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NO HEADING????

The FDTD method actively used at present to meet the challenges of 
nanophotonics [1, 2] has a long history. Appearing in the middle of the last century, 
[3] (G. Cron, 1944), the numerical method for solving Maxwell’s equations has 
gone through several stages of development.  Previously, only (S.K. Yee, 1966) 
[4] published explicit difference equations of a high order of approximation of the 
initial differential problem in time and space.  Implicit finite difference schemes, 
characterized by absolute stability, were presented in 1997 [5] by D.L. Golovashkin, 
A.A. Degtyarev and V.I. Soifer, in 1998 [6] the same authors increased the order 
approximation in time for the implicit schemes, and in 2000 [7] also in space 
(Zheng, Chen, Zhang). 

In 1994, J.–P.  Berenger [8] satisfactorily solved the problem of numerical 
description of the absorption of radiation leaving the boundary of the computational 
domain. 

The problem of modelling of the operation of the source of an incident wave, 
set by Yee in [4], has been solved with varying degrees of accuracy in many 
studies to date. The first way to specify the incident wave, which allows to limit the 
computational domain by the object under study and its immediate neighborhood, 
was formulated in the work [9] (A. Taflove, M. Brodwin, 1975). A more accurate 
method was published in 1980 [10] (A. Taflove) using the TF / SF technique (Total–
Field/Scattering–Field technique). The increase in the accuracy of this approach in 
the region enclosed in a shell of a homogeneous medium, is described in a related 
work in 1999 [11] (D.W. Prather and S. Shi), in which the authors chose to define 
the emitting conditions numerically, rather than in the analytical form, as previously 
suggested in [10]. When finding an optical element in the shell of an inhomogeneous 
medium it is appropriate to apply the methodology of defining the incident wave, 
described further in section 2.1.4. 

The computational complexity of the FDTD method is reduced by the imposition 
of a mobile grid area, as proposed in [12] (B. Fidel, E. Heyman, R. Kastner and 
R.W. Zioklowski). The specified method is well established in the study of short 
pulse propagation in a homogeneous medium. In section 2.1.5 a method is proposed 
for decomposing the grid domain, which reduces the computational complexity 
when modelling the propagation of monochromatic radiation. 
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The beam propagation method (BPM) was proposed in the 70s of XX century by 
Feit and Fleck [13] (M.D. Feit, 1978) and was designed for simulation and analysis 
of light propagation in waveguides with a gradient refractive index profile. Although 
originally the method was formulated in the framework of the scalar theory of light, 
and it aimed to the gradient media, the basic ideas and principles of the method are 
more fundamental and remain valid until now. This is confirmed, in particular, by a 
large number studies of the method that appeared in the last three decades, as well 
as studies in which the method is applied to solve research and applied problems. 

Interesting also is the fact that a similar approach was independently proposed 
(and developed independently for a long period of time) in different fields of 
physics, namely in acoustics. There the method is called the parabolic equation 
method and is of considerable importance, for example, for the problems of 
hydroacoustics.  At present, these methods are closely related, offer similar 
mathematical tools and, in fact, are almos identical.  However, in some sense, 
the beam propagation method is more general, as it studies not only scalar cases. 

The central idea of ​​the beam propagation method is to reduce the order of 
differentiation with respect to the selected coordinate in the Helmholtz equation 
and subsequently solve the problem in the evolutionary form with respect to this 
coordinate. Feit and Fleck offered a fairly simple way to impose a number of very 
serious limitations on the scope of the method, but this solution has shown the 
principal possibility of such an approach. 

Later on studies of the method aimed at overcoming its limitations. Thus, the 
beam propagation method, based on the method of lines, has made possible to 
perform simulations of light propagation in media with a more contrast refractive 
index profile [14] (J. Gerdes, 1991). 

Further development of computer technology has made possible the effective 
use of finite–difference methods for solving the consequences of the Helmholtz 
equation which led to the emergence of a new family of the beam propagation 
methods (finite–difference BPM), removing a number of requirements for the 
field distribution in the propagating beam [15] (W. Huang, 1992). However, these 
methods are, in turn, limited as regards beam propagation: their application is 
incorrect if most of the energy is distributed at a considerable angle to the axis, 
considered as the main direction of propagation. 

In turn, the application of the finite element approach and the more accurate 
approximations of differential operators allows us to relax the last restriction, 
which led to the emergence of yet another family of methods: methods of beam 
propagation for significant deviations in propagation (wide–angle BPM) [16, 17] 
(S.L. Chui, 2004 and Kh.Q. Le, 2009). 

It should be noted that the studies, which set out the foundations of modern 
methods of beam propagation were mostly published in the early 90s of the 
twentieth century. Further development of the method occurred predominantly in 
the direction of improving the performance of the method through the use of more 
sophisticated mathematical tools and computational methods. 

At present, the the beam propagation method is a rather large family of methods 
with different characteristics which determine which method is used for a specific 
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case. Together, these methods allow to solve a wide range of problems dealing with 
the propagation of radiation in dielectric media. The main limitations of the method 
and its mathematical foundations will be discussed in section 2.2. 

2.1. Difference method for solving Maxwell’s equations                   
(FDTD–approach) 

2.1.1. Explicit difference schemes for Maxwell’s equations 

The mathematical basis of the finite–difference time–domain method (FDTD method) 
are difference expressions for the Maxwell equations and the grid approximations of 
the boundary and initial conditions corresponding to the boundary value problems 
for the first and second kind and cyclic. Classical schemes by Yee [4] (from which 
the FDTD method is derived) allow the expression of each grid function via values 
of the functions values ​​at the previous time layers explicitly. The main feature of 
these schemes is separate location of nodes of the grid area for each projection of 
the field strength. As shown in [7], this technique raises the order of approximation 
of the difference scheme of the initial boundary–value problem. 

2.1.1.1. One–dimensional case 

In the one–dimensional case with the Dirichlet boundary conditions on the area of ​​
computer simulation D1 (0 < t T , 0 z  Lz) we traditionally [4] 1

hD  superimpose 
a grid area in the nodes of which {(tm, zk): tm = mht, m ​​= 0.1,..., M = T/ht, zk = khz,              
k = 0..., K = Lz/hz } we define the grid projection of the electric field on the axis X – 

k

m
xE . The grid projection of the magnetic field on the axis Y – 

0.5

 0.5
k

m
yH

+

+  is defined at 
the nodes {(tm +0.5, zk +0.5): tm +0.5 = (m +0.5) ht , m ​​= 0. 1, .., M – 1, zk +0.5 =                                 
(k + 0.5) hz, k = 0,..., K – 1}. The index k varies in the range 1

hD indicating the nodes 
in space, m – in time. Distances between nodes are given by the spatial (hz) and 
time (ht) grid steps. The grid value of of the dielectric constant (ek) characterizes 
the optical element being studied. Figure 2.1 presents the location of nodes 1

hD  in 
space, without taking into account the time coordinate. 

Then Maxwell’s equations in the one–dimensional case are usually written as the 
following difference analogue [4]: 

	

0.5 0.5 1

0.5 0.5

0 ;k k k k

m m m m
y y x x

t z

H H E E
h h

µ + + +

+ −− −
= −

	
 (2.1)

	

0.5 0.5

1 0.5 0.5

0 .k k k k

m m m m
x x y y

k
t z

E E H H
h h

e e + −

+ + +− −
= −

	
(2.2)

Figure 2.2 shows the differential pattern corresponding to (2.1) , (2.2). 
By defining the Dirichlet boundary conditions for 1

hD , we set 

	
0

0m
xE =

 
and 0

K

m
xE =  %% 0 ≤ m ≤ M.	 (2.3)
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The initial condition for D1
h written in

	
0

1 z(kh ) (1 k K 1).
kxE = Φ ≤ ≤ −

	
(2.4)

The grid projection of the magnetic field is not involved in the formation of the 
boundary and initial conditions in the field of view of the structure D1

h, which does 
not provide for the location of nodes (tm +0.5, zk +0.5) at any of its border. 

When setting the Neumann boundary condition we must be impose on D1 the 
grid area 1

hD  [18], in the nodes of which {(tm, zk+0.5): tm = mht, m ​​= 0. 1, .., M = T/ 
ht, zk + 0.5 = (k +0.5) hz, k = 1, .., K = Lz / hz} we define the grid projection of the 
electric field on the axis X – 0.5k

m
xE + . The grid projection of the magnetic field on the 

axis Y – 0.5
K

m
yH +  is defined at the nodes {(tm + 0.5, zk): tm +0.5 = (m +0.5) ht, m ​​= 0. 1, .., 

M – 1, zk = khz , k = 0. .., K}. Figure 2.3 shows the location of nodes in space, without 
taking into account the time coordinate. 

Redefining the grid area is associated with the imposition on the boundaries z = 
0 and z = Lz of the nodes of the magnetic field 

	
0

0.5 0m
yH + =  and ( )0.5 0 0 1

K

m
yH m M+ = ≤ ≤ − ,	 (2.5)

in contrast to the condition (2.3), which would entail the imposition on the boundaries 
of the nodes of the electric field. The initial condition for 1

hD  is written in

Fig. 2.1. Grid area D1
h without sampling over time. Circles correspond to the projection 

k

m
xE , 

squares – 
0,5

 0 5
k

m ,
yH

+

+  .

Fig. 2.2. The differential pattern for the construction of (2.1), (2.2). Circles correspond to the 
projection of the electric field 

k

m
xE , the square – the magnetic field 

0.5

0.5
k

m
yH

+

+ .

Fig. 2.3. Grid area D1
h without sampling over time. Circles correspond to the projection 

0.5k

m
xE

+
, 

squares to  0.5
k

m
yH + .
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( )( ) ( )

0.5

0
1 z k 0.5 h  0 k K 1 .

kxE
+

= Φ + ≤ ≤ −
	

(2.6)

In this case, when writing the boundary conditions we do not use grid electric 
field strength, and write the initial condition without the magnetic field.

Then the difference analogue for the Maxwell’s equations in the one-dimensional 
takes the form: 

	

0.5 0.5

0.5 0.5

0 ;k k k k

m m m m
y y x x

t z

H H E E
h h

µ + −

+ −− −
= −

	
(2.7)

	

0.5 0.5 1

1 0.5 0.5

0 0.5 .k k k k

m m m m
x x y y

k
t z

E E H H
h h

e e + + +

+ + +

+

− −
= −

	
(2.8)

Figure 2.4 shows a differential pattern corresponding to (2.7) (2.8). 
Implementation of the cyclic boundary condition requires the imposition on 

D1 of the grid area 1
hD  (Fig. 2.5), in the nodes of which {(tm, zk): tm = mht, m ​​=                      

0,..., M = T / ht , zk = khz, k = 0,..., K – 1 (K = Lz / hz)} we define the grid projection 
of the electric field on the axis X –

k

m
xE . The grid projection of the magnetic field on 

the axis Y – 0.5
0.5k

m
yH +
+ is defined at the nodes {(tm +0.5, zk + 0.5): tm+ 0.5 = (m + 0.5) ht ,            

m ​​= 0. 1,..., M – 1, zk+ 0.5 = (k + 0.5) hz , k = 0,..., K – 1}. 
In contrast to D1

h, the region 1
hD  does not contain a node for 

k

m
xE because of its 

redundancy, since the cyclic condition implies the equality of the field strengths at 
z = 0 and z = Lz. The difference equations in solving Maxwell’s equations coincide 
with the previously submitted equations, except for the node k = 0 (for the definition 
of the electric field) and k = K–1 (for the definition of the magnetic field). For them 
is true:

	

0.5 0,5 0 1

0.5 0.5

0 ;K K K

m m m m
y y x x

t z

H H E E
h h

µ − − −

+ −− −
= −

	
(2.9)

	

0 0 0.5 0.5

1 0.5 0.5

0 .K

m m m m
x x y y

k
t z

E E H H
h h

e e −

+ + +− −
= −

	
(2.10)

Fig. 2.4. The differential pattern for the construction of (2.7), (2.8). Circles correspond to the 
projection of the electric field 

0.5k

m
xE

+
, the square – the magnetic field  0.5

k

m
yH + .

	
	
correct



		  25

The initial condition 1
hD  is written as E0

xk= Φ1 (khz ) (0 ≤ k ≤ K – 1). 
Computational procedures, associated with the proposed schemes, are based 

on the alternation of time layers: the grid function at the next time step can be 
expressed solely in terms of functions in the previous two layers (the property of 
explicit difference schemes). Thus, equations (2.1)–(2.2) are conveniently solved 
in the form of 

	
( )k+0.5 k+0.5 k+1 k

m+0.5 m-0.5 m mt
y y x x

0 z

h
H =H E E ;

hµ
− −

	
(2.11)

	
( )0.5 0.5

1 0.5 0.5

0
,

k k k k

m m m mt
x x y y

k z

h
E E H H

he e + −

+ + += − −
	

(2.12)

and (2.7) – (2.8) is rewritten as 

	
( )0.5 0.5

0.5 0.5

0
;

k k k k

m m m mt
y y x x

z

h
H H E E

hµ + −

+ −= − −
	

(2.13)

	
( )0.5 0.5 1

1 0.5 0.5

0 0.5
.

k k k k

m m m mt
x x y y

k z

h
E E H H

he e+ + +

+ + +

+
= − −

	
(2.14)

Accordingly, (2.9) and (2.10) take the form 

	
( )0.5 0.5 0 1

0.5 0.5

0
;

K K K

m m m mt
y y x x

z

h
H H E E

hµ− − −

+ −= − −
	

(2.15)

	
( )0 0 0.5 0.5

1 0.5 0.5

0
.

K

m m m mt
x x y y

k z

h
E E H H

he e −

+ + += − −
	

(2.16)

The advantage of algorithms for solving (2.11)–(2.14) is the possibility of 
vectorization. Calculations for a time step of (2.11) – (2.13) can be expressed through 
a single operation of vector addition of the electric field and a single operation  
 
saxpy [19] (triad [20]) with a scalar 

0

t

z

h
hµ

− . For (2.12), (2.14) after the addition  
 
of vectors of the magnetic field and in front of saxpy with 

0

t

z

h
he

−  we add  
 
a component-wise operation dividing the result of  addition by the vector of values ​​of ek  
where 1 ≤ k ≤ K–1 for (2.14) or ek+ 0.5, where 0 ≤ k ≤ K–1 for (2.14)

It is known that the difference scheme (2.1) – (2.4) approximates the initial differential  
 
problem with the order ( )2 2,t zO h h  and stable [21] provided ( )2 21 ,t

t z
z

h O h h
h c

≤   
 

Fig. 2.5. Grid area without sampling over time. Circles correspond to the projection 
k

m
xE , squares 

– 
0.5

 0.5
k

m
yH

+

+ .

correct
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[9] (c is the speed of light in the medium). It is obvious that the other two schemes: 
(2.5)–(2.8) and (2.1), (2.2), (2.4), (2.9) and (2.10) are characterized by the same 
order of approximation and the stability condition, as derived from (2.1)–(2.4) 
modifications of the grid area. Shifting in the pattern in Fig. 2.4 the writing below 
the vertical dashed lines to the right by one position, we obtain the pattern shown 
in Fig. 2.2. 

2.1.1.2. The two–dimensional case 
On the two–dimensional area of ​​computer simulation D2 (0 < t ≤ T, 0 ≤ y ≤ Ly,                       
0 ≤ z ≤ Lz) we traditionally [4] superimpose the grid area in which the nodes D2

h, 
{(tm, yj, zk): tm = mht, m = 0. 1, .., M = T / ht , yj = jhy , j = 0, .., J = Ly / hy , zk = khz,                   
k = 0,..., K = Lz / hz} define the grid projection of the electric field on the axis X 
–???. The grid projection of the magnetic field on the axis Z – 0.5

0.5,j

m
y kH +
+  is define 

at the nodes {(tm+0.5, yj+0.5, zk): tm+0.5 = (m +0.5) ht, m ​​= 0. 1,..., M–1, yj +0.5 = (j +0.5) 
hy, j = 0,..., J–1, zk = khz, k = 1, .., K–1} and the projection of the magnetic field at 
Y – 

, 0.5

0.5
j k

m
yH

+

+ . at the nodes {(tm+0.5, yj, zk+0.5): tm+0.5 = (m +0.5) ht, m ​​= 0. 1,..., M – 1, yj 
= jhy, j = 1,..., J–1, zk+0.5 = (k +0.5) hz, k = 0,..., K–1}. Figure 2.6 presents the location 
of nodes Dh

2  in space, without taking into account the time coordinate. 
In the proposed area the indices j, k denote the nodes in space (directions Y and 

Z), m – in time. Distances between nodes are given by the spatial (hy and hz ) and 
time (ht) grid steps. The grid value of the dielectric constant (ej,k) characterizes the 
optical element being studied.

The system (2.1), (2.4) in the two-dimensional case for the TE wave is then 
usually written in the following difference analogue [4] : 

Fig. 2.6. Grid area Dh
2
 without sampling over time. Circles correspond to the projections 

,j k

m
xE   

triangles – 0.5
0.5 j

m
zH k +
+ , squares – 

, 0.5

 0.5
j k

m
yH

+

+ . 
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h h
µ + + +
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(2.17)
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(2.18)
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(2.19)

By defining D2
h for the Dirichlet boundary conditions, we set 

	

0, ,

,0 ,

0   0      0 m    0 k ;

0   0      0 m    0 j .
k J k

j j K

m m
x x

m m
x x

E E M K

E E M J

= = ≤ ≤ ≤ ≤

= = ≤ ≤ ≤ ≤
	

(2.20)

The initial condition for D2
h is written as 

	 ( ) ( )2
2 jhy, khz  1 j J 1,  1 k K 1 .hD = Φ ≤ ≤ − ≤ ≤ − 	 (2.21)

Grid projections of the magnetic field do not participate in the formation of 
boundary and initial conditions because of the structure of the region D2

h, and do 
not lead to the location of nodes (tm+0.5, yj, zk+0.5) and (tm+0.5, yj+0.5, zk) at any of its 
boundaries(Fig. 2.6). 

When setting the Neumann boundary condition we must imposed on grid D2 the 

domain 1
hD  (Fig. 2.7) [18], in the nodes of which {(tm, yj+0.5, zk+0.5): tm = mht, m ​​= 0. 

1, .., M = T / ht, yj+0.5 = (j +0.5) hy, j = 0. .., J–1 (J = Ly /hy), zk+0.5 = (k + 0.5)hz, k = 
0. .., K–1 (K = Lz / hz)} defined the grid projection of the electric field on the axis 
X – 

0.5, 0.5j k

m
xE

+ +
. The grid projection of the magnetic field on the axis Z – 

, 0.5

0.5
j k

m
zH

+

+  is 
defined at the nodes {(tm +0.5, yj, zk+0.5): tm+0.5 = (m +0.5) ht, m ​​= 0. 1,.., M–1, yj = jhy,                   
j = 0. .., J, zk+0.5 = (k+0.5) hz, k = 0. .., K–1} and the projection of the magnetic field 
on the Y – 

0.5,

0.5
j k

m
yH

+

+  at the nodes {(tm+0.5, yj+0.5, zk): tm+0.5 = (m +0.5) ht, m ​​= 0. 1, .., 
M–1, yj+0.5 = (j +0.5) hy, j = 0. .., J–1, zk = khz, k = 0. .., K}. 

Redefining the grid area associated with the imposition of limits on the boundaries 
z = 0 and z = Lz, the nodes for 

0.5,

0.5
j k

m
yH

+

+ , and at y = 0 and y = Ly the nodes for 
, 0.5

0.5
j k

m
zH

+

+ :
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0, 0.5 , 0.5

0.5 0.5

0.5 0.5

0  and  0  at  0 1  and  0 1;

0  and  0  at  0 1  and  0 1
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H H m M j J

H H m M k K
+ +
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(2.22)

in contrast to the condition (2.20), which would entail the imposition of the nodes of 
the electric field on the boundaries. The initial condition 1

hD  is written in 

	 ( ) ( )( ) ( )
0.5, 0.5

0
2 y zj 0.5 h , k 0.5 h  0 j J 1, 0 k K 1 .

j kxE
+ +

= Φ + + ≤ ≤ − ≤ ≤ − 	
		

(2.23)

In this case, when writing the boundary conditions we do not use the grid strength of 
electric field, and in writing the initial condition the magnetic field is not considered. 
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Then the system (2.7) (2.8) in the case study of the TE wave is usually written as 
the following difference analogue [18]: 
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(2.24)
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		  (2.26)
Implementation of the cyclic boundary condition requires the imposition on D2 of 
the grid domain 2

hD (Fig. 2.8), in the nodes of which {(tm, yj, zk): tm = mht, m ​​=                             
0. 1, .., M = T / ht, yj = jhy , j = 0. .., J–1 (J = Ly / hy), zk = khz, k = 0. .., K–1 (K = Lz / 
hz)} we define the grid projection of the electric field on the axis X –  E???. The grid 
projection of the magnetic field on axis  Z – 

0.5,

 0.5
j k

m
zH
+

+

 
is defined at the nodes {(tm+0.5, 

yj +0.5, zk): tm+0.5 = (m +0.5) ht, m ​​= 0. 1, .., M–1, yj+0.5 = (j +0.5) hy, j = 0. .., J–1, zk = 
khz, k = 0. .., K–1} and the projection of the magnetic field on Y – 

, 0.5

 0.5
j k

m
yH

+

+  at the 

Fig. 2.7. Grid area D̄  2h  without sampling over time. Circles correspond to the projections, triangles 
– 
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nodes {(tm+0.5, yj, zk+0.5): tm+0.5 = (m +0.5) ht, m ​​= 0. 1, .., M–1, yj = jhy, j = 0. .., J–1,              
zk+0.5 = (k +0.5) hz, k = 0. .., K–1}. 

In contrast to D2
h, the region 2

hD  does not contain nodes for ??? (0 ≤ j ≤ J) and                                                                         
(0 ≤ k ≤ K), due to their redundancy, because the cyclic condition implies the 
equality of the field strengths at the opposite boundaries. In addition, on 2

hD there 
were additional sites for (0 ≤ j ≤ J – 1) and (0 ≤ k ≤ K–1) used in the definition of the 
electric field which previously defined the electrical wall on 2

hD . 
Recording of difference equations with cyclic boundary conditions coincides 

with (2.17) – (2.19) with the following exceptions. Instead of (2.17) for 0 ≤ j ≤ J–1, 
we have 
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0.5 0.5

0 .j K j K j j K

m m m m
y y x x

t z

H H E E

h h
µ − − −

+ −− −
= −

	
(2.27)

Further, (2.18) at 0 ≤ k ≤ K–1 takes the form 

	

0.5, 0.5, 0, 1,

0.5 0.5

0 .J k J k k J k

m m m m
z z x x

t y

H H E E

h h
µ − − −

+ −− −
=

	
(2.28)

For (2.19) at 1 ≤ j ≤ J – 1, we have 

	

,0 ,0 0.5.0 0.5.0 , 0.5 , 0.5

1 0.5 0.5 0.5 0.5

0 ,0 ,j j j j j j K

m m m m m m
x x z z y y

j
t y z

E E H H H H

h h h
e e + − −

+ + + + +− − −
= −

	
(2.29)

Fig. 2.8  Grid area 1
hD  without sampling over time. Circles correspond to the projections, tri-

angles – 
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 0.5
j k

m
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+ , squares – 
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 0.5
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m
yH

+

+ .
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for 1 ≤ k ≤ K–1 

	

, 0.5 , 0.50, 0, 0.5, 0.5,

0.5 0.51 0.5 0.5

0 0, .j k j kk k k J k

m mm m m m
y yx x z z

k
t y z

H HE E H H

h h h
e e + −−

+ ++ + + −− −
= −

	
(2.30)

and for the node j = 0, k = 0 

	

0. 0.5 0, 0.50.0 0.0 0.5. 0 0.5. 0

0.5 0.51 0.5 0.5
0

0 0,0 .JJ

m mm m m m
yx x z z

t y z
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h h h

e e −−

+ ++ + + −− −
= −

	
(2.31)

The initial condition for D 2
h  is formed as 

,

0
j kxE  = Φ2 (jhy, khz) (0 ≤ j ≤ J–1,                                     

0 ≤ k ≤ K–1). 
Shifting to the right side of (2.17) – (2.19) (2.24) – (2.26) and (2.27) – (2.31), 

all grid functions defined on the previous time layers, we obtain the computational 
procedure for calculating the fields shown on the three schemes. 

Vectorization of such procedures is associated with recording of row- or column-
oriented algorithms [22] (depending on the method of storing the matrix in the 
computer memory) that shortens the duration searching the computer memory 
[19]. Recording of the vector algorithms in two-dimensional case is very important 
because of the high computational complexity of the given procedures. We write 
down the fields in the computer memory in the form of matrices (two-dimensional 
arrays), the first index of which points to a line, the second to a column.  For 
definiteness, we set the first index j (corresponding to the direction Y in the grid 
areas), the second k (direction Z). 

When storing the fields in the above manner by columns (for example, in using 
the language Fortran) computations by (2.17) and (2.24) are accompanied by 
operations of calculation of K and K–1 vectors 

, 0.5

0.5
j k

m
yH

+

+  (1 ≤ j ≤ J–1) and 
0.5,

0.5
j k

m
yH

+

+      
(0 ≤ j ≤ J –1), respectively. Each operation in the calculation of the values ​​of this 
vector consists of vector addition and subsequent saxpy. The scalar in saxpy is equal 
– ht / hz μ0, and the length of the resulting vectors is J – 1 in the calculation by (2.17) 
and J by (2.24). 

Calculations using (2.18) and (2.25) involve performing operations with the 
calculation of the K–1 and K vectors 

0.5,

0.5
j k

m
zH
+

+ (0 ≤ j ≤ J–1) and 
, 0.5

0.5
j k

m
zH

+

+ (1 ≤ j ≤ J–1), 
respectively. As in the previous case, each operation of the calculation of the values ​​
of this vector consists of vector addition and subsequent saxpy. The scalar in saxpy 
equals – ht / hy μ0, and the length of the resulting vectors is J in the computation by 
(2.18) and J–1 by (2.25). 

Similarly, referring to the calculation using (2.19) and (2.26), one should bear 
in mind the calculation of the K–1 and K vectors 

,

1
j k

m
xE +  (1 ≤ j ≤ J–1) and 

0.5, 0.5

1
j k

m
xE

+ +

+

 (0 ≤ j ≤ J–1) the length J–1 and J. At the same time, to form each vector, we 
require two vector additions of the grid components of the magnetic field Hy and 
Hz (the vectors of the same projection are added), two component-wise divisions 
of the results of these additions to the value of the vector εj,k (1 < j < J–1) for (2.19) 
and εk+0.5,j+0.5 (0 ≤ j ≤ J–1) for (2.26), two multiplications of the resulting vectors 
by scalars ht/ε0hy and ??? . Then the resulting vectors are added with each other 
and with the vector ??? (1 ≤ j ≤ J–1) in the calculation by (2.19) and 

0.5, 0.5j k

m
xE

+ +                     (0 ≤ j ≤ J–1) in the calculation by (2.26). 
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In the case where J < K, the row-oriented algorithms [19] are preferable to 

column-oriented as they permit operations with vectors of greater length, providing 
a better loading of the conveyor???. 

When storing the fields in two-dimensional arrays of lines (for example, in using 
the language C) calculations using (2.17) and (2.24) are accompanied by operations 
of the calculation of  J–1 and J vectors 

, 0.5

0.5
j k

m
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+ (0 ≤ k ≤ K–1) and 
0.5,

0.5
j k

m
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+ (1 ≤ k ≤ K–1), 
respectively. Each operation of the calculation of the values ​​of this vector consists  
 
of vector addition and subsequent saxpy. The scalar in saxpy is equal to

0

t

z

h
h µ

− , and 
 
the length of the resulting vector is K in the calculation of (2.17) and K–1 in the 
case of (2.24). 

Implementation of calculations by (2.18) and (2.25) involves performing 
operations of the calculation of J and J–1 vectors 
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+ (1 ≤ k ≤ K–1) and 
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0.5
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m
zH
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+ (0 ≤ k ≤ K–1), respectively. As in the previous case, each operation of the 
calculation of the values ​​of this vector consists of vector addition and subsequent  
 
saxpy. The scalar in saxpy is equal to 

0

t

y

h
h µ

,  and the length of the resulting vectors is  
 
K–1 in the calculation of (2.18) and K in (2.25). 

Similarly, referring to the  calculation  of  (2.19)  and  (2.26),  one should bear 
in mind the calculation of the J–1 and J vectors 

,

1
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m
xE + (1 ≤ j ≤ J–1) and 
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1
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m
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+ +

+

                                 (0 ≤ j ≤  J–1) with length  K–1 and K. At the same time, to form each vector, we 
require two vector addition of the grid component of the magnetic field Hy and Hz 
(the vectors of one projection are added), two component-wise division of the results 
of these additions by the value of the vector εj, k (1 ≤ j ≤ J–1) for (2.19) and εk+0.5, j +0.5 
(0 ≤ j ≤ J–1) for (2.26), and two multiplications of the resulting vectors by scalars  
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t
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h
he

 and 
0

t
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h
he

− . The resulting vectors are then added with each other and with the  
 
vector 

,j k

m
xE (1 ≤ j ≤ J–1) in the calculation by (2.19) and 

0.5, 0.5j k

m
xE

+ +
(0 ≤ j ≤ J–1) in 

the calculation by (2.26).
Do not assume that the shape of the investigated optical element determines 

imperatively the choice of the algorithmic programming language. This means that 
in the study of radiation passing through the DOE, elongated along the axis Y, it is 
appropriate to implement exclusively column-oriented algorithms.  In contrast, in 
the study of optical elements, extending along the axis Z, is reasonable to use only 
row-oriented methods. In fact, the researcher is free to use any form of writing (row 
or column-oriented), changing the direction of the axes and rewriting if necessary 
the difference equations in the new coordinate system. 

Of separate interest are block algorithms – the most efficient way to operate 
with the cache memory of the computer [19]. Their implementation is associated 
with the storage of fields in two-dimensional arrays of blocks, which requires 
the development of algorithms for writing (and reading) the values ​​of network 
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functions in the computer memory which from the standard row- or column-
oriented  functions. 

It is known that the difference scheme (2.17)–(2.21) approximates the  
initial differential problem with the order 2 2 2( , , )t y zO h h h  and  is   stable  under   the          condition  
 

2 2
1 1 1

t
y z

h
ch h

+ ≤  [9].  It is obvious that the other two schemes (2.22) – (2.26)  
 
and (2.17) – (2.19) (2.27) – (2.31) (2.22) are characterized by the same order of 
approximation and the stability condition, as those derived from (2.17) – (2.19) 
by modifications of the grid area. 

2.1.2. The transition to the complex amplitude 

By studying the propagation of monochromatic light through diffractive optical 
elements, the researcher usually expects the simulation results in the form of 
the complex amplitude of the electric field.  Strictly speaking, the computational 
experiment does not generate a monochromatic wave, since prior to the experiment 
radiation may be absent in the field, but at the selected time T the field in the relevant 
region can be accurately considered as monochromatic. In computational practice 
there are several ways of transition from the time domain to the frequency domain 
in implementing the difference method for the solution of Maxwell’s equations. 

In [9], one of the first on the issue, the intensity of the resultant electric field was 
determined by the addition of the intensities at different layers of the grid area in the 
time chosen for a certain period, followed by averaging. The specified method is 
similar to the principle of integral intensity sensors used in the formulation of field 
optical experiments, and is characterized by simplicity of implementation. However, 
this approach can not provide information about the phase of the complex electric 
field amplitude and is associated with a large number of additional arithmetic 
operations. The researcher needs to define the averaging of the intensities in the 
time interval equal to at least one period of oscillation of the electric field in the 
steady mode.

The use of Fourier transforms to switch to the frequency domain [23] provides 
information not only on the modulus of the complex amplitude of the electric field, 
but also the phase.  It is necessary to consider the value of the grid function of 
strength for all time sections relating to the period of oscillations of the field in 
the steady mode. Thus, the second way of transition to the frequency domain also 
requires large computational costs, differing from the first one by the necessity 
of applying a Fourier transform.This feature is a major obstacle to constructing 
the effective vector and parallel procedures for implementing the finite difference 
solution because of the difficulties in vectorization and parallelization of the fast 
Fourier transform. 

The idea of ​​a third way of transition to the frequency domain has been known for 
a long time [24], but it has not been implemented as an algorithm in the literature, 
available to the authors. This is implemented in this monograph. 
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Following [24, 25], we represent the field in the form of the complex amplitude 
re imx x xE E iE= +   , assuming 

	 { }Re  exp( ) ,x xE E i t= − ω

	
(2.32)

where ω is cyclic frequency. Then 
	

xE Cos t Sin t.
re imx xE E= ω + ω 

The intensity of the field can be determined by means of two measurements of Ex at 
different times, by solving the equation: 

	 x1 1 1E Cos t Sin t ,
re imx xE E= ω + ω 

	 (2.33)

	 x2 2 2E Cos t Sin t .
re imx xE E= ω + ω 

	 (2.34)

We agree to take t1 and t2 = T such that 

	 2 1 / 2.t tω ω π= +

Given that here cos ωt1 = sin ωt2, and sin ωt1 = – cos ωt2, instead of (2.33) and 
(2.34) we get 

	 x1 2 2E Sin t Cos t ,
re imx xE E= ω − ω 

	 x2 2 2E Cos t Sin t .
re imx xE E= ω + ω 

Squaring the last two equations, we add them together: 

	
( ) ( ) ( ) ( )2 22 2

1 2 I,
re imx x x xE E E E+ = + = 

where I is the unknown quantity which is proportional to light intensity. 
For a monochromatic wave, the origin from which  t2 is plotted can be chosen 

arbitrarily.  It is convenient to take  ωt2 = π /  2  +2πl,  where  l ∈ N0  at which                         
cos ωt2 = 0, sin ωt2 = 1. Then

	 x1 x2E ,  E .
re imx xE E= = 

The foregoing describes the transition in the frequency domain, from Ex to I, 
which can restrict the choice of two time layers Ex1 and Ex2, not using the FFT in 
the last layers of time, with further averaging the result. This approach significantly 
simplifies the implementation of the algorithm and reduces the duration of the 
calculations on it. 

The development of the proposed method of transition [26] associated with the 
replacement (2.32) by

	 { }Re exp( ( / 2)) ,x xE E i tω π= − −

	 (2.35)

that allows the use of (2.35) for the job of the incident wave, matching a job with the 
most common form of initial conditions – the lack of fields in D before the computer 
simulation. Indeed, putting (2.35) t = 0. we obtain Ex = 0 for Ėx = 1. Instead of (2.33) 
(2.34) we write 

	 x 1 1 1E (t )  Sin t Cos t ,
re imx xE E= ω − ω 

	 (2.36)

	 x 2 2 2E (t )  Sin t Cos t .
re imx xE E= ω − ω 

	 (2.37)

CORRECT

CORRECT
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Assume further t1 and t2 = T such that 2 1 / 2t tω ω π= + . Substituting this 
expression into (2.36) (2.37) we get:

	 x 1E (t )  Cos T Sin
re imx xE E= − ω − ωΤ, 

	 x 2E (t )  Sin T Cos
re imx xE E= ω − ωΤ. 

Solving this system with respect to Ėx , we find: 

	 x 2 x 1 E (t )Sin T E (t ) Cos
rexE = ω − ωΤ,

	 x 1 x 2 E (t )Sin T E (t ) Cos
rexE =− ω − ωΤ.

In contrast to the method described in [25], this approach allows to take into 
account the phase of the complex amplitude of the incident wave, if such a wave is 
determined by the representation (2.35). Such consideration is especially important 
in decomposing the computational domain, impossible in variants of the transition 
to the frequency domain. 

2.1.3. Application of absorbing layers 

The task of limiting the computational domain has an important place in difference 
solutions of Maxwells’ equations. In most cases, the researcher must submit either 
an optical element, surrounded by a homogeneous medium (e.g. free space), or 
located at the interface between two semi-infinite media. This is connected with the 
general tendency of physics to reductionism, when it is attempted to distinguish the 
phenomena from the surrounding world and consider them separately from external 
influences. This approach seems most appropriate in the majority of cases. 

The researcher is forced to image the computational domain as an infinite 
homogeneous space extending in any given direction, or as the interface between 
two such spaces.  Otherwise, the processes occurring behind the region have an 
impact on the processes inside. For example, the wave leaving the region is reflected 
from an external object and comes back. 

However, carrying out simulation for computer engineering, characterized by a 
given speed, the selected area of ​​memory, and having a limited supply of time, the 
researcher can not solve the difference problem in infinite space. 

Fortunately, this is not required if the area of ​​interest (in which the field 
distribution is taken as the solution of the problem) is finite, and the processes in 
this region occur at a given time interval. 

In this case it is sufficient to trace the distribution of the scattered field in a 
homogeneous infinite space outside the region of interest only in places where it has 
time to spread during the experiment. 

Clearly the desire of the researcher is not to study the fate of the radiation 
leaving the vicinity of the optical element being studied. Is it possible to impose 
the boundary conditions or carry out the appropriate structuring of the subregion 
adjacent to the border, allowing outgoing radiation D not to come back? 
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None of the above boundary conditions provides such an effect. Moreover, none 
of these conditions allow the scattered radiation to leave the experiment region, 
which leads to the inevitable distortion of the result. Next, we consider approaches 
to avoid such a distortion. 

2.1.3.1. Formulation of absorbing boundary conditions and the imposition of 
absorbing layers 

The first effective approach to solving the problem [27] is based on the factorization 
of the wave operator. In the two-dimensional case, writing the d‘Alembert operator 
in the form 

	

2 2 2
2 2 2

2 2 2 2 2
1 1 ,x z tG D D D

x z c t c
∂ ∂ ∂

≡ + − ≡ + −
∂ ∂ ∂

looking for his performance as 

	 ,G G G+ −≡

where 

	  
21t

z
DG D S
c

+ ≡ + −

corresponds to the wave propagation inside the two-dimensional computational 
domain from the left border, and 

	
21 .t

z
DG D S
c

− ≡ − −
	

(2.38)

corresponds to the propagation outside the region. At the same time 
/
y

t

D
S

D c
≡ . 

The authors of [27] have shown that the solution at the selected boundary of 
the equation G–U = 0, where function U characterizes the electromagnetic field 
equivalent to the boundary condition, which is absorbing the waves and tends to 
leave D through the left border. At the same time, all plane waves incident on the 
boundary at any angle are absorbed. For the right edge of the computational domain 
the absorbing condition is the equation G+U = 0. Similarly, we seek a factorization 
of the d‘Alembert operator in the formulation of the absorbing conditions at the 
upper and lower boundaries. 

Practical implementation of the approach is associated with the decomposition 
of the radical from (2.38) into a series. For example, taking 

	
2 211 1 .

2
S S− ≅ −

	
(2.39)

we write 

	

2

.
2

yt
z

t

cDDG D
c D

− ≅ − +

Then, the absorbing boundary conditions take the form: 
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2 2 2

2 2
1 0

2
U U c U

z t c t y
∂ ∂ ∂

− + =
∂ ∂ ∂ ∂

on the left boundary,	 (2.40)

	

2 2 2

2 2
1 0

2
U U c U

z t c t y
∂ ∂ ∂

+ − =
∂ ∂ ∂ ∂  

on the right boundary,	 (2.41)

	

2 2 2

2 2
1 0

2
U U c U

y t c t z
∂ ∂ ∂

− + =
∂ ∂ ∂ ∂  

at the upper boundary,	 (2.42)

	

2 2 2

2 2
1 0

2
U U c U

y t c t z
∂ ∂ ∂

+ − =
∂ ∂ ∂ ∂  

at the lower boundary.	 (2.43)

The Difference approximation (2.40)–(2.43) for the solution of Maxwell‘s 
equations associated with the name Mur [28], and the absorbing boundary conditions 
are also often referred to as the Mur and the whole approach as a whole. 

The ‘bottleneck’ of the method is the decomposition (2.39) which has been 
repeatedly improved [29.7] and still remains a source of error. 

A better approach does not involve formulation of the boundary conditions 
other than those listed in section 2.1.1.  The absorption of the field leaving the 
computational domain is achieved by arranging a specific evironment at the borders 
Г which does not transmit electromagnetic radiation and does not reflect it. 

One of the methods of constructing such an environment is associated with the 
representation of Maxwell’s equations in the form of [8.30]: 

	
rot ,

t 
∂

= +
∂
DH j *rot ,

t 
∂

= − −
∂
BE j

	
(2.44)

where  j*  is the density of  magnetic current,  which is equal to  σ* H, σ* is  the 
magnetic conductivity of the medium. Subject to the conditions
	

                                                    0 0/ * /s e s µ= 	 (2.45)
the wave impedance in such an environment for ε = μ = 1 is the wave impedance in 
vacuum, therefore, there is no reflection from the absorbing layer (in the incidence 
on it of a plane wave at an arbitrary angle)  [7]. In the layer the wave energy spill 
over into the energy of currents and the field is damped.

In the one-dimensional case, the equations (2.44) can be written as 

	
0 ,yx

x
HE E

t z
e e s

∂∂
+ = −

∂ ∂
*

0 .y x
y

H EH
t z

µ s
∂ ∂

+ = −
∂ ∂ 	

(2.46)

The two-dimensional version looks like: 

	
*

0 ,y x
y

H EH
t z

µ s
∂ ∂

+ = −
∂ ∂

*
0 ,z x

z
H EH
t y

µ s
∂ ∂

+ =
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0 .yzx

x
HHE E

t y z
e e s

∂∂∂
+ = −

∂ ∂ ∂



		  37

Introducing the propagation and attenuation of the field along different directions by 
separate equations leads to the splitting of the electric component and conductivities, 
recording [8,7]: 

	

( )*
0 ,xy xzy

z y

E EH
H

t z
µ s

∂ +∂
+ = −

∂ ∂ 	
(2.47)

and

	

( )* ,xy xzz
y z

E EH
H

t y
s

∂ +∂
+ =

∂ ∂ 	
(2.48)

	
0 ,xy z

y xy
E H

E
t y

e e s
∂ ∂

+ =
∂ ∂ 	

(2.49)

	
,yxz

z xz
HE

E
t z

s
∂∂

+ = −
∂ ∂ 	

(2.50)

where Ex = Exy + Exz, and condition (2.45) should be observed for the corresponding 
projections of the conductivities. 

Then the attenuation in the direction Z will provide the non-zero conductivity, 
*,z zs s in the solution of (2.47), (2.50). In the direction of *,z yY s s− , in the solution 

of (2.48), (2.49).
The location of the absorbing layers in the one case (Fig. 2.9) corresponds to the 

placement of the domain in the shell. 
In computational practice [8,7] the conductivities are defined by determining 

their value in the absorbing layers using the rule 

	 max To the right of the layer  ( ),
q

z
z z

L L z
L L z L

L
s s

− + 
= − ≤ ≤ 

 

	
max To the left of the layer  (0 ),

qL z z L
L

s s − = ≤ ≤ 
 

where q ∈ R. Thus, the conductivity of the layer increases towards the boundary 
and reaches its maximum value there. The magnetic conductivity σ* is defined in 
terms of σ (2.45). 

The two-dimensional case corresponds to the location of the absorbing layers, 
shown in Fig. 2.10 [8.7]. 

In subareas 2 and 6  (Fig. 2.10) there are non–zero components σy and σy*. In subareas 4 
and 8 components σz and σz*, in 1, 3, 5, 7 both projections σ and σ* different from 
zero (provided the attenuation of a wave propagating in any direction).

 Then

	
max

q

y
L y

L
s s − =  

 
, at 0 ≤ y ≤ L in subregions 1, 2, 3;

	
max

q
y

y
L L y

L
s s

− + 
=  

 
, at Ly–L ≤ y ≤ Ly in subregions 5, 6, 7;
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max

q

z
L z

L
s s − =  

 
, at 0 ≤ z ≤ L in subregions 1, 8, 7;

	
max

q
z

z
L L z

L
s s

− + 
=  

 
, at Lz–L ≤ z ≤ Lz in subregions 3, 4, 5.

Any projection of the magnetic conductivity is determined by the corresponding 
projection of the electrical conductivity of (2.45). 

2.1.3.2. The difference approximation of Maxwell’s equations in absorbing 
layers 

The location of the absorbing layers at the borders of the computational domain 
allows any boundary conditions to be set. It is traditionally accepted [8,7] to set the 
electric wall. 

Then in the one-dimensional solution (2.46) on 1
hD  we write the Yee explicit 

difference scheme in the absorption region: 
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h h
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e e s

+ + +

+

+ −

+ −
−

+

+ + +

− −
+ = −

− −
+ = −

	

(2.51)

where the subscripts 1 ≤ k ≤ L / hz correspond to left absorbing layer for the electric 
field and 0 ≤ k ≤ L/hz –1 for magnetic, and K – L / hz ≤ k ≤ K – 1 to the right layer for the 
electric field and K – L / hz ≤ k ≤ K–1 for the magnetic field (Fig. 2.9).

Fig. 2.10. Position of absorbing lauers in the two-dimensional case. The layers are crosshatched, 
Lz is the length of the computational domain in direction Z; Ly is the length of the computational 
domain in direction Y; L is the thickness of the absorbing layers.
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In the two-dimensional solution for (2.47)–(2.5) on 1
hD  we wrire the Yee explicit 

difference scheme in the absorption region:
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(2.52)
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We restrict the grid subdomain 1 (Fig. 2.10) the indices 1 ≤ j ≤ L / hy and                     
1 ≤ k  L / hz – for Ex (both components of the cleavage), 1  j ≤ L / hy and                         
0 ≤ k ≤ L/hz – 1 – to Hy, 0 ≤ j ≤ L / hy –1 and 1 ≤ k ≤ L / hz – for Hz; subdomain 
2 indices 1 ≤ j ≤ L / hy and L / hz +1 ≤ k ≤ K–L/hz–1 – For Ex, 1 ≤ j ≤ L / hy and                  
L / hz ≤ k ≤ K–L/hz–1 – for Hy, 0 ≤ j ≤ L/hy –1 and L / hz +1 ≤ k ≤ K–L/hz–1 – for Hz; 
subdomain three indices 1 ≤ j ≤ L / hy and K–L / hz ≤ k ≤ K–1 – for the Ex, 1 ≤ j ≤ L 
/ hy and K–L / hz ≤ k ≤ K–1 – for Hy, 0 ≤ j ≤ L/hy–1 and K–L / hz ≤ k ≤ K–1 – for Hz; 
subdomain four indices L / hy +1 ≤ j ≤ J–L/hy–1 and K–L / hz ≤ k ≤ K–1 – for Ex, L / 
hy +1 ≤ j ≤ J–L/hy–1 and K–L / hz ≤ k ≤ K–1 – for hy, L / hy ≤ j ≤ J–L/hy–1, K–L / hz 
≤ k ≤ K–1 – for Hz; 5 subdomain indexes J–L / hy ≤ j ≤ J–1 and K–L / hz ≤ k ≤ K–1 – 
for the Ex, J–L / hy ≤ j ≤ J–1 and K–L / hz ≤ k ≤ K–1 – for Hy, J–L / hy ≤ j ≤ J–1, K–L 
/ hz ≤ k ≤ K–1 – for Hz; subdomain six indices J–L / hy ≤ j ≤ J–1 and L / hz +1 ≤ k ≤ 
K–L / hz –1 – for Ex, J–L / hy ≤ j ≤ J–1 and L / hz ≤ k ≤ K–L/hz–1 – for Hy, J–L / hy ≤ 
j ≤ J–1 and L / hz +1 ≤ k ≤ K–L / hz–1 – for Hz; subdomain index 7 J–L / hy ≤ j ≤ J–1 
and 1 ≤ k ≤ L / hz – for Ex, J–L / hy ≤ j ≤ J–1's and 0 ≤ k ≤ L/hz– 1 – to Hy, J–L / hy ≤ 
j ≤ J–1 and 1 ≤ k ≤ L / hz – for Hz; subdomain index 8 L / hy +1 ≤ j ≤ J–L/hy–1 and 1 
≤ k ≤ L / hz – For Ex, L / hy +1 ≤ j ≤ J–L/hy–1 and 0 ≤ k ≤ L/hz–1 – for Hy, L / hy ≤ j 
≤ J–L/hy–1 and 1 ≤ k ≤ L / hz – for Hz. Then the grid subdomain without absorption 
located in the range of L / hy +1 ≤ j ≤ J–L/hy–1 and L / hz +1 ≤ k ≤ K–L/hz–1 for Ex, 
L / hy +1 ≤ j ≤ J–L/hy– 1 and L / hz ≤ k ≤ K–L/hz–1 – for Hy, L / hy ≤ j ≤ J–L/hy–1 and 
L / hz +1 ≤ k ≤ K–L/hz–1 – for Hz. The thickness of the absorbing layers L is selected 
in multiple steps of discretization (so that the results of all divisions are integers).

2.1.3.3. Association of absorbing layers in vectorization of calculations 

The vector algorithms discussed in 2.1, will also be used in the solution (2.51), 
(2.52) with the following additions. 
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In the one-dimensional case, the algorithm for solving Maxwell’s equations 
operated with the vector of the grid function of the strength of the electric field of 
length K–1 and the vector of the grid function of the magnetic field strength of length 
K. The imposition of absorbing layers reduces the length of the vectors, and their 
numbers increases due to the need for separate solutions of equations (2.46) in the 
absorbing layers and (2.1), (2.2) in the subregion without being absorbed. Namely, 
putting w = L / hz for the number of nodes in the grid region, coinciding with the 
absorbing layers, we will continue to operate with two vectors of length w and a 
single vector of length of K–1–2w in the calculation of the electric field and the two 
vectors of length w and a single vecto of length K–2w in calculation of the magnetic 
field. 

Reducing the length of vectors as a rule leads to an increase in the duration of the 
calculations [19.20] (even at a fixed computational complexity of the algorithm), 
and complicates writing and adjusting the programs. 

In an effort to preserve the old length of the vectors, we can write equation 
(2.46), not only in absorbing layers, but on the whole grid area 1

hD , using in a non-
absorbing medium values ​​of the conductivity equal to zero. However, this method 
is characterized by the need to allocate additional memory to store the input values ​​
of the conductivities (even though they are equal to zero), and by an increase in the 
number of arithmetic operations (even if these are operations with zeros). 

Another approach [18], although it does not not reduce the number of vectors to 
one for each component of the field, it can reduce it from three to two. 

We write the cyclic boundary condition for for the computational domain instead 
of setting an electric wall, and solve the equation (2.51) for 1

hD  instead of D1
h.. 

This technique can be used due to the property of absorbing layers not to transmit 
the electromagnetic radiation.  Radiation does not propagate to the edges of the 
field, therefore, for the calculation accuracy it is not important which of the three 
boundary conditions is located there. 

In addition, this change allows us to look at the computational domain somewhat 
differently: for the point z = 0 we can choose any node 1

hD , since the circular area 
has no edges. Shifting the origin on L to the right (Fig. 2.9) we come to the area in 
Fig. 2.11, which also corresponds to 1

hD .
As a result, two absorbing layers of length L are merged into one layer with 

length 2L, for which 
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Fig. 2.11. The location of the absorbing layers in the one-dimensional case in the formulation of 
the cyclic boundary conditions and shift of the origin on the coordinates, 2L is the thickness of 
the combined absorbing layers.
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Then, in the solution of (2.1), (2.2) in the non–absorbing subregion and (2.46) in 
the combined absorbing layer, we will operate with two vectors of the grid function 
of the strength of the electric field of length K–1–2w, 2w, and two vectors of the grid 
function of magnetic field strength of length K –2w, 2w. 

Turning to the two-dimensional case, we note that after the imposition of 
absorbing layers, the electric field vector and both components of the magnetic field 
split into three subvectors, regardless of the method of storage: a row- or column-
orinted. In the row-oriented method decomposition is performed along the direction 
Z, in column one – along Y. 

Unlike the one-dimensional case the increase in the allocated memory when 
organizing the calculations will be associated not only with the need to store the 
values ​​of conductivity (which in the scheme (2.17) – (2.19) was not the case), but 
also with the placement in the memory the electric field split into two components 
(in absorbing layers). Therefore, leaving the old length of the vectors we have to 
place in the memory permeability values ​​and split the components of the electric 
field in a non-absorbing subregion. 

In search of a compromise variant, we can write (2.52) in 2
hD  in place of 2

hD  
[18], replacing the electric wall at the boundary by the cyclic conditions. In the one-
dimensional case, such a change corresponds to the transition from a segment to a 
ring, in the two-dimensional case from a rectangle to a torus. 

Shifting the origin on L down and to the right (Fig. 2.10) we come to the area in 
Fig. 2.12, which also corresponds to 2

hD .
In layer A (Fig. 2.12) the layers 8 and 4 merge (Fig. 2.10); in layer B the layers 

1, 3, 5, 7 merge, and in C – 2, 6. The following equalities hold for the projection of 
the electrical conductivity on the Y-axis: 
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y
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at the top of the layers C, B (Ly – 2L ≤ y ≤ Ly – L);
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at the bottom of the layers, C, B (Ly – L ≤ y ≤ Ly).

Fig. 2.12. Location of absorbing layers in the two-dimensional case in the formulation of cyclic 
boundary conditions and the shift of the origin, 2L – combined thickness of the absorbing layers. 
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The projection of the electrical conductivity on Z satisfies the expression: 
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the right side of the layers A, B (Lz – L ≤ z ≤ Lz).

Then, in the solution of (2.18) – (2.19) in a non-absorbing subregion and (2.52) 
in the absorbing layers, we will operate with the two vectors when setting the values ​​
of network functions of the two projections of the magnetic field. The electric field 
in a non-absorbing subregion is specified by one vector and two vectors of the split 
components in the absorbing layers. 

The proposed layout of the absorbing layers in the network domains 1
hD  and 

2
hD  can not only shorten the calculations, but also greatly simplify the writing and 

debugging the code. Earlier in the simulation of diffraction in the two[-dimensional 
region it was necessary to finite difference equations in eight absorbing layers and 
one non-absorbing subregion, also to match the solutions at all 12 boundaries of 
the layers and subregions. 

For example, during the transition from layer 8 (Fig. 2.10) to the central 
subregion in the direction Z the grid projection of the magnetic field on the Y-axis 
does not require the determination by the formulas (2.52) for the absorbing layer 
and not by (2.17)–(2.19) for the non-absorbing subregion,  and needs to write a 
difference equation that contains the electric field of the central subregion and split 
components from layer 8: 
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where L/hy+1 < j < J – L/hy –1 and k = L / hz.
After the unification of the layers the solution is obtained in three absorbing 

layers and a non-absorbing subregion with the coordination of the fields at eight 
boundaries (Fig. 2.12).  The number of subregions declined by more than half 
and that of the the borders by a third; the code, written in Fortran 90 and Matlab, 
allowing the organization of vector calculations, was approximately halved 

2.1.3.4. Universal grid areas 

In addition to simplicity, the presented layout areas 1
hD  and 2

hD  are characterized by 
high flexibility. The one-dimensional or two–dimensional difference Yee scheme on 
overlapping rectangular grid areas with any boundary conditions from section 2.1.1 
can be reduced to writing equations on 1

hD  or 2
hD . Confirming this, we consider 

several examples, most frequently encountered in modelling the diffraction of laser 
radiation on microoptics elements. In this case, the mentioned grid areas with the 
merged absorbing layers will be called universal. 
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Example 1. A bounded cylindrical element 
One of the most common cases is the study of a finite cylindrical optical element 
fully placed in D2. Assume that the parameters of absorbing layers (values ​​of the 
conductivities and the value of the exponent q) have been selected previously for 
a perfectly conducting shell used normally in solving this problem [7]. Indeed, 
replacement of electric walls (2.20) by the cyclic condition (2.27) – (2.31) will lead 
to some (albeit small) drop in accuracy. 

In practice, reducing the thickness of the absorbing layers, their parameters 
are selected in such a way that the weakened scattered wave reaches the electric 
wall, reflects from it and is finally absorbed on the way back through the layer.  
Replacement of the electrical wall by the cyclic condition leads to a change in 
the phase of the back propagating wave which does not reflected from a perfect 
conductor, and comes from the opposite edge of the computational domain (special 
features of the toroidal structure of the grid area 2

hD ). The wave with the new phase 
will be absorbed in the layer, calculated for a different field, to a lesser extent. 

If the new selection of parameters of the absorbing layers for achieve the former 
accuracy is tedious for the researcher, or he prefers to use the standard values, 
the following small addition  to the calculation algorithm is made to improve the 
situation. 

Instead of the boundaries of the region (the cyclic conditions are already 
defined there), the electric wall is placed in the absorbing layers. To do this, 
imagine that the transformation to a torus with the union of absorbing layers 
takes place in region D2

h and not 2
hD . We merge the electrical walls at the 

boundaries z = 0, z = Lz (0 < y < Lz) which gives a cylindrical surface; then we  
combine the electrical walls at the boundaries y = 0, y = Lz (0 < z < Lz) which 
gives a torus; the origin of the coordinates is then shifted by L to the right 
and down (Fig. 2.12). This gives the universal grid region (Fig. 2.12) with the 
electrical walls located on the segments y = Ly – L, 0 < z < L and z = Lz – L,             
0 ≤ y< Ly (Fig. 2.13)

Performing calculations on such a field, it is not necessary to use the electric 
and magnetic walls as boundary conditions, writing in their vicinity the difference 

Fig. 2.13. The location of the electrical wall on a universal grid area in the study of an isolated 
cylindrical optical element. The electric wall is marked by thick bars.
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equations different from (2.52); this will increase the duration of the calculation, 
offsetting the gains made at the expense of more successful vectorization. 

It is reasonable after the transition to the next temporal layer to reset the values  
of the network functions of the electric field at the specified intervals. It is enough 
to multiply the two corresponding vectors by a scalar (elementary vector operation 
is done in hardware), which is equal to zero. The accuracy of the simulation results 
on the universal grid area after the proposed modification of the algorithm exactly 
coincides with the simulation results on D2

h. 

Example 2. An infinite two-dimensional diffraction grating
We assume that the investigated element is periodic along the axis Y. It is then 
sufficient to assumed in the universal grid area that σy and σ*y are equal to zero to 
ensure that layer C (Fig. 2.12) does not absorbed the radiation propagating in the 
directions Y and –Y, and layer B absorbs only in the directions Z and –Z. In this case 
C actually enters into a non-absorbing subarea, the layers A and B can be taken as a 
single absorbing layer. Similarly, modification of the universal domain in the study 
of an infinite element, periodic along the axis Z, is performed in the same manner 

 Coordinating solutions on the traditional grid region [23], which combines 
electric walls at the boundaries z = 0, 0 < y < Lz and z = Lz, 0 < y < Ly with the cyclic 
boundary conditions at y = 0, 0 < z < Lz and y = Ly, 0 < z < Lz (Fig. 2.14), and the 
universal grid area, in the combined absorbing layer A we place the electrical wall 
on the interval z = Lz – L, 0 ≤ y ≤ Ly  (Fig. 2.15).

Then the two solutions on these grids coincide. 

Example 3. A bounded symmetric cylindrical element 
In the study of the propagation of radiation through a bounded symmetrical 
cylindrical element the magnetic wall is placed on the axis of symmetry. The grid 
area 2

hD  encompasses half of the element and in the variant without combining 
absorbing layers is shown in Fig. 2.16. 

Fig. 2.14. The traditional layout of the computational domain for simulating infinite periodic opti-
cal element (a combination of electric walls and cyclic conditions).
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After the combination of layers 4 and 8 (Fig. 2.16) and the transition to 2
hD , the 

area of ​​computer simulation will take the form shown in Fig. 2.17. 
When the layer 2 in Fig. 2.16a becomes the layer C in Fig. 2.17a, layers 1 and 3 

after the merger go to B, sections 4, 8 – to A. Layer 6 in Fig. 2.16b changes to layer 
C in Fig. 2.17b, layers 5 and 7 after the merger go to B, sections 4, 8 – to A. 

Four magnetic walls at the boundaries 2
hD change into two walls in the area, 

located on the segments y = L, 0 < z < Lz and z = Lz – L, 0 < y < Ly (for the case shown 
in Fig. 2.16a) and at intervals of y = Ly – L, 0 ≤ z ≤ Lz and z = Lz– L, 0 ≤ y ≤ Ly (for 
the case shown in Fig. 2.17b) 

As in Example 1, in the universal area one should not regard the magnetic walls as 
the boundary conditions by writing in their neighborhood new difference equations. 
It is enough before moving on to the next layer in time to reset the grid components 
of the vector of projection of the magnetic field projection on the Z-axis at y = L, 0 < 
z < Lz and z = Lz–L, 0  ≤ y ≤ Ly (Fig. 2.17a) or y = Ly – L, 0 < z < Lz; also we should 
reset the grid components of the vector of projection of the magnetic field on the Y 
axis at  z = Lz– L, 0  ≤ y ≤ Ly (Fig. 2.17a) or z = Lz– L, 0  ≤ y ≤ Ly (Fig. 2.17b).

Fig. 2.15. The location of the electrical wall on a universal grid area in the study of an isolated 
cylindrical optical element.

Fig. 2.16. Location of absorbing layers in the field 2
hD without their union. Case a) corresponds to 

the placement into the upper half of the symmetrical elements, case b) – the lower one.

a                                                           b
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It is not compulsory to place the magnetic walls in layers A and B (Fig. 2.17). 
Surrounded on both sides by an absorbing medium, it will not have a decisive 
influence on the result of computer simulation. And yet, its absence would cause 
a slight (usually in the third place for a sufficiently dense mesh) mismatch in the 
values ​​of field strengths in solution on 2

hD  and 2
hD . The reason for this, as in 

Example 1, is setting the parameters of an absorbing layer on the interaction of the 
scattered wave with the magnetic wall. Without this absorption at these parameters 
will be less effective. One should either install a wall, or pick up new parameters of 
the layers (absorbing the radiation propagating in the direction of Z), to ensure an 
acceptable accuracy. The latter option requires different settings of the absorption 
in the Y- (where the magnetic wall remains) and Z-directions (where the wall is 
removed). 

Example 4. An infinite periodic symmetric element 
When considering in Section 2.1 the boundary conditions applied to modelling 
the propagation of electromagnetic waves through an infinite periodic symmetric 
element, it was concluded that it is adequate to install the magnetic walls on all 
boundaries of the computational domain.  Taking the axis Y as the periodicity 
direction, the absorbing layers are positioned on 2

hD  as shown in Fig. 2.18. 
The transition to universal net area is associated with the adoption of conductivity  

* and y ys s  equal to zero (as  in Example  2) and the  placement of  magnetic 
walls at intervals of y = L, 0 ≤ z ≤ Lz and z = Lz– L, 0 ≤ y ≤ Ly. Then the computational 
domain takes the form shown in Fig. 2.19.

As in the previous examples, it is not necessary to place the magnetic wall in 
layer A (Fig. 2.19), and the parameters of the absorbing layers can be selected for 
the case without the wall.

As seen from the  four  examples, varying the values  ​​of vector components of 
the conductivities  σ, σ*  and  placing  the electric  or magnetic  walls inside                                         

2
hD , the proposed optical elements  can be studied using the universal  grid  area.    

Moreover,  selecting the optimal  parameters  of the absorbing  layers in  areas A, 

Fig. 2.17. The location of the absorbing layers and magnetic walls (double line) on a universal 
grid domain in simulation of symmetric elements. Case a) corresponds to the placement in the 
area in the upper half of the symmetric elements, case b) – the lower one.

a                                                                 b
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B, C (Fig. 2.12),  the researcher  is free not  to place  the electric wall on  2
hD  and 

place the magnetic walls only when they are not inside the absorbing layers (hor
izontal magnetic walls in Figs. 2.16, 2.19). This optimization eliminates the need 
to reset before switching to a new temporary layer of the corresponding components 
of the electromagnetic field

2.1.4. Formation of the incident wave 

Modelling the propagation of radiation through the optical element, in addition to 
imposing the grid region and write on it difference equations, it is also necsaary to 
define the field coming from the outside and incident on the element. 

Indeed, the result will depend not only on the geometry of the investigated optical 
element and the material from which it is made, but also on the type of incident 
electromagnetic wave – the distribution of complex amplitudes of the projections of 
its vectors in space and time. 

Fig. 2.18. The location of the absorbing layers in the region without combining them in the study 
of the periodic symmetric element.

Fig. 2.19. The layout of the universal grid area in the study of the periodic symmetric element.
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A separate task should be matching of the techniques of setting the incident field, 
boundary conditions, the method of imposing absorbing layers and topography of 
the investigated element. Some methods of forming the incident wave are used in 
the study of elements, working on in transmission and reflection, periodical and 
non-periodical deposited on a substrate or without it, located in free space or formed 
at the end of the optical waveguide. 

The choice of the method of forming the incident wave will determine the 
features of the implementation of algorithms for the difference schemes. The type of 
method determines both the accuracy and duration of computer simulation. Vector 
and parallel algorithms are written in different ways for different technology tasks 
of the incident field. 

By limiting the scope of the subject area of ​​optics, we exclude from consideration 
the methods of excitation of the electromagnetic field by the currents, characteristic 
of electromagnetic problems in general and in particular the theory of antennas 
[7]. Moreover, we ignore for a time the physical nature of the radiation source and 
associated methods for defining the field. 

Leaving aside the problem of pulse propagation, we will not deal with the 
problem of their formation and entry into the computational domain, even though 
all of the following methods can be easily adapted to solve this problem. 

In modern literature there are three main approaches to the task of defining 
the harmonic incident field in the study of diffraction on the optical structures by 
the finite difference solution of Maxwell‘s equations. Let us examine them in the 
development, with particular emphasis on modifications applied to the study of 
microelements, in particular, diffractive optical elements. 

2.1.4.1. The method of  the‘hard’ source 

The first paper on the difference solution of Maxwell equations in differential form, 
authored by Yee [4], published in 1966, contained a description of the input method 
of the radiation in the computational domain, later named [7] using ‘the hard source’ 
method. 

The method consists of defining for the selected area of space of the vectors of 
the electromagnetic field through an analytical representation of the form

 

	 G A i t( ) Re[ ( )exp( ))],x x0 0 0= − +ω φ 	 (2.53)
where x0 are the coordinates of the point from the selected area; G(x0) is the 
formed value of the selected projection of the strength of the component of the 
electromagnetic field in x0 before proceeding to the next the temporary layer; A(x0) 
is the given complex amplitude of the incident field for the given projection, the 
power in the exponent determines the phase  of the wave (not the phase of the 
complex amplitude) with an initial phase f0. and the cofactor with the exponent 
defines the harmony of the incident monochromatic field;  ω is angular frequency; 
t is time; Re [..] is the operation of selection of the real part of the expression in 
square brackets.
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In the one–dimensional case, organizing Yee computation schemes, for G it is 
sufficient to accept to either the electric or magnetic field. Let us consider the first 
option, defining the ‘hard’ source at node k of the universal grid area with absorbent 
layers 1

hD  with combined absorbing layers of the difference approximation of 
expression (2.35): 

	

2
Re exp .

2k

m t
x

h c
E i m

π π
λ
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(2.54)

Furthermore, the geometrical dimensions of the computational domain and 
objects in the domain are measured in wavelengths (unless otherwise specified), 
putting (2.54) λ = 1. The parameters of discretization of the grid region are given in 
the form of pairs of numbers (Q, Qt). The first number corresponds to the number 
of nodes in the grid area in space coinciding with the wavelength, the second – the 
number of nodes over time during which the plane wave front in a vacuum travels 
a distance of one wavelength. 

Organizing the  formulation of  a computational experiment  in free 
space [18], we take Lz = 4λ, L = λ, and the source is located in the leftmost node                                                                                                

1
hD (k = 0). During the time T = 20 λ /c  the field in the studied area is stabilized 

and can be considered monochromatic.
Choosing in 1

hD  discretization (Q, Qt) = (10, 20), we consider the distribution 
of the module of the complex amplitude of the electric field in the area of ​​computer 
simulation (Fig. 2.20). 

 In the subdomain of arrangement of the absorbing layers (2 ≤ z ≤ 4) the fieldd 
decaus, and in free space (0 ≤ z ≤ 2) a plane homogeneous T-wave propagates. 
Complete decay to the zero modulus of the complex amplitude in Fig. 2.20 does 
not occur, since the layers absorbs over its entire length, and the scattered radiation 
penetrates the layer from both sides. 

By studying the dependence of the error of the difference solution on the 
discretization parameters (Table 2.1), we note the convergence of the difference 
method for solving Maxwell‘s equations to the analytical solution for the chosen 
parameters of the computational experiment. 

Fig. 2.20. The distribution of the modulus of the complex amplitude of electric field |A| on 1
hD

from the ‘hard‘ source.

V/m
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Table. 2.1 presents the values ​​of the uniform error 
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(2.55)

where (1 ≤ k ≤ 2Q), which characterizes the maximum deviation from the analytical 
solution. In (2.55) value |Bk| is the modulus of the complex amplitude of the electric 
field in the analytic solution (|Bk| = 1 V/m for (2.55)).

In the two-dimensional case,  to obtain  a homogeneous  plane  wave  in the 
universal grid region we define a ‘hard’ a source in the interval k = 0; 0 ≤ j ≤ J–1
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(2.56)

Keeping the settings from the previous experiment, we give a square shape to 
D2 (Ly = Lz). 

The results of numerical experiments coincide with the results for the one-
dimensional field, as the wave propagates along the direction Z. 

Note that in the 2
hD  region the assignment of a plane homogeneous wave through 

the ‘hard‘ source is impossible because of the discontinuity of the strength of the 
electric field at the edges 2

hD  . 

Table 2.1. Dependence of the errors of numerical experiments for the vacuum on discretization of 
the grid area (Q, Qt) and the parameters of absorbing layers σmax and q for the ‘hard" source’

(Q,Qt)
Parameters of absorbing layers Error values

smax, cm/m Q e, %

(10, 20) 0.018 1.5 1,3948
(20, 40) 0.024 2 0.10228
(50, 100) 0.032 2.5 0.03688
(100, 200) 0.037 2.7 0.010405

Fig. 2.21. The distribution of the modulus of the complex amplitude of the electric field |A| on 
2
hD from a point source.



		  51

Figure  2.21 shows the distribution of the field from the point ‘hard’ source 
(in (2.56) j = k = Q) in free space, defining a cylindrical wave front wave with 
discretization parameters (Q, Qt) = (20, 40). 

At  the locations of  the absorbing  layer  on a universal  grid area  (0 ≤ y ≤  2,                            
2 ≤ z ≤ 4 – layer A; 2 ≤ y ≤ 4, 2 ≤ z ≤ 4 – layer B and 2 ≤ y ≤ 4, 0 ≤ z ≤ 2 – layer C 
in Fig. 2.12)  the field attenuates.

Characterized  by the simplicity of  definition and  high  accuracy, the 
‘hard’ source is of limited use in computational practice. Definition of the incident 
wave  by the equation (2.53) does not allow  the wave reflected from  the optical 
object being studied to pass through the ‘hard’ source and reach the absorbing layer.

Confirming  this,  we set up a  computer experiment, which differs from the 
previous experiment by the first position of the radiation source (now k = Q / 2, z = 
0.5) and by discretization of the grid area.

Figure 2.22 shows the result of simulation, when installed the electric wall is 
situated in a node 3Q / 2 (z = 1.5) and reflects the incident wave back toward the 
source. 

Considering the  field  in the subdomain  0 ≤ z ≤ 0.5,  we note the  presence  of 
the homogeneous  wave radiated  in the direction –Z by the ‘hard’ source that 
radiates in both directions. The mentioned wave attanueates in the absorbing layer                                    
2 ≤ z ≤ 4 and fades almost completely. Directly behind the electric wall z = 1.5 the 
field is absent. The field reflected from the wall does not pass over the source, and 
reflecting from it and the wall interferes with the field incident in the direction Z.

Consequently,  when using  the ‘hard’  source  the source must  be sufficiently 
distant from the area of ​​registration of the resulting field so that the  wave reflecting 
from it does not return to the optical element,  distorting the  diffraction 
pattern.  Using  such a method  involves  a multiple increase in  the computational 
domain and the duration of the experiment which in some cases makes numerical 
simulation impossible. The ‘hard’ source  is used to solve  the auxiliary problems 
(testing the model, building a ‘transparent’ source.)

Fig. 2.22. The distribution of the modulus of the complex amplitude of the electric field |A| on 1
hD

in wave reflections in between the ‘hard’ power source and the electric wall.

V/m
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2.1.4.2. The total field formulation method

Obviously, to account for the waves reflected from the object under study, we must 
somehow find it. In [9, 31] it is suggested to take over the reflected field at the node 
location of the source result of the calculation of the difference scheme to specify 
the incident wave before proceeding with the temporary layer???. Then, adding the 
reflected field with the incident one, we thus define the resulting field in the location 
of the source. Calculations by this algorithm can be summarized as follows. 

Step 1. Calculation of the field by the difference scheme for the entire region of 
the layer m. 

Step 2. Determination of the reflected field as a result of the calculations in step 
1 in the location of the source node. 

Step 3. The calculation of the resultant field at the node of location of the source 
by adding the reflected field and the analytically calculated incident field with 
transition to the next time layer. 

Later, in [10] the proposed algorithm was termed the total field formulation 
method. 

Repeating the last experiment with the new source, we obtain the complex 
amplitude distribution shown in Fig. 2.22. 

 The wave wave  from the electrical wall  interferes with the incident wave  in 
the direction Z (on 0.5 ≤ z ≤ 1.5), passes through the source and is absorbed on 
2 ≤ z ≤ 4 (Fig. 2.23). In the subregion 0 ≤ z ≤ 0.5 we observe the superimposition 
of the wave emitted by the source in the direction Z and the wave reflected from 
the electrical wall passing through the source and retreating in the direction Z. In 
the analytic  solution there are no  oscillations  in the specified  interval, and in 
Fig. 2.23 the oscillations of the complex amplitude for 0 ≤ z ≤ 0.5 are due to an 
error introduced into the solution by the source.

Studying the accuracy of the method of the resultant field, let us consider 
a homogeneous plane wave propagation in a free environment by repeating the 
experiments with the new source for ‘hard’ power, the results are presented in 
Table. 2.1. 

Fig. 2.23. The distribution of the modulus of the complex amplitude of the electric field |A| on 1
hD

when using the total field formulation method to specify the incident wave.

V/m
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Comparison of experimental results for free space with the ‘hard’ source (Table 
2.1) and the source given by the total field formulation (see Table 2.2) in not in favour 
of the latter. The error of results has increased by an order for all discretizations. 

The reason for this [18.32] is an error when setting the reflected wave. Developing 
the method of the general field, it is necessary to determine the reflected wave not 
as a grid field after the transition to the next time layer, but by setting it by the 
difference of such a field and a field in another grid areas, devoid of the optical 
element and therefore free of the reflected wave. Such a source in [18.32] is named 
‘transparent’. 

We formulate the algorithm for defining the ‘transparent’ source. 
Step 1. Field calculation by the difference scheme for the layer m in area with 

an optical element. 
Step 2. Field calculation by the difference scheme for the layer m in the area 

without the optical element. 
Step 3. Determination of the reflected field in the subregion of definition of the 

source as the difference of the fields between the subdomains found in the first two 
steps. 

Step 4. Setting the resulting wave in the subregion of the source as the sum of 
analytically given incident field and the reflected field determined in the previous 
step. Transition a temporary layer m +1. 

The calculation results in free space using a ‘transparent’ source coincided with 
the data from Table. 2.1: the new source does not introduce any additional error in the 
difference solution.

By studying the  field  in the experiment  with an electric  wall,  we 
see interference extinguishing of the wave in the subdomain 0 ≤ z ≤ 0.5 (Fig. 2.24).

The was reflected from the wall returned to the source in antiphase. Such an exact 
match with the analytical solutions indicates the absence of the error introduced by 
the radiation source in the difference solution.

Attention will be given to the formation of the field in the auxiliary problem. It 
is made in full accordance with 2.1.4.1, when the ‘hard’ source was used to set a 
uniform plane wave in free space. In forming the ‘transparent’ source it is important 
to choose the grid areas of ​​the auxiliary and main tasks to be fully identical. 
Differences between the two tasks should be found only in the distribution of the 
refractive index. The main task has an optical element from which the reflected 
wave arrives to the source; the auxiliary task does not contain such element and not 
reflected wave forms in it. If we remove the scatterer also from the main task, the 
complex amplitude of the reflected wave, determined in setting the ‘transparent’ 
source, vanishes by virtue of the identity problems. This accounts for a full match 

Table 2.2. Dependence of the errors of numerical experiments for vacuum on the discretization 
of the grid area (Q, Qt) when using the general field method

(Q,Qt) (10, 20) (20, 40) (50, 100) (100, 200)

e, % 8.4609 2.2177 0.37411 0.10187
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(in all signs) of the calculation results in free space with the use of ‘hard’ and 
‘transparent’ sources. 

In the study of diffractive optical elements the source should be placed in the 
substrate element (not in vacuum), close to the microrelief in order to reduce the 
area (in three dimensions – volume) of the computational domain and the duration 
of the simulation. In this case, the auxiliary problem must contain a homogeneous 
medium with a refractive index of the substrate, that is the medium of the main task 
in which the source is located. 

The above method of setting ‘transparent’ source is also true in the case of the 
two-dimensional computational domain. If in such a field we must set as a uniform 
a plane wave as an incident wave, it is sufficient for this purpose to process a one-
dimensional auxiliary problem, which describes a wave. Only the main task, which 
contains a two-dimensional optical element, will be two-dimensional 

It is important to perform similar calculations on a universal grid area, because 
for the region with electric walls at the boundaries we can not form a homogeneous 
plane incident wave through the ‘transparent’ source.  The boundary conditions, 
given by the electric walls, do not correspond to a uniform plane wave front. For 
the same reason, it is inappropriate to install the horizontal electric wall in the 
subareas B and C of the universal grid area (Fig. 2.12). That, however, in no way 
limits the researcher in choosing the optical elements for modelling, as noted in 
previous sections. Magnetic walls are compatible with the spread of a homogeneous 
plane incident wave; hence, symmetric optical elements can be explored through a 
‘transparent’ source. 

When specifying other types of incident waves it is necessary to use the two-
dimensional auxiliary problem, which is modelled by diffraction of a wave in 
a homogeneous space through a ‘hard’ two-dimensional source.  An arbitrary 
incident wave is produced by the appropriate choice of the function of the complex 
amplitude of the incident wave in (2.53) and by varying the form of the subdomain 

Fig. 2.24. The distribution of the modulus of the complex amplitude of the electric field |A| on 1
hD

when using the ‘transparent’ source to specify the incident wave.

V/m
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of definition of the source (‘hard’ in the auxiliary problem and ‘transparent’ to the 
main problem). 

The method of forming the incident wave from a limited source permits the 
sharing of the ‘transparent’ source and arbitrarily oriented electric walls at the 
boundary of the grid area. 

2.1.4.3. The method of separation of the field 

The idea of ​​defining the incident wave through the separation of the total and 
scattered (TF/SF) fields was created after [24] the first publication devoted to the 
total field formulation [31]; it proved to be more productive and popular [7, 33, 34] 
up to the development of the ‘transparent’ source method [32]. 

The method consists of limiting the subregion of the resulting field (incident 
and scattered) by the shell different from the computational domain boundaries and 
located within such a boundary. The shell is not part of the absorbing layers, located 
between the layers and the optical element.  Behind the shell only the scattered 
field propagates.  The expressions used to separate fields contain terms with the 
analytically defined incident field; thus, the incident wave is introduced into the 
subarea of ​​the resulting field.  The rest of the subdomain of the computational 
domain does not contain the incident wave. 

A one–dimensional case. For the one-dimensional grid region division is 
performed in nodes and kL and kR (Fig. 2.25 in [7]). 

Grid functions at kL ≤ k ≤ kR refer to the resultant field, the rest – to the scattered 
one. The difference equations of the Yee scheme Yee [4] in the specified nodes have 
the form [7]:  
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where the grid functions under the tilde correspond analytically to the given incident 
field. 

The expression (2.57) defines the electrical component in the left node of 
the resulting field (Fig. 2.25). To do this, we must subtract from each other the 
strengths of the magnetic field in the neighbouring sites.  It is obvious that the 
subtraction should be carried out for the field strengths of the same nature, in this 
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case the resultant field strengths, as in (2.57) we calculated precisely the resultant 
field. But in the difference solution in the node kL– 0.5, only the scattered field is 
calculated. Therefore, in the right-hand side of (2.57) to the grid function 

0.5

0.5
kL

m
yH

−

+ we 
add the value 

0.5

0.5
kL

m
yH

−

+
  of the incident field, which is traditionally given analytically 

[7]. 
Similarly, in (2.58) the scattered magnetic field in the node kL–0.5 is calculated 

using the incident electric field 
kL

m
yE  in kL; the resulting electric field in kR–0.5 is 

calculated from (2.59) through the incident magnetic field in the adjancent right 
node, and the scattered magnetic field in kR+0.5 is determined through the incident 
electric field Ex

m
kR

in (2.60). 
Further, setting the parameters of numerical experiments, we take kL = 1, kR = 2Q 

for the universal one-dimensional grid domain, calculating the error of propagation 
of a flat homogeneous electromagnetic wave in a vacuum between the two nodes 
(Table 2.3). 

Comparison of the results from Tables 2.1, 2.2 and 2.3 shows that the analytical 
task of the incident field in the TF/SF method is preferable to the first version of the 
general field method, but is inferior in accuracy to the variant of the ‘transparent’ 
source. 

By studying the separated field method, we temporarily abandon the use of 
absorbing layers, setting the length of the computational domain to 40λ and placing 
a subdomain of the general field in the middle, leaving the other settings from the 

Fig. 2.25. Detail of the one-dimensional grid region [7] with the nodes of of division of resultant 
and scattered fields.

Scattered
field

Resultant
field

Scattered
field

Fig. 2.26. The distribution of the modulus of the complex amplitude of the electric field in the 
analytic definition of the incident field by the TF/SF method without the imposition of absorbing 
layers.

V/m
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previous experiment the same.  The result of calculations for the discretization 
(100.200) is shown in Fig. 2.26. 

The absence of absorbing layers made it possible [35] to observe the surge ​​of the 
values of the modulus of complex strength of the electric field at the right end of 
the grid area (Figure 2.26). This effect is explained by a time delay required for the 
wave emitted in the node kL to reach the node kR. During this delay the wave emitted 
in kR propagates in the direction of Z.  The waves from these nodes then interfere 
and mutually cancel each other to the right of kR. The observed surge leads to the 
conclusion of non-compliance of the expressions (2.57) – (2.60) with the TF / SF 
method at the initial stage of the calculation in this case. 

The numerical definition of the incident field in (2.57) – (2.60) not only improves 
the accuracy of calculations [11] and reduces their duration [7] in the two- and 
three-dimensional cases, but also makes it possible to avoid the above-mentioned 
effect. 

Similar to the procedure used in writing expressions for the ‘transparent’ source, 
we consider two problems: the primary and secondary, differing in the methods of 
defining the incident wave (the ‘hard’ source for the seconday problem). The values 
of the electric and magnetic fields found in the secondary problem at the nodes kL– 
0.5, kL, kR and kL+0.5 are substituted into equations (2.57) – (2.60) of the first problem 
as the incident wave. As noted in [11], this leads to the automatic compensation of 
numerical errors. The errors in defining the phase shift between the components of 
the incident field are compensated [35] in the adjacent nodes (kL–0.5 and kL; kR and 
kL+0.5), because the analytical definition of the amplitude (2.54) in experiments 
with a ‘hard’ source (Table 2.1) is associated with smaller errors. 

Indeed, numerical experiments confirm the high accuracy of the difference 
solution obtained on the basis of the approach proposed in [11].  The resulting 
error for the selected parameters coincided with the sampling  results from 
Table 2.1. Consequently, the numerical definition of the incident wave in (2.57) – 
(2.60) did not introduce any additional distortions in the difference solution. 

Moreover, because of the disappearance of the time interval between the onset of 
emission of the wave at the node kR and the arrival there of waves from kL, no surges 
were observed in the right side of the domain (Fig. 2.26). 

The above technique is successful when the domain is included in the shell of a 
homogeneous material. In the simulation of the operation of the diffractive optical 
element (DOE), this condition is not satisfied. We assume that starting at the node 
(kR–kL) / 2 the left side of the domain is occupied by a homogeneous dielectric 
half-space (substrate of the DOE) with a refractive index n = 1.5.  The error of 
the transmitted wave will be evaluated on a segment of the boundary between the 

Table 2.3, Dependence on the errors of numerical experiments for vacuum on discretization of 
the grid area (Q, Qt) with the formation of the incident wave by the analytical procedure TF/SF 
in one dimensional case 

(Q,Qt) (10, 20) (20, 40) (50, 100) (100, 200)

e, % 2.2289 0.74774 0.20736 0.066696
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media to kR (in the area of ​​the resulting field). How do we form the incident wave in 
equations (2.57) – (2.60)? 

The analytical definition of the incident wave in these expressions leads to a 
significant increase in errors [35] (Table 2.4, column a), compared with experiments 
in free space (Table 2.3) also as a result of the of non-compliance with the initial 
condition for the new phase difference of the incident wave between kL and kR. By 
moving the node kR to the left to the disappearance of this phase difference we can 
improve the accuracy to a certain extent [35]. However, the study of the optical 
element does not yield information on the phase shift – it is part of the solution of 
the problem of diffraction at DOE. 

Combining the numerical task of the incident wave (at the nodes kL– 0.5 and kL; 
the auxiliary problem is solved for the medium – a homogeneous dielectric) with 
the analytical task (at the nodes kR and kR+0.5) does not lead to a steady reduction 
of errors due to the influence of the analytical task in the right nodes for the whole 
computational domain [35]. 

The phase difference between the nodes kL and kR can be considered by assuming 
that the incident wave is not represented by the values ​​of the domains of the second 
problem is kR and kR+0.5, and instead it is represented by the nodes that are separated 
from the data to the appropriate distance to the left (the wave velocity in a vacuum 
is higher than in a dielectric).However, this view does not account for the difference 
in phase shift in vacuum (main problem) and the dielectric (auxiliary problem) 
between iR and iR+0.5, which leads to an even greater decrease in accuracy. Making 
amendments to the analytical phase shift corresponds to the analytical task of the 
incident wave in the right nodes (iR and iR+0.5), discussed above. 

Offering a solution to this problem, in this chapter we study the propagation 
of the field in a vacuum with the source (2.54), and this third problem is solved 
simultaneously with the two problems given in [35]. Thus, the value of the incident 
wave for the main problem (drop at the interface between the dielectric / vacuum) 
is substituted into equation (2.57), (2.58) of the second problem (which describes 
the propagation in a homogeneous dielectric), and in equations (2.59), (2.60) – for 
the third problem (propagation in free space). At the same time, to account for the 

Table 2.4. Dependences of the uniform errors of computational experiments for the domain 
with the insulator (n = 15) / vacuum interface on discretization of the grid area (Q, Qt) with 
the formation of the incident wave by various methods TF/SF (a – analytical, b – numerical) in 
the one–dimensional case. 

(Q,Qt)
Experimental series

a b

(10, 20) 7.9612 4.387

(20, 40) 3.9482 0.9745

(50, 100) 3.7263 0.1515

(100, 200) 1.5870 0.0383
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distance travelled by the wave in the first problem to the boundary between the two 
media, the values ​​of the incident field are selected from the third problem not at the 
nodes kR and kR+0.5, but with a corresponding shift to the right. 

As a result, we take into account numerically (not analytically) the phase 
difference of the waves between kL and kR, kL–0. 5, and kL, kR and kR+0.5, which 
improves the accuracy of numerical experiments (Table 2.4, column b). 

The proposed method is characterized not only by solutions free from the spike 
of the values ​​of the modulus of the complex amplitude in the right side of the 
computational domain, but does not limit the researcher in choosing the location 
of the site kR. The initial condition for the numerical formulation of the radiating 
condition is always satisfied by virtue of its compliance with the two auxiliary 
problems (second and third). 

Disadvantages of this approach includes an increase in computational 
complexity as a result of adding an additional one-dimensional problem.  In the 
study of diffraction of a plane electromagnetic wave on two-dimensional and three-
dimensional objects the indicated increase will not have any significant effect on the 
duration of the computation because of the dimensionaliyu of the added problem. 

The two-dimensional case is characterized by the appearance of two new 
boundaries of separation parallel to the axis Z (Fig. 2.27 in [7]). 

The grid subdomain of the resulting field is enclosed in the space between 
sections  jT < j < jB, k ≤ kL (left boundary),  jT < j < jB , k ≤ kR (right boundary), j ≤ 
jT, kL ≤ k ≤ kR (upper boundary),  j ≤ jB, kL ≤ k ≤ kR (lower boundary), forming its 
boundaries. 

For the separation of the resulting and scattered fields after the transition to the 
next temporal layer (for example, by (2.17) – (2.19)) we must carry out calculations: 
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