of zeroth order, G (x, y; x', y')= 

= i/4H0
(2) (kr) is the Green function of a homogeneous space for a two-dimensional 

Helmholtz equation.
Equations (1.48) and (1.49) solve the problem of diffraction of a cylindrical 

(two-dimensional) electromagnetic wave with TE polarization (E0, E1 and E2 are 
projections on the z-axis of the vectors of strength of the electric field) on a uniform 
cylindrical dielectric object. Similar formulas for TM polarization can be found in 
[3].
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1.3.2. Stratton–Chu formula

Green vector formulas can be derived by the same procedure by Green’s scalar 
formulas (1.37) and (1.38). The Gauss–Ostrogradskii equation is used:

 

div .
V S

dV dS=∫ ∫F Fn


 

(1.50)

If the vector field F as a vector product F = [P, rot Q] is substituted into (1.50), 
we can obtain the vector analogue of Green’s second formula:

 
( ) { }− = −      ∫ ∫rot rot rot rot , rot , rot .

V S

d dSQ P P Q P Q Q P n
 

(1.51)

Given the known vector relations

 ( )
rot rot rot rot grad div grad di

div div div
Q v− = ∆ − ∆ + − =

= ∆ − ∆ + −

Q P P Q P Q P Q P P Q
P Q Q P Q P P Q

equation (1.51) can be rewritten as:

( ) { }d , rot , rot div div d ,
S

V S∆ − ∆ = − + −      ∫ ∫P Q Q P n P Q n Q P nP Q nQ P


V  (1.52)
From (1.51) and (1.52) we can easily obtain the integral relations for the 

electromagnetic field in space. Suppose P = E, Q = aG. G(x – x0) = exp (ikR)/R , 
a is the unit vector of arbitrary direction, where R = |x – x0|, x is the radius vector 
of the observation point, x0 is a point on the surface S. In this case, the function Q 
satisfies the vector Helmholtz equation with a point source:

 ∆ + = − −2
04 ( ),k π δQ Q a x x  (1.53)

where [ ]rot grad ,G=Q a , div ( , grad )G=Q a , 2 2 2k cω εµ= .
The vector of the strength of the electric and magnetic fields of the monochromatic 

light wave in a homogeneous and isotropic space satisfy the inhomogeneous 
Helmholtz equations:

 

∆ + = −

= +

∆ + = −

2

22

2 2

2

2

4 ,

grad div ,

rot ,

c
i i
c

c

ω εµ π

ωµ
ωε

ω εµ

E E J

jJ j

H H j
 

(1.54)

where j the density of secondary electric current, w is the cyclic oscillation frequency 
of monochromatic light, ε, µ is the dielectric constant and magnetic permeability of 
the homogeneous medium, c is the speed of light in vacuum. 

Using (1.52)–(1.54) and the formula (n, [E, [grad G, a]]) = (a, [grad G, [E, n]]), 
we obtain the expression:
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{ }

{

( )} }

2 0 0 0 0 0

?

0 0 0 0 0 0

0 0 0

1( ) ( ) ( ) ( ) div ( )
4

1 grad ( ), , ( ) rot ( ), ( )
4

grad ( ) , ( ) .

S

S

x G dV G dS

G G

G dS

= − + − +


 + − + − −       

− −

∫ ∫

∫

E a a J x x x n x x E x

x x n E x E x n x x

x x n E x





π

π
 

  (1.55)

Given that div E = 0, and the arbitrariness of the vector a, we obtain the integral 
representation

[ ] ( ){ }
0

0 0 0 0 0 0

( ) ( )
1 grad ( ), , rot , ( ) grad ( ) ,

4
S

G G G dS

= +

 + − + − − −   ∫
E x E x

x x n E E n x x x x nE
π  

  (1.56)
where

 

= −∫0 2 0 0

?

( ) ( ) ( ) .G dVE x J x x x

By analogy with (1.56) we can obtain an integral representation for the magnetic 
field

{ ( )}
0

0 0 0 0 0 0 0 0 0

1( ) ( )
4

grad ( ), , ( ) rot ( ), ( ) grad ( ) ( ) d ,
S

G x G G S

π
= + ×

 × − + − − −       ∫

H x H x

x x n H H x n x x x x nH x


 
  (1.57)
where = −∫0 0

?

1( ) rot ( ) .
4

G dV
π

H x j x x

In (1.56) and (1.57) E0 (x) and H0 (x) are the strengths of the electric and magnetic 
fields in the incident wave.

Equations (1.56) and (1.57) are called the Stratton–Chu formulas.

Diffraction on a perfectly reflecting object
For example, consider the solution of a problem of electromagnetic wave diffraction 
by an ideally reflecting object, which occupies a region of space V, with the surface 
S.

We introduce the notation for the surface density of electric and magnetic 
currents: (4π/c)je(x0) = [n, H(x0)], (4π/c)jm(x0) = [n, E(x0)]. We take into account 
that rot (ΦF) = Φ rot F +[grad Φ, F], rot jm(x0) = 0, rot E = ikH, where ,k

c
ω

= εµ

  ( )
− = − − =      

= − − + −
0 0 0 0 0

0 0 0 0

grad ( ), j ( ) grad ( ), j ( )

rot ( )j ( ) ( ) rot j ( ).
m m

m m

G G

G G

x x x x x x

x x x x x x

As a result, instead of (1.56) we obtain the following representation for the 
electric field
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0 0 0

0 0 0 0

1( ) ( ) rot j ( ) ( ) d
4

i 1j ( ) ( ) d grad ( ) ( , ( )) d .
4 4

m

S

e

S S

G S

k G S G S

π

π π

= − − −

− − + −

∫

∫ ∫

E x E x x x x

x x x x x n E x



 

 

(1.58)

Applying the operation rot to both sides of (1.58) and taking into account that                  
rot (grad Φ) = 0, we obtain the following representation for the magnetic field:

0 0 0 0 0
1 1( ) ( ) rot rot ( ) ( ) rot ( ) ( ) .

4 4m e

S S

G dS G dS
ik

= − − − −∫ ∫H x H x j x x x j x x x
 π π  

  (1.59)
From equation (1.57) by analogy we obtain an integral representation for the 

electric field

0 0 0 0 0
1 1( ) ( ) rot rot ( ) ( ) rot ( ) ( ) .

4 4e m

S S

G dS G dS
ik

= + − − −∫ ∫E x E x j x x x j x x x
 π π  

  (1.60)
Given the boundary conditions on the perfectly conducting surface [n,E] = 0,               

(n, H) = 0, equations (1.59) and (1.60) can be rewritten as:

 
0 0 0

1( ) ( ) rot ( ) ( ) ,
4 e

S

G dS= − −∫H x H x j x x x
π

 

(1.61)

 

= + −∫0 0 0
1( ) ( ) rot rot ( ) ( ) .

4 e

S

G dS
ikπ

E x E x j x x x

 

(1.62)

To obtain an integral equation of the first kind for the electric current density on 
the surface of an ideal conductor, we assume that the vector x belongs to the surface. 
Multiplying (1.61) by the vector of the normal at point x and taking into account the 
boundary condition for a perfect conductor, we obtain the integral equation:

 
= − −      ∫0 0 0

1( ), ( ) rot rot ( ), ( ) ( ) .
4 e

S

G dS
ikπ

E x n x j x n x x x
 

(1.63)

Thus, the problem of finding the electromagnetic field is divided into two 
stages:  

1) the solution of the integral equation (1.63) with respect je(x0);
 2) the calculation of the field components from (1.61) and (1.62).

From equation (1.61) we can similarly obtain the Fredholm integral equation of 
the first kind for the unknown current density on the surface S in terms of known 
values   of the magnetic field of the incident wave:

 
= − ∈∫0 0 0

1( ) rot ( ) ( ) , .
4 e

S

G dS S
π

H x j x x x x
 

(1.64)
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Diffraction on a transmitting object
Consider the solution of the problem of diffraction of an electromag-
netic monochromatic wave on a homogeneous dielectric object. For this we 
consider Maxwell’s equations in a homogeneous area of   the object V1 with the 
characteristics ε1 and µ and also in the outer region V2 with the characteristics of the 
medium ε2 and µ: 

 

1
1 1

1 1 1

rot ,

rot , ,

i
c

i V
c

ωε

ωµ

= −

= ∈

H E

E H x
 

(1.65)

 

2
2 2

2 2 2

4rot ,

rot , ,

i
c c

i V
c

ωε π

ωµ

= − +

= ∈

H E j

E H x
 

(1.66)

with the boundary conditions on the surface S of the interface of the media V1 and V2

 

1 2

1 2

[ , ] [ , ] ,

[ , ] [ , ] ,
S S

S S

=

=

n E n E

n H n H  
(1.67)

and with the radiation condition at infinity

 
2 2

1[ , ] [ [ , ]] ,o r
r

 + = →∞ 
 

n E n n H
 

(1.68)

With the Green’s vector formula (1.52) we can obtain a Fredholm integral 
equation of the second kind for the magnetic field strength

 

{ }
2 1

2
2 2 1

1 0 0 1 02
1

2 1
0 1 1 0 1

1

( )( ) ( )rot ( ) ( )
4 4

[grad ( )[ , ]] ( , )grad ( ) , .
4

V V

S

G dV G dV
c

G G dS V

ε ω µ ε ε
π ε π

ε ε
π ε

−
= − + − +

−
+ − − − ∈

∫ ∫

∫

H x x x j x x H x

x x n H n H x x x


 

(1.69)

The first term in equation (1.69) can be regarded as a known field incident on 
the object

 2

2
0 0

1
( ) ( )rot ,

4
V

G dVε
πε

= −∫H x x x j

and the impulse response function G(x–x0) satisfies the equation (1.53).
The magnetic field in the outer region V2 after solving (1.69) is determined by 

the integral transform

 

{ }

−
= + − +

−
+ − − − ∈

∫

∫
1

2
1 2 1

2 0 0 1 02
2

2 1
0 1 1 0 2

2

( )( ) ( ) ( ) ( )
4

[grad ( )[ , ]] ( , )grad ( ) , .
4

V

S

G dV
c

G G dS V

ω ε µ ε ε
π ε

ε ε
π ε

H x H x x x H x

x x n H n H x x x

 

(1.70)
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The strengths of the electric field E1 and E2 are located across the known functions 
of H1 and H2 from the Maxwell equations (1.65) and (1.66).

Instead of (1.69) and (1.70), to find the magnetic field of diffraction we can 
use Green’s vector formula (1.52) to obtain the Fredholm integral equation of the 
second kind to find the electric vector of the diffraction field

{ }

2

1

2
1 0 2

1 1

2
2 1

0 1 02

2 1
0 1 1 0 1

1

( ) ( ) graddiv
4

( ) ( ) ( )
4

[grad ( )[ , ]] ( , )grad ( ) , ,
4

V

V

S

i iG dV
c

G dV
c

G G dS V

ε ωµ
π ε ωε

ω µ ε ε
π

ε ε
π ε

 −
= − − − 

 

−
− − +

−
+ − − − ∈

∫

∫

∫

E x x x j j

x x E x

x x n E n E x x x


 

(1.71)

where the known vector of the strength of the electric field of the incident wave is 
expressed in terms of current density in the outer region:

                        

 −
= − − 

 ∫
2

2
0 02

1 1
( ) grad div ( ) .

4
V

i i G dV
c

ε ωµ
πε ωε

E x j j x x

 

(1.72)

The vector of the strength electric diffraction field in the outer region V2 is found 
by solving (1.71) and the integral transformation

{ }
1

2
1 2 1

2 0 0 1 02
2

2 1
0 1 1 0 2

2

( )( ) ( ) ( ) ( )
4

[grad ( )[ , ]] ( , )grad ( ) , .
4

V

S

G dV
c

G G dS V

ω ε µ ε ε
π ε

ε ε
π ε

−
= − − +

−
+ − − − ∈

∫

∫

E x E x x x E x

x x n E n E x x x


 

(1.73)

1.4. Integral transformations in optics
In the framework of the scalar theory of diffraction monochromatic light is described 
by the complex amplitude function F (x) = F (x, y, z), which satisfies the Helmholtz 
equation (1.33):

 ∆ + =2( ) ( , , ) 0,k F x y z  (1.74)

where k is the wavenumber of the light. In a homogeneous and isotropic space 
without charges and currents the complex amplitude F (x) can be represented by 
any projection of the vectors of the strength of electric E (x) and magnetic H (x) 
fields of the light wave.

Solving equation (1.74) by using the complex amplitude through the two-
dimensional Fourier transform

 

( , , ) ( , , ) exp[ ( )] ,F x y z A z ik x y d dα β α β α β
∞

−∞

= − +∫ ∫
 

(1.75)

where A(α, β,z) is the amplitude of the spatial spectrum of plane waves, we can 
obtain the decomposition of the complex amplitude with respect to plane waves
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2 2
0( , , ) ( , ) exp[ ( 1 )] ,F x y z A ik x y z d dα β α β α β α β

∞

−∞

= − + ± − −∫ ∫
 

(1.76)

where A0(α, β) = A(α, β, z = 0) is also the amplitude of the spatial spectrum of plane 
waves at z = 0. If we know the direction of light propagation, in the exponent in 
equation (1.76) we can leave only one sign (when the wave propagates along the z 
axis we select the plus sign).

We represent the function A0 (a,b) via the inverse Fourier transform 

 

∞

−∞

= +∫ ∫
2

0 0( , ) ( , )exp[ ( ) .
2
kA F x y ik x y dx dyα β α β
π

 
(1.77)

From equations (1.76) and (1.77) follows the integral transformation of the 
complex amplitude of the light field [4]

 

2
0( , , ) ( ' , ') ( ', ', ) ' ',F x y z k F x y H x x y y z dx dy

∞

−∞

= − −∫ ∫
 

(1.78)

where

 

2 21( , , ) exp[ ( 1 )] .
2

H x y z ik x y z d dα β α β α β
π

∞

−∞

= − + ± − −∫ ∫
 

(1.79)

H(x, y, z) is the pulse response function of the homogeneous space,                                          
F0(x, y) = F (x, y, z = 0) is the complex amplitude of light at z =  0.  If α2 + β2 > 1, then the  
integral exponential factor 2 2exp( 1)kz α β− + −  appears to be described by the 
inhomogeneous surface waves that propagate in the plane z = 0 and at z >> λ not 
contributing to the light field. Therefore, if z >> λ the integral in (1.79) can be 
calculated not in infinite limits, and at  α2 + β2 < 1.

1.4.1. Kirchhoff integral

Using the known expansion of the amplitude of a spherical wave in plane waves

 

2 2

2 2

exp ( 1 )
.

1

ikR ik x y z d de ik
R

α β α β α β

α β

∞

−∞

 − + − − −  =
− −∫ ∫

 
(1.80)

where R = (x2 + y2 + z2)1/2 – the pulse response function, defined by equation (1.79) 
can be written as:

 
( )2

2
1( , , ) .

2

ikR ikRe e RH x y z R ik
z R R zkπ

− ∂ ∂
= − = −  ∂ ∂   

(1.81)

If we assume that the distance from the plane z = 0 to the plane of observation z 
is much greater than the wavelength of R >> λ,  z >> λ, then instead of (1.81) we can 
approximately assume that the following equality is satisfied
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( , , ) .

ikRe zH x y z ik
R R

= −
 

(1.82)

Then, instead of the integral transform (1.79) we obtain the Kirchhoff integral

 
0( , , ) ( ' , ') ' ',

2

ikRik e zF x y z F x y dx dy
R Rπ

∞

−∞

−
= ∫ ∫

 

(1.83)

where R = [(x–x')2 + (y–y')2 + z2]1/2. Sometimes, given the fact that R » z instead of 
(1.83) the Kirchhoff integral is written as: 

 
0( , , ) ( ' , ') ' ' .

2

ikRik eF x y z F x y dx dy
Rπ

∞

−∞

−
= ∫ ∫

 

(1.84)

The physical meaning of the Kirchhoff integral (1.84) is associated with the 
Huygens–Fresnel wave principle and consists in the fact that the Kirchhoff integral 
is an expansion of the complex amplitude of the light field in spherical waves.

1.4.2. Fresnel transform 

Integral transforms (1.78) and (1.83) describe the propagation of non-paraxial 
optical fields in a homogeneous space along the axis z. To describe the propagation 
of paraxial optical fields that propagate in a small solid angle, we use the Fresnel 
integral transform.

The complex amplitude of the paraxial light field is represented as:

 ( , , ) ( , , ).ikzU x y z e F x y z=  (1.85)

and the slowly varying complex amplitude F(x, y, z) satisfies the Fock–Leontovich 
parabolic equation (1.34) [2]

 

22 ( , , ) 0,xyik F x y z
z
∂ +∇ = ∂   

(1.86)

where 
2 2

2
2 2xy x y

∂ ∂
∇ = +

∂ ∂
 is the transverse Laplacian. Any solution of equation  

 
(1.86) can be written in integral form:

 
( ) ( )2 2

0( , , ) ( , ) exp ,
2

ik ikF x y z F x y d d
z z

ξ η ξ η ξ η
π

∞

−∞

−   = − + −    ∫ ∫
 

(1.87)

where F0 (x, y, z) = F(x, y, z = 0).
The Fresnel transform (1.87) is the expansion of the paraxial light field on the 

parabolic waves, and it is easily obtained from the Kirchhoff integral (1.84), using a 
Taylor series expansion to the second term of the distance R in the exponent:

1/22 2 2 2 21( ) ( ) ( ) ( ) .
2

R x y z z x y
z

ξ η ξ η   = − + − + ≈ + − + −   

The transition from the Kirchhoff integral (1.84) for the Fresnel integrals (1.87) 
is possible under the condition:
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4

3 ,
8
kr

z
π<<

where r is the effective radius of the light field.
At a considerable distance from the initial plane z = 0, when the conditions of the 

far zone of diffraction (or Fraunhofer diffraction zone)

 

2
,

2
kr

z
π<<

 
(1.88)

instead of the Fresnel integral transform (1.87) we can use the Fourier transform of 
the parabolic wave multiplier in front of the integral:

 

2 2
0( , , ) exp[ ( )] ( , ) exp[ ( )] .

2 2
ik ik ikF x y z x y F x y d d

z z z
ξ η ξ η ξ η

π

∞

−∞

− −
= + +∫ ∫

 

(1.89)

The Fourier transform (1.89) is the expansion of paraxial optical fields on plane 
waves. The integral on the right-hand side of (1.89), written with the help of the 
spatial frequencies u = kξ/z, v = kη/z, has the form of the normal Fourier integral:

 
0( , ) ( , ) exp[ ( )] .F x y F u v i xu yv dudv

∞

−∞

= − +∫ ∫
 

(1.90)

The Fourier transforms (1.89) and (1.90) also describe the complex amplitude of 
the light field in the plane of spatial frequencies of a thin spherical lens.

Conclusion

This chapter introduces the basic differential and integral equations, which are 
necessary for solving problems of the diffraction of electromagnetic waves. Based on 
the general system of differential equations for the vectors of electric and magnetic 
fields of the electromagnetic wave, the wave equation, the Helmholtz equation for 
monochromatic light, the Fock–Leontovich equation for the paraxial optical fields, 
as well as the eikonal equation describing the propagation of rays in geometrical 
optics were derive. Similarly, using the scalar and Green vector theorems, we 
derived the basic integral relations for the monochromatic electromagnetic field: 
the Stratton–Chu and Kirchhoff–Helmholtz formulas. We presented the basic 
Fredholm integral equations of the first and second kind for solving problems of the 
diffraction of a monochromatic electromagnetic wave by perfectly reflecting and 
homogeneous dielectric (transmitting) objects. For the scalar complex amplitude, 
which can be regarded as any of the projections of the vectors of the strength of the 
electric and magnetic fields, we discussed the widely used integral representations: 
field expansion in plane waves, the expansion in spherical waves (the Kirchhoff 
integral), the expansion of the parabolic waves (Fresnel transform).

Many of the relationships in this chapter are used in subsequent chapters for 
solving direct and inverse problems of diffractive nanophotonics. Chapter 2 
presents difference methods for solving Maxwell’s equations (variants of the 
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FDTD method) and finite difference methods for solving the wave equation 
(BPM-method). Chapter 3 discusses the solution of the Helmholtz equation based 
on the Galerkin finite element method and the solution of the integral Fredholm 
equation of the second type, which describes the diffraction of light by dielectric 
objects. Chapter 4 deals with the solution of the Helmholtz equation on the basis 
of the Fourier modes method, or the expansion of plane waves for periodic objects 
(RCWA method).Chapter 5 uses the solution of Maxwell’s equations based on the 
difference FDTD-method in cylindrical coordinates. In Chapter 6 the Helmholtz 
equation is solved by the method of matched sinusoidal modes. Chapter 7 deals 
with the paraxial equation of propagation and uses Fresnel and Fourier transform to 
describe the propagation of laser beams. In Chapter 8, to calculate the force of light 
pressure on the microparticle, we use an iterative solution of the integral equation 
of diffraction obtained on the basis of Green’s theorem.
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