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Chapter 3

Diffraction on cylindrical inhomogeneities 
comparable to the wavelength 

In opto- and microelectronics, as well as in nanophotonics use is made of 
sophisticated optical devices with the dimensions of the order of the wavelength of 
incident light, whose work is described by the non-trivial physical effects, such as 
multiple scattering on periodic structures (Bragg diffractive gratings), the scattering 
and diffraction on aperiodic structures (diffractive optical elements (DOE)), 
the dispersion and non-linear transformation of laser pulses. The effect of these 
elements can not be predicted on the basis of geometrical optics or scalar diffraction 
theory, and it is essential to study the propagation of light waves through them 
using the vector model of diffraction. All this creates a greater need for efficient 
numerical approaches for modelling the wave propagation of light, if possible 
taking into account dispersion, scattering, complex interference effects, etc. Also, 
the use of the vector diffraction model is required when the relevant calculation 
area is located near or within the optical element. Although analytical solutions of 
the vector diffraction problem can be obtained for selected objects (sphere, half-
cylinder) [1, 2] the boundary conditions on the electromagnetic field for other 
dielectric structures makes the analytic solution impossible. 

Thus, for the problems of modelling the diffraction of light on the elements 
with dimensions on the order of the wavelength the light must be regarded as 
electromagnetic radiation, which allows us to transfer many of the developed 
methods of electromagnetic simulation of microwave and radio waves to the area 
of   optical modelling. 

Most numerical methods (the method of moments, the finite difference method, 
the boundary element method, the finite element method, etc.) came into optics 
from other areas of science and so far no universal  approach has been developed 
which would cover a large number of optical (and electromagnetic ) problems. In 
general, it is usually necessaty to combine two or three methods to calculate a wide 
range of problems that lead to the development of various integrated modelling 
techniques [3–5]. 

The bulk of the numerical diffraction simulation methods can be classified as 
differential [32], difference [33, 34], integral [35–38], variational [39–41], the 
discrete sources [42], and the propagation of rays [43]. 
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In this section, we discuss finite element methods for solving the two-dimensional 
Helmholtz equation and for the solution of the two-dimensional diffraction integral 
equation. 

3.1 Analysis of diffraction on inhomogeneities by the combined 
finite element and boundary element method 

3.1.1. Analysis of the diffraction of light on non-periodic 
irregularities 

In the problems of modelling the diffraction of light on the optical elements in a 
homogeneous space with dimensions on the order of the wavelength the light must 
be regarded as electromagnetic radiation. 

To determine the electromagnetic fields at a point of space, integral methods 
combine the contributions to this point from the field of sources in the volume or 
on the surface. The popularity of the integral methods is based on their ability to 
solve unlimited field problems, as the Sommerfeld radiation condition is certainly 
satisfied in the formulation of the problem. Moreover, the integral methods require 
knowledge of the field only on the surface of the diffraction element, and not of the 
total field in a space and this minimizes the number of unknowns. In [21, 22] the 
authors presented a method based on the combined boundary element method. In 
[23] a method was developed for calculating the diffraction on a plane-parallel 
plate with the heterogeneity on the basis of integral equations associated with the 
numerical solution of the Green tensor. The disadvantage of these methods is that 
they lead to fully populated matrices and, therefore, require more computer memory 
and long calculation time. Also, the limit of the application of methods should be 
chosen at the physical boundary of the object. If the inhomogeneity has a nontrivial 
form, it leads to an increase in the number of unknowns. 

The difference solution of differential Maxwell equations was considered in [7, 
24–27]. In [28] the difference solution of the wave equation was described. The 
disadvantages of this approach are the inability to use the radiation conditions 
and restrictions on the steps of the grid. To simulate the steady-state problems of 
passage of radiation by difference schemes, it is necessary to use a finite number 
of wavelengths of the incident pulse which distorts the wave spectrum. The use of 
the absorbing boundary conditions [13, 29] as boundary conditions for unbounded 
diffraction problems allows us to solve approximately the Maxwell’s equations 
by difference schemes and the accuracy of the solution depends on the number of 
layers on the artificial boundary and the degree of its isolation???. 

In contrast to the methods of finite difference solution of Maxwell’s equations, 
the integral and variational methods do not require the construction of complex 
absorbing boundary conditions [13, 18]. 

Variational methods in problems with a limited range of tasks determine 
solutions of the Helmholtz equation by minimizing the functional relation. In [13], 
the Helmholtz equation was solved by the Galerkin finite element method using the 
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boundary conditions of the complex type that depend on the unknown parameter 
which required the use of the border of a certain form. In addition, this method also 
does not include the Sommerfeld radiation conditions. 

In [3] the authors presented a hybrid method based on the finite element method, 
formulated by the Ritz method, and the boundary element method. In this hybrid 
method the finite element method is used to solve the Helmholtz equation in the 
inner part of the inhomogeneous dielectric element of micro-optics method and the 
integral method and the boundary element method are used for the region external 
to the element where the radiation condition must be satisfied. Both methods are 
joined at the boundary between inner and outer parts, with the satisfaction of the 
conditions of continuity of the field. Using the finite element method to determine 
the field inside the object leads to a tridiagonal matrix, which requires less computer 
memory and shorter computing time than the methods of the volume integrals 
[30]. The result of using the boundary element method for determining the field at 
the boundary is a more accurate solution than using the finite element method with 
absorbing boundary conditions. But the application of the Ritz method to solve the 
Helmholtz equation is incorrect because it imposes a requirement of the positivity 
of the operator of the equation being solved. No conclusion can be made on the 
definite sign of the operator of the Helmholtz equation. 

Description of the method of calculation 
In this problem, a source in space illuminates a cylindrical structure. In the absence 
of the structure the source of the incident field. In the presence of the structure this 
source creates another field, called the total field. The scattered field is defined as 
the difference between the total field and the incident field. The purpose of the task 
is to determine the total or scattered field, characterizing the structure. 

Any two-dimensional field can be decomposed into Ez-polarized and Hz-polari
zed fields. In the diffraction domain the field is described by a system of differe-
ntial equations for various cases of TE- and TM-polarizations. For TE-polarizat-
ion (E(x,y) = (0,0, Ez(x, y)) the complex amplitude u(x, y) denotes the total 
electric field Ez(x, y), which is directed along the axis z (along the generatrix of a 
cylindrical optical element), the coordinates (x,y) lie in the plane of the normal 
section. For the TM-polarization (H(x,y) = (0,0, Hz(x, y)) the complex amplitude                                      
u(x, y) denotes the total magnetic field Hz (x, y).

The total field uΩ (x, y) in the Ω region must satisfy the equation
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(3.1)
 

where Ω = 0 0 zf jk Z J , p(x,y) = r, q(x, y) = εr for TE polarization, and  
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x yε εΩ
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, p(x,y)=r, q(x,y)=εr 

for TM polarization. Constants m r and e r is the ratio  
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of magnetic and dielectric constants of the medium to the same performance space, 
i.e. μr = μ/μ0 and  = ε/ε0, k0 is the wave number of waves in free space

 
( )1/2

0 0 0
0

2k ,
c
ω πω µ ε

λ
= = =

 
(3.2) 

0 0 0/Z µ ε=  is the impedance of free space, J is the density of the electric current 
source. 

In this problem the calculation domain is infinite. However, as is known, the 
finite element method (FEM) is applicable only to a finite or limited area. Thus, 
to solve the equation (3.1), an infinite domain Ψ, external to the scatterer, should 
be limited by the introduction of the artificial boundary Γ. Correspondingly, for 
the only solution of the problem, boundary conditions must be imposed at this 
artificial boundary. Such conditions should make the border transparent as possible 
for the scattered field or, in other words, minimize the non-physical reflections 
from the boundary. One of the classes of the boundary conditions, designed for this 
purpose, can be obtained from the boundary integral equations applied to the outer 
region. These boundary conditions are global in nature, i.e. they relate to the field 
at a boundary node with the field across the boundary. These boundary conditions 
prevent reflection at the boundary for all angles of incidence of the waves and lead 
to the exact solution. 

Thus, it is necessary to define the total field u(x, y) in the domains Ω 
(internal) and Ψ (external) satisfying the above conditions.

Galerkin’s solution of equation (1) is based on solving the relations of the form:

 

21  0.u qk u f d
p

γ γ γΩ Ω Ω

Ω

 
− ∆ − − Ω = 

 ∫∫
  

(3.3)

where γ is an arbitrary function from the domain of equation (1).
Using the first Green‘s formula:

 

 –  ,dQP Q d P dl P Q d
d

Ω Γ Ω

∆ Ω = ∇ ∇ Ω∫∫ ∫ ∫∫n

for the functions P and Q, where Ω is the domain of the plane x, y; Γ is its 
boundary, required anti-clockwise dQ

dn
- the derivative in the direction of the  

outward normal to the curve F, we obtain:
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 
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(3.4) 

System of basis functions for W denote ( ){ }ωΩ

=,
,

, 0
, x y

k l
N N

k l
x y  and the system of basis 

functions for T denote ( )ωΓ
=1{ , }M

m mx y , where Nx, Ny is the number of nodes of the 
grid covering a rectangular area Ω on the x and y axis, respectively, M - number of 
nodes of the grid covering the boundary Γ.
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Replacing in (3.4) the arbitrary function γ by the system of basis functions for 
Galerkin‘s method, we can write the system of linear equations:

 Au + Bv = Cf, (3.5)

where ( )1,...,
T

NxNyu u u= is the vector consisting of coefficients 

( )
,

, , 0 {  } x yN N
Ny k l k lk lu u =+ =  of the expansion:
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=
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(3.6)

The vector ( )1,...,
T

NxNyf f f= is the vector consisting of the coefficients of the 
expansion:
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=

= ∑
 

(3.7)

Although (3.6) and (3.7) are valid for all points (x, y) in the domain Ω, it is 
necessary to process separately the values of the field and its partial derivatives on 
the boundary Γ from the values   in the inner region. The decomposition, similar to 
(3.6) and (3.7), for the field and its partial derivatives at the boundary has the form:

 1
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= ∑
 

(3.8)
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=
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(3.10)
 

where (x, y) ∈ Γ, v = (v1, ..., vM)T is the vector consisting of the expansion coefficients 
vk = ∂uk/∂n.

The elements of the matrix A are calculated from the equations:  
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∂ ∂  = − Ω  ∂∂  +  ∂ ∂  

∫∫
 

  (3.11) 
k, i = [1, Nx], l, j = [1, Ny], 
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where Ωk, j is the domain of decomposition of domain Ω, consisting of nodes k and j. 
The elements of the matrix are   given by: 

 ,

, – ,

m s

m s m sb dlω ωΓ Γ

Γ

= ∫
 (3.12)

 m, s = [1, M], 

where Γm,s is the linear region of the boundary Γ, which includes the boundary nodes 
m and s. 

The elements of the matrix C are given by: 

 ,

, , ,( , ) ( , ) ,
y y

k l

N k l N i j k l i jc x y x y dω ωΩ Ω
+ +

Ω

== Ω∫∫
 (3.13) 

 k, j = [1, Nx], l, j = [1, Ny],

where Ωk, j is the  domain of decomposition of Ω, consisting of nodes k and j. 
As a piece-wise linear basis we determine the function of the form:
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h
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
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(3.14)

where h is the length of the segment of the coverage ???. 
Elements (ak,l

i,j) of the matrix A, the elements (bm, s) of the matrix B and elements 
(ck,l

i,j) of the matrix C are calculated from equations (3.11) (3.12) and (3.13), 
respectively. Then, the system of equations (3.5) can be written as: 
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A A C C f

u
A A B C C f

v
 

(3.15) 

The system of equations (3.15) has no unique solution, since it consists of 
N equalities with N + M unknowns: N = NxNy is the total number of nodes of the 
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field uk, l (x, y) in the domain Ω and M and derivatives along the normal to the 
boundary nodes vk, l (x, y).

We define the field in free space Ψ (outside the domain Ω with its boundary 
Γ). Since this is a homogeneous space, then the field can be formulated in terms 
of boundary integrals with the appropriate Green‘s function. The total field                                  
uΨ (x, y) in domain Ψ must satisfy the following equation:

 

2
0

1 ( ) ( ) ,  ,u k qu f
p

ξ ξ ξΨ Ψ Ψ
 

∇⋅ ∇ + = ∈ Ψ 
   

(3.16)

where Ψ
Ψ = 0 0 zf jk Z J , p(x,y) = r, q(x, y) = r for TE-polarization and  

 
1 1

y x
r r

f J J
x yε ε

Ψ Ψ
Ψ

   ∂ ∂
= − +   ∂ ∂   

 for TM-polarization, JΨ is the density of electric  
 
current density in free space. 

To construct the boundary integral equation for the field and its normal derivative, 
we introduce the Green function u* which satisfies the Sommerfeld radiation 
condition and is the fundamental solution of the Helmholtz equation: 

 ξ η ξ η δ ξ η η∇ + = − ∈ Ψ2 2* ( , ) * ( , ) ( , ), .u k u  (3.17)

The fundamental solution for the Helmholtz equation in the two-dimensional 
homogeneous space is well known and has the form 

 
(1)
0( / 4) ( ),u i H kr∗ =  (3.18)

where

η ξ η ξ= − + −      
2 2

1 1 2 2( ) ( ) ( ) ( )  r x x x x

H0
(1)(kr) = J0(kr)+iY0(kr) is the Hankel function of the first kind and zeroth order, 

where J0 is the Bessel function of zeroth order, Y0 is the Neumann function of zeroth 
order. 

To construct the boundary integral equation for the scattered field and its normal 
derivative, we use Green’s theorem as follows: 

 

2 2( , ) ( , ) ( )

( ) ( , ) ( ) ( , ) ( ) ( , ) .

u k u u d

q u d u q d f u d

ξ η ξ η η

η ξ η η ξ η η ξ η

∗ ∗

Ψ

∗ ∗ ∗
Ψ

Γ Γ Ψ

 ∇ + Ψ = 

= − Γ + Γ + Ψ

∫

∫ ∫ ∫
 

(3.19)

The functions in both integrals on the right side of equation (3.19) q(η) = ∂u(η)/ 
∂n' are the normal derivatives of the field amplitude. 

Substituting  (3.17) into (3.19) and passing to the limit of the observation point ξ 
from the inner point to the boundary???, we find 
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( ) ( ) ( ) ( , ) ( ) ( , ) ( ) ( , ) .c u f u d q u d u q dξ ξ η ξ η η ξ η η ξ η∗ ∗ ∗
Ψ

Ψ Γ Γ

= − Ψ + Γ − Γ∫ ∫ ∫
 

(3.20)

This equation provides a functional link between the functions u and their normal 
derivative q at the boundary Γ. The function c in (3.20) is equal to: 

 
1( ) 1 ,

2
c ξ φ

π
= −

 
(3.21)

where f is the interior angle of the piecewise-near boundary at point ξ. The first 
term on the right side is the field produced by a source fΨ in free space, and may be 
designated as the incident field uin

Ψ. 
Thus, equation (3.20) is written as follows: 

 

( ) ( ) ( ) ( , ) ( ) ( , ) ( ).inc u q u d u q d uξ ξ η ξ η η ξ η ξ∗ ∗
Ψ

Γ Γ

= Γ − Γ +∫ ∫
 

(3.22)
 

Substituting the function of the complex amplitude in equation (3.22) at the 
boundary by its approximation by basic piecewise-linear functions at ξ∈Γ (3.8) and 
(3.9), we obtain 
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 m = [1, M],  (3.23) 

which can be represented in the matrix form 

 [D] [G] .in
Γ Γ Γ+ =u v u  (3.24)

with elements of the matrices [D] and [G] in the form 
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(3.26) 

m, s = [1, M]. 

The integrals in (3.25) and (3.26) can be evaluated numerically. Combining 
equations (3.15) and (3.24), we obtain a closed system of linear algebraic equations 
for solving the problem of diffraction of a plane wave by a cylindrical micro-object

 

, , , ,

, , , , ,
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Ω Ω Γ Ω Ω Ω Γ ΩΩ Ω

Ω Γ Γ Γ Γ Ω Γ Γ Γ Γ

Γ Γ

                                    =                                       

A A 0 C C 0u f
A A B u C C 0 f

v u0 D G 0 0 E
 

(3.27) 

where the submatrix AΩ, Ω with the dimension (N – M) × (N – M) includes the 
ratio of the field in the internal nodes of the partition grid, submatrix AΩ,Γ and AΓΩ, 
with dimension (N – M) × M and M × (N – M), respectively, include the coupling 
coefficients of the field at the boundary and interior nodes, submatrix AΓ, Γ with the 
size M × M involves the coupling coefficients of the field at the boundary nodes, 
the submatrix B with the size M × M includes the ratios between the derivatives 
of the field at the boundary of the field and in the internal nodes of the partition 
grid, submatrix D with the size M × M involves the coupling coefficients of the 
field of free space at the boundary nodes, the G with the size M × M includes the 
ratio between derivatives of the field at the boundary and the field of free space 
in the internal nodes of the partition griod. Submatrix CΓ, Γ with the dimension 
(N – M) × (N – M) includes the ratio of field sources in the internal nodes of the 
partition grid, submatrices CΩ, Γ and CΓ, Ω with the dimension (N – M) × M and 
M × (N – M), respectively, include the ratio of field sources in the boundary and 
internal nodes, the submatrix CΓ, Γ with the size M × M includes the ratio of the 
field sources at the boundary nodes. Submatrix E is the identity matrix with the size                                                                                                        
M × M. Vectors uΩ and uΓ are the vectors of the strength of the field in the interior 
and boundary nodes of the grid, vΓ is the vector of normal derivatives of the field 
at the boundary nodes. Vectors fΩ and fΓ are the vectors of the field sources in the 
interior and boundary nodes of the grid, uΓ

in is the vector of the strength of the 
external incident field at the boundary nodes of the grid. Thus, the dimension of the 
system of equations (3.27) is (N + M) × (N + M). 

After determining the values   of the field and its derivatives on the boundary Γ the 
field at any point of doimain Ψ is defined by (3.22), where c(ξ) = 1.
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Examples of calculation 
Consider the diffraction of a plane wave (TE- and TM-polarizations) on 
dielectric and conducting homogeneous cylinders with a circular cross-section 
for the experimental investigation of convergence of the combined method. The 
convergence of the algorithm depends on the length of the segment h, the wavelength 
of the source λ, μr and  εr

  of the medium.  Since the magnetic and dielectric constants 
of the medium are the variables in the problem, we consider the dependence of 
solutions on the parameter λ/h that determines the number of grid segments on the 
same wavelength. Let the plane wave falls on the cylinder, the wavelength λ0 = 0.5 
μm. The radius of the cylinder is 0.25 μm. The relative dielectric permittivity of the 
conducting cylinder made of is aluminum ε = – 4.4 + i11. 9. The relative dielectric 
permittivity of the dielectric cylinder ε = 2.25. The parameters of the homogeneous 
space surrounding the cylinder are ε = μ = 1. The calculation were made by the joint 
??? method.  Domain Ω was represented by a square region, the contour  Γ was the 
perimeter of domain Ω. No sources were situated inside Ω. Domain Ω was covered 
with a square grid consisting of 105 × 105 nodes. The calculation time was 10 min 
on a PC Pentium 4. 

Figure 3.1 shows the results of numerical modelling of diffraction of TE- and 
TM-waves on a dielectric cylinder. Figure 3.2 shows the simulation results of 
diffraction on the conducting cylinder. 

To evaluate the diffractive processes, we use the directional diagram of 
scattering, which depends on the angular coordinate φ, as defined at points at infin
ity                                               (ρ → ∞) as

 

2

2( ) lim 2 .
sc

in

u

uρ
σ ϕ πρ

→∞
=

 

(3.28)

In particular, the directional diagram is determined in the forward direction                       
(φ = 0), in the opposite direction (φ = π) and in the transverse direction                                               
(φ = π/2). The following shows the dependence of σ/λ on parameter λ/h. The results 
are presented in dB (σDB = 10 log10σ). Figure 3.3 presents an assessment of the 
diffraction of TE- and TM-waves on a dielectric cylinder.

Fig. 3.1. Field intensity distribution of diffraction on a dielectric cylinder (inverted): TE 
polarization (a), TM polarization (b).

a b

Ωλεμ
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Fig. 3.2. Field intensity distribution of diffraction  on a conducting cylinder (inverted): TE 
polarization (a), TM polarization (b).

a b

ba
σ/λ , dB σ/λ , dB

Fig. 3.3. The dependence of the directional diagram of scattering on a dielectric cylinder on 
paraneter λ/h for the TE polarization (a) and TM polarization (b).

Fig. 3.4. The dependence of the directional diagram of scattering on a conducting cylinder 
on paraneter λ/h for TE polarization (a) and TM polarization (b).

σ/λ , dB σ/λ , dB
a b

Figure 3.4 shows the dependence of the values   of the directional diagram of 
diffraction of TE- and TM-waves on a conducting cylinder. 

Figure 3.5 shows the dependence on the parameter λ/h of the values   of the 
relative deviation of the directional diagram of scattering of TE- and TM-waves on 
a dielectric cylinder from the values   at  λ/h = 100 for the nodes φ equal to 0,  π/2,  π.

Figure 3.6 shows the dependence on the parameter λ/h of the values   of the 
relative deviation of the directional diagram of scattering of TE- and TM-waves on 
a conducting cylinder. 
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A series of experiments with a dielectric cylinder showed that the relative 
deviation of the values   of the directional diagram of scattering is less than 5% at 
and λ/h > 40 and less than 1% at λ/h > 80 for both polarizations. 

Experiments with the conducting cylinder showed that the relative deviation of 
the values   of the directional diagram of scattering is less than 5% at λ/h > 30 for 
TE- polarization at λ/h > 50 for TM-polarization and less than 1% at λ/h > 50 for 
TE-polarization and at λ/h > 80 for TM-polarization. 

Thus, the polarization state does not affect the results of modelling dielectric 
structures by the proposed method, but it must be taken into account when choosing 
the length of the segment of the coverage grid??? for the calculation of conductive 
structures with the corresponding relative error. 

3.1.2. Analysis of the diffraction of light on periodic 
inhomogeneities 

The theory of scattering on periodic structures, commonly referred to as diffraction 
gratings, has many applications in optics, such as electromagnetic and optical 
communications, visualization tools, determination of the properties of objects and 
surfaces, electronic and optical components, photonic crystals, diffraction gratings 
[32]. Numerical methods were developed to simulate the diffraction of light on 

Fig. 3.5. Dependence of the relative deviation of the directional diagram of scattering on a 
dielectric cylinder on parameter λ/h for TE polarization (a) and TM polarization (b).

Fig. 3.6. Dependence of the relative deviation of the directional diagram of scattering on a 
conducting cylinder on parameter λ/h for TE polarization (a) and TM polarization (b).

a b

a b
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diffraction gratings. These methods include differential and integral methods, 
methods based on the propagation of Rayleigh and eigenmodes, the variational and 
finite-difference methods: the method of coupled waves (rigorous coupled wave 
analysis, RCWA) [33 ], C-method [34], finite element methods [35–37], the integral 
methods [21], finite difference-time domain (FDTD) methods [38, 39]. 

The variational methods are most effective for inhomogeneous problems with 
complex geometries. These methods require solving a linear system of equations 
with unloaded??? matrices. To reduce the size of the computational domain, the 
calculation of the field away from the computing domain can be performed using the 
integral relation. The material of a periodic structure can be dielectric, conducting, 
superconducting, the size of the inhomogeneities can be arbitrarily small. The 
corners??? of the profile of the geometry of the structure can be considered in 
calculations by the appropriate choice of the sampling grid. 

As a special case of the variational methods we can consider the finite element 
method (FEM) applied to the elliptical Helmholtz equation in the calculation 
domain. It includes a choice of the discretization scheme, the construction and 
minimization of the functional relationships. The resulting ratio is converted to 
a system of linear equations which is incomplete without the use of boundary 
conditions. 

For the boundary-value problem, satisfying the Sommerfeld radiation  
conditions, we can use methods of integral equations, respectively, the standard 
method of boundary elements can also be used for periodic tasks. Both methods 
are joined at the boundary between inner and outer parts, satisfying the conditions 
of continuity of the field. Using the finite element method to determine the field 
inside the object leads to a tridiagonal matrix which requires less computer memory 
and shorter computing time than the methods of the volume integrals. The result 
of using the boundary element method for determining the field at the boundary 
is a more accurate solution than using the finite element method with absorbing 
conditions of the boundary due to the strong dependence on the angle of incidence 
of the field on the boundary. 

In this book, we describe the formulation of a combined method for problems of 
scattering of light by periodic objects based on the finite element method and the 
boundary element method (PFEM-BE). The developed PFEM-BE method and the 
RCWA method [40] were used for a comparative simulation of light diffraction on a 
dielectric one-dimensional diffraction grating. Comparison of the simulation results 
is presented for the TE- and TM-polarized waves. 

Description of the calculation method
Consider the diffraction of a plane wave with wave vector k = k(sin (θ), –cos (θ), 
0), 0k k ε= for the periodic structure with period d,  k0 is the wave number of  
the wave in free space 0 = 2π/λ0, where λ0 is the wavelength in free space, ε is the 
dielectric constant of the medium.

The Light, diffracting on the structure, creates a scattered field. In addition to 
a decaying part, the diffracted light is split into a finite number of reflected and 
transmitted polarized plane waves whose propagation direction does not depend on 
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the geometry and material of the periodic structure, but depends only on the grating 
period. The total field is defined as the sum of the incident and scattered fields. The 
purpose of the task is to determine the amplitude and phase of reflected, transmitted 
and decaying orders. 

The geometry of the problem is shown in Fig. 3.7, where Rn and Tn are the 
reflection and transmission coefficients of the diffraction orders. For the given 
geometry of the problem we define three zones with different dielectric constants: 
the area above the structure at y > a(Ψ1), where a is the maximum height of the 
structure, with a dielectric permittivity constant ε = ε1, the region of the structure           
0 < y < a with dielectric permittivity ε = ε(x, y), and the y < 0 (Ψ3) with a constant 
dielectric permittivity ε  = ε3.

The diffraction of a plane wave on a one-dimensional periodic structure is 
reduced to two independent problems: the problem of diffraction of a plane wave 
with TE-polarization (Ez ≠ 0, Hz = 0) and the problem of diffraction of a plane wave 
with TM-polarization (Hz ≠ 0, Ez = 0) [41]. 

The total field uΩ (x, y) in the region Ω (0 < x < d, 0 < y < a) must satisfy the 
following equation [42]: 

 

2
0

1 ( , ) ( , ) ( , ) ,
( , )

u x y k q x y u x y f
p x y Ω Ω Ω

 
∇⋅ ∇ + = 

   
(3.29) 

where  f Ω =  jk0Z0Jz,  p (x, y)   =  μ r,  q (x, y)  = ε r  for TE-polarization,   and Jf
ε

Ω

Ω
Ω

  
= − ∇ × ⋅      

z ,  
 
p (x, y) =  εr for TM-polarization. Constants μr and εr are the ratio of magnetic and 
dielectric constants of the medium to the same paraneters of free space, i.e. μr =                
μ / μ0  and εr = ε/ε0, 0 0 0/Z µ ε= is the impedance of free space, JΩ = (Jx, Jy, Jz) is the 
vector of the electric current density of the source in region Ω. For TE-polarization, 
the complex amplitude u(x, y) denotes the total electric field Ez(x, y), which is 
directed along the axis z (along the generatrix of a cylindrical optical element), the 
coordinates (x, y) lie in the plane of the normal section. For TM-polarization the 
complex amplitude u(x,y) denotes the total magnetic field Hz (x, y).

To solve (3.29), the computing domain Ω should be limited by the introduction 
of the artificial boundary Γ =Γ1 + Γ2 + Γ3 + Γ4 (see Fig. 3.7). Γ1 and Γ3 are the 

Fig. 3.7. Geometry of the diffraction problem on the periodic structure.

d

d d

d

a
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fictitious boundaries, infinitely extending parallel to the x-axis of the coordinates                              
y = a and y = 0. Accordingly, for the unique solution of the problem boundary 
conditions must be imposed at the given artificial boundary.

Since the space in zones Ψ1 and Ψ3 is homogeneous, the field in these zone can be 
defined in terms of boundary integrals with the appropriate Green’s function. The 
total field uΨ (x, y) in these zones must satisfy the following equation:

 

2
0

1 ( ) ( ) ,  ,u k qu f
p

ξ ξ ξΨ Ψ Ψ
 

∇⋅ ∇ + = ∈ Ψ 
   

(3.30)

where fΨ = jk0 Z0 J Ψ
z,  p  =  μ Ψ, q = εΨ  for  TE-polarization,

 
Jf
ε

Ψ

Ψ
Ψ

  
= − ∇ × ⋅      

z , p = εΨ ,q=μΨ

for TM-polarization. JΨ is the vector of electric current density of the source in the 
region Ψ, the region  Ψ = Ψ1, Ψ3.

Application of the Galerkin method to the solution of (3.30) in the region Ψ of 
the periodic structure is similar to the approach described in §3.1.1, to obtain the 
system of equations (3.15).

We define the boundary conditions for the field and its derivatives at the 
boundaries of  Γ1 and Γ3 to complement the system (3.15). To construct the boundary 
integral equation for the field and its normal derivative, we introduce the 
Green function u* which satisfies the Sommerfeld radiation conditions and is 
the fundamental solution of the Helmholtz equation in semi-infinite domains Ψ1 and 
Ψ3:

 ξ η ξ η δ ξ η ξ η∗ ∗∇ + = − ∈ Ψ Ψ2 2
1 3( , ) ( , ) ( , ), , ,  .u k u  (3.31)

The fundamental solution for the Helmholtz equation in two-dimens-
ional homogeneous space is well known and well

 
(1)
0( , ) ( / 4) ( ),u i H krξ η∗ =  (3.32)

where 2 2( ) ( ) ( ) ( )  r x x y yη ξ η ξ= − + −       , H0
(1)(kr) = J0(kr) + iY0 (kr) is the Hankel 

function of the first kind and zero order, where J0 is the Bessel function of zer order, 
Y0 is the Neumann function of zero order.

To construct the boundary integral equation for the scattered field and its normal 
derivative in zones Ψ1 and Ψ3, we use Green‘s theorem as follows:

                                                    h(θ) = δ(θ),                                               (3.33)
 

where ν(η)  =  ∂u(η)/ n' are the normal derivatives of the field, and Γ' represents the 
infinite boundaries y = a and y = 0 for zones Ψ1 and Ψ3, respectively.

Substituting (3.31) into equation (3.33), passing to the limit of the observation 
point ξ from the inner to the boundary ??? and using (3.21), we obtain

CORRECT THIS
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1 3
1 ( , )( ) ( ) ( , ) ( ) ( , ) ( ) ,  , .
2

uu f u d u d u dξ ηξ η ξ η ν η ξ η η
∗

∗ ∗
Ψ

′ ′Ψ Γ Γ

∂
= − Ψ + Γ − Γ Ψ = Ψ Ψ

′∂∫ ∫ ∫ n
 

  (3.34)

This equation provides a functional link between the functions u and its normal 
derivative ν on the boundary Γ'. The first term on the right side of (3.34) is the field 
produced by the source fΨ in free space, and may be designated as the incident field 
uΨ

in.
Thus, equation (3.34) is written as follows:

 

1 ( , )( ) ( ) ( , ) ( ) ( ).
2

inuu u d u d uξ ηξ ν η ξ η η ξ
∗

∗
Ψ

′ ′Γ Γ

∂
= Γ − Γ +

′∂∫ ∫ n
 

(3.35)

Field u and its derivatives ν in the case of the diffractive grating are quasi-
periodic functions [41, 43–45]:

 

0 0

0 0
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=


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(3.36)

where ũ (x,y) and ν ˜ (x,y) are periodic functions with respect to x with period d.
The integration over the infinite boundary Γ' in (3.35) can be replaced by 

integration along the boundaries Γ1 and Γ3:

  

0 0

0 0
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0 0

( ) 0
0
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2
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n

ik x nd in

n

u x y x y e u x nd x dx
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
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(3.37)

where  Γ =  Γ1,  Γ1, y = a and y = 0 on boundaries  Γ1 and  Γ3, respectively.
Substituting the function of the complex amplitude in equation (3.37) on the 

boundary of itsbasic approximation of piecewise linear functions (3.8) and (3.9), 
we obtain:

( ) ( )

( ) ( )

0 0

0 0

1
( ) *

1 1

1 *
( )

1

1 ( ) ( )
2

( ) ( ),
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i i i

iim
i i

M
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s m m m s
m n

m sik x nd in
m m s

n

u x h v x e x h u x nd x h d

u x nd x h
u x e x h d u x

α

α

ω η η η

η
ω η η

∞
Γ+

Γ Γ Γ
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∞
ΓΓ+

Γ Γ
=−∞ −

    = + + − + −    
 ∂ + − +  − + +′ ∂  

∑ ∑ ∫

∑ ∫ n
 

  (3.38) 

where s = [1, Nx–1], i = 1, 3. 
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The boundary conditions on the field and its derivatives at the boundaries  Γ2 and  
Γ4 are periodic of the form: 

 
0 0 0 0

4 2 4 2
,  .ik d ik du u e eα αν νΓ Γ Γ Γ= =

 (3.39) 

The expansions (3.8) and (3.9) and boundary conditions (3.39) can be written for 
the coefficients of the field and its derivatives at the boundaries  Γ2 and  Γ4: 

 
0 0 0 0

4 2 4 2
( ) ( ) ,  ( ) ( ) ,ik d ik d

s s s su x u x e v x v x eα α
Γ Γ Γ Γ= =

 (3.40)

where s = [1, Ny]. Elements of the matrices D and G, corresponding to the boundaries  
Γ2 and  Γ4, can be written as: 

 
0 0 0 0

2 4 2 2 4 2 2 41,  ,  1,  ,  0,  0,  [1, ].ik d ik ds s s s s s s s
yd d d e g g g e e e s Nα α= = = = = = =

 (3.41)

Elements of the matrices D and G, corresponding to the boundaries  Γ1 and  Γ3, 
can be written as: 

( ) ( )
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2
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  (3.42) 
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(3.43)

 
,i ik ε τ   m, s = [1, Nx–1], i = 1, 3. 

The relations (3.38) can be represented in matrix form: 

  uΓ Γ Γ+ =v[ ]  [ ] [ ] inD G Eu  (3.44) 

with elements of the matrices D, G and E of the form (3.41) (3.42) and (3.43). Infinite 
series in (3.42) and (3.43) are approximated by finite sums, integrals can be evaluated 
numerically. Combining equations (3.15) and (3.44), we obtain a closed system of 
linear algebraic equations for solving the problem of diffraction of a plane wave on 
a periodic two-dimensional micro-object: 
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A A B u C C 0 f

v u0 D G 0 0 E
 

(3.45) 

where the submatrix AΩ, Ω with the dimension (N – M) × (N – M) includes the 
ratio of the field in the internal nodes of the partition grid, submatrices AΩ,Γ and                                                    
AΓ,Ω with the dimension (N – M) × M and M × (N – M), respectively, include the 
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coupling coefficients of the field at the boundary nodes, the AΓ,Γ submatrix with the 
size M × M involves the coupling coefficients of the field at the boundary nodes, 
the submatrix B with the size M   × M includes the ratio between the derivatives of 
the field at the boundary and the field in the internal nodes of the partition grid, 
submatrix D with the size M × M involves the coupling coefficients of the field of 
free space at the boundary nodes, the submatrix G with the size M × M includes 
the ratio between the derivatives of the field at the boundary and the field of free 
space in the internal nodes of the partition grid. Submatrix CΩ, Ω with the dimension 
(N – M) × (N – M) includes the ratio of field sources in the internal nodes of the 
partition, submatrix CΩ,Γ and CΓ,Ω with the dimension (N – M) × M and M × (N – M), 
respectively, include the ratio of field sources in the boundary and internal nodes, 
the submatrix C, r the size of M × M includes the ratio of the field sources at the 
boundary nodes. Submatrix E has size M × M. Vector uΩ and uΓ are the field vectors 
in the interior and boundary nodes, vΓ is the vector of normal derivatives of the 
field at the boundary nodes of the grid. Vectors fΩ and fΓ are the vectors of the 
field sources in the interior and boundary nodes of the grid, uΓ

in is the vector of the 
external incident field at the boundary nodes of the grid. Thus, the system (3.45) has 
N + M equations and the same number of unknowns. 

The field in the areas of Ψ1 and Ψ3 can be represented by a Rayleigh 
expansion (superposition of plane waves). In the area Ψ1  the z-components of the 
fields are as follows:
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(3.46) 

where 
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(3.47) 

The function u(x, y) is the component Ez (x, y) of the electric field for the case  
of TE-polarization and the component Hz(x, y) of the magnetic field for TM- 
polarization. 

In zone Ψ3 the z-component are as follows: 
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(3.48)

where 

 
2

3 .n nβ ε α= −

 (3.49)

Rayleigh expansions (3.46) and (3.48) are solutions of the Helmholtz equation, 

 
2 2

0 3k k ε=  (3.50) 
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at ε=2 2
0 1k k  and ε=2 2

0 3k k  respectively. 
After determining the values   of the field in the region Ω and its derivatives at 

the boundaries Γ1 and Γ3 the normalized intensities of the reflected and 
transmitted orders are calculated as follows [32, 36, 37]:

 1 3

2 23
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n n n n n n
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(3.51)
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(3.52)

for TE- and TM-polarized waves, respectively. Expressions (3.36) and (3.37) 
determine what portion of the energy of the incident wave will move to the n-th 
order of diffraction. Note that the intensities of the propagation distribution are for 
non-absorbing materials, i.e. for Im 0iε = .The sets U1 and U2 in (3.51) and (3.52) 
are the sets of indices corresponding to the reflected and transmitted diffraction 
orders: 
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(3.53) 

To determine the coefficients of reflection Rn and transmission Tn, we use the 
discrete Fourier transform: 
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(3.55) 

These coefficients describe the amplitude and phase shift of propagating plane 
waves. More precisely, the modules |Rn| and |Tn| are the amplitudes of the n-th 
reflected and transmitted orders and arg [Rn/|Rn|] and arg [Tn/|Tn|] are the phase 
shifts. The coefficients with n ∈ U1, n ∈ U3 describe the damped waves. 

Examples of calculation 
For example, consider the diffraction of a plane wave with wavelength λ0 = 0.6 µm 
on a binary dielectric diffraction grating with a fill factor of 0.25 and with a thickness 
of 0.24 µm. The grating period was varied from 0.2 µm to 2 µm. Accordingly, in 
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simulation by PFEM-BE the length of the segment of the coating grid varied from 
λ0/300 to λ0/30. 

Consider an example. A plane wave is incident along the normal from the air                      
(ε1 = 1) on the grating (ε3 = 2.25). Figures 3.8 and 3.9 show the dependence of 
the efficiencies IR

0  and IT
0 orders of diffraction of TE- and TM-polarized waves, 

respectively, on the grating period.
Dependences of deviations of intensities ΔIR

0 and Δ IT
0 

RCWA PFEM-BE( )i iI I I∆ = −
 of zero-order diffraction, calculated by RCWA and PFEM-BE methods, of the 

TE- and TM-polarized waves on the length of the segment of the coating grid h in 
the PFEM-BE method, are shown in Fig. 3.10. It is difficult to note the explicit 
dependence of the deviation for h < λ0/30. The uniform rate of deviation of the 
intensities is 4·10–3 and 2·10–3 for the TE- and TM-polarizations, respectively.

In the following example, a plane wave is incident along the normal from the 
substrate of the grating (ε3 = 2.25) in air (ε3 = 1). Figures 3.11 and 3.12 show 
the dependence of the intensities IR

0  and IT
0 of the diffraction orders of TE- and 

TM-polarized waves on the grating period.
Depending on the deviations of the intensities ΔIR

0  and orders IT
0 of 

diffraction orders of TE- and TM-polarized waves, the length of the segment of 
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Fig. 3.8. Distribution of the effectiveness of zero-order diffraction of TE-polarized wave: 
a) I0

R ; b) I0
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Fig. 3.10. The dependence of the deviations of the efficiency of zero orders on parameter h: 
a) TE-waves and b) TM waves.
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Fig. 3.11. Distribution of the effectiveness of zero-order diffraction of TE-polarized waves: 
a) I0

R ; b) I0
T.
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the coating h are shown in Fig. 3.13. The uniform rate of deviation of the intensities is 
7·10–3 and 8·10–3 for the TE- and TM-polarizations, respectively.

Thus, the comparison of results obtained by the PFEM-BE and RCWA 
methods shows that they are in good agreement.
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3.2. Finite element methods for solving the two-dimensional 
integral diffraction equation

3.2.1. TE-polarization

In [1, 30, 42] the scalar problem of diffraction on a transparent body with an 
inhomogeneous refractive index is reduced to the Fredholm integral equation of the 
second kind. This chapter discusses the 2D vector diffraction problem for objects 
with the uneven and, in general, complex refractive index. The resulting integral 
equation for the cases of TE- and TM-polarization of the incident electromagnetic 
wave is solved by the finite element method (FEM) [46].

We define the geometry of the problem, as shown in Fig. 3.14.
A cylindrical object has infinite length along the axis z, and its cross-section lies 

in the plane (x, y). The plane of incidence of th wave coincides with the plane (x, y).
Figure 3.14 gives the following notation: Ω1 – area of   the transparent body 

bounded by contour S with the function of the dielectric permittivity ε1(x, y), magnetic 
permeability permeability 2 2 22 /k π λ ε µ= , Ω2 – the outside homogeneous region 
with constant properties ε2 and µ2.  Furthermore, we assume that µ1 = µ2 = 1.

From Maxwell‘s equations [47]:

 
+ =

1rot 0
c

E B
 

(3.56)
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Fig. 3.13. Dependence of the deviations of the efficiency of zero orders on parameter h; a) 

Fig. 3.14. Diffraction of an electromagnetic wave on an inhomogeneous transparent body.
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and the material equation for an isotropic medium

 µ=B H  (3.57)

given the fact that

 

∂ ∂   ∂ ∂ ∂ ∂
= − + − + −       ∂ ∂ ∂ ∂ ∂ ∂    

rot ,y yz zx xE EE EE E
y z z x x y

E i j k

 
µ µ

∂ ∂∂
= = + +  ∂ ∂ ∂ 
  ,y zx H HH

t t t
B H i j k

we get

 

1 0,

1 0,

1 0.

y xz

yx z

y x z

E HE
y z c t

HE E
z x c t

E E H
x y c t

µ

µ

µ

∂ ∂∂
− + =

∂ ∂ ∂
∂∂ ∂

− + =
∂ ∂ ∂

∂ ∂ ∂
− + =

∂ ∂ ∂  

(3.58)

For monochromatic radiation (E e–iωt), system (3.58) takes the form:

 

0,

0,

0.

yz
x

x z
y

y x
z

EE i H
y z c

E E i H
z x c

E E i H
x y c

ω µ

ω µ

ω µ

∂∂
− − =

∂ ∂
∂ ∂

− − =
∂ ∂

∂ ∂
− − =

∂ ∂  

(3.59)

Here ω is the  angular  frequency  of   oscillations. We  denote  k0 = ω/c = 2π /λ,  where   λ is  the  
wavelength of light. In the case of 2D problems, system (3.59) takes the form:

 
0 0,z

x
E

ik H
y

µ
∂

− =
∂  

(3.60)

 
0 0,z

y
E

ik H
x

µ
∂

− − =
∂  

(3.61)

 
0 0.y x

z
E E ik H
x y

µ
∂ ∂

− − =
∂ ∂  

(3.62)

According to the above reasoning of Maxwell’s equations
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π
− =

1 4rot
c c

H D j
 

(3.63)

and constitutive equation

 D = E (3.64)

in the absence of external currents, we obtain

 
0 0,z

x
H

ik E
y

ε
∂

+ =
∂  

(3.65)

 
0 0,z

y
H

ik E
x

ε
∂

− + =
∂  

(3.66)

 
0 0.y x

z
H H ik E
x y

ε
∂ ∂

− + =
∂ ∂  

(3.67)

Using equations (3.60), (3.61) and (3.67), we get a scalar Helmholtz equation

 

2
0 0.z z

z
E E

k E
x x y y

εµ
∂ ∂   ∂ ∂

+ + =   ∂ ∂ ∂ ∂     
(3.68)

We denote the field Ez in Ω1 by Ez
in, and in Ω2 by Ez

ext. Then the problem of diffraction 
on the object Ω1

 is reduced to solving the system of differential Helmholtz equations 
[30]:

 
( )( )2

1 1, 0, ( , ) ,in
zk x y E x y∆ + = ∈Ω

 
(3.69)

 ( )2
2 2 2, ( , ) ,ext

zk E g x y∆ + = − ∈Ω
 

(3.70)

where g2 is the function describing the source in the external field Ω2 
( ) ( )1 0 1k x, y k x, yε µ= is the wave number for the field Ω2 with an inhomogeneous  

 
refractive index, 2 0 2 2k k ε µ=  is the wave number for Ω2. Here 

2 2

2 2x y
∂ ∂

∆ = +
∂ ∂

For TE-polarization, the boundary conditions (BC) follow from the continuity 
at the interface between two media of the tangential components of electric and 
magnetic fields [47]:

 

− =      
− =      

1 1 1 2

1 1 1 2 surf

, , 0,

, , .

n E n E

n H n H j
 

(3.71)

Here j surf = 0, n1 is the vector the outward normal to the field Ω1.
Equations (3.71) give the BCs SU for the fields Ez

in
    and Ez

ext   .
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 = ∈, ( , ) ,in ext
z S z SE E x y S  (3.72)

 

∂ ∂
= − ∈

∂ ∂1 2
, ( , ) .

n n

in ext
z z

S S

E E
x y S

 
(3.73)

Here n2 is the vector of the normal (external to the region Ω2) to the contour S.
The external field Ez

ext satisfies the Sommerfeld radiation condition:

 

∂  − = → ∞ ∂  
2

1  at 
ext

extz
z

E
ik E o r

r r  
(3.74)

For function Ez
in and Green’s functions G2 in the region Ω2 we have the scalar 

Green’s formula [48]: 

 

( )
1

in
in in in 2

2 2 2
1 1

.z
z z z

S

G EE G G E dx dy E G dS
Ω

 ∂ ∂
∆ − ∆ = −  ∂ ∂ ∫∫ ∫ n n

 

(3.75)

From equations (3.69) and (3.70) it follows

 

( )2
1

2
2 2

, ,

.

in in
z z

ext ext
z z

E k x y E

E k E g

∆ = −

∆ = − −  
(3.76)

The following equality holds for function G2

 ( )2
2 2 2 0, ,G k G M Mδ∆ + = −  (3.77)

where M is the current point at which the integration is carried out, M0 is the point 
of observation, i.e. ( ) ( )δ δ=0, ', '; ,M M x y x y  – δ-function.

Substituting equations (3.76) and (3.77) into equation (3.75), we obtain

 

( )

( ) ( )δ

Ω

Ω

 ∂ ∂
− + −  ∂ ∂ 

− =

∫ ∫∫

∫∫



1

1

in
in 2 2 in2

2 1 2 2
1 1

in ', ' ', '; , ' ' 0.

z
z z

S

z

E GG E dS k k E G dx dy

E x y x y x y dx dy

n n

 

(3.78)

Using the filtering properties of the δ-function, we reduce equation (3.78) to the 
form

 

( ) ( )
( )

1

inin
1in 2 2 in2

2 1 2 2
1 1 2

, ,
.

0 , ,
zz

z z

S

E x yE GG E dS k k E G dx dy
x y

Ω

 ∈Ω ∂ ∂ − + − =   ∂ ∂ ∈Ω  
∫ ∫∫n n

 

(3.79)
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Similarly, applying Green’s formula for functions Ez
ext and G2 by using equations 

(3.76) and (3.77), we obtain

 

( )
( )

2

ext 1ext 2
2 2 2 ext

2 2 2

0
.z

z
zS

, x, yE GG E dl g G dx dy
E , x, y

Ω

 ∈Ω ∂ ∂ − + =   ∂ ∂ ∈Ω  
∫ ∫∫n n

 
(3.80)

Adding the equations (3.79) and (3.80) with the boundary conditions (3.72) and 
(3.73), we obtain

                           ( ) ( )
( )Ω

 ∈Ω− + = 
∈Ω

∫∫
1

in
12 2 in

1 2 2 0 ext
2

,z
z z

z

E , x,y
k k E G dx dy E

E , x,y
                (3.81)

  

where                                      

is the field in the region Ω1 or Ω2 created by the sources with the function g2(x, y).   
According to the condition of the problem, the field E0 is known.

If (x, y) ∈1 Ω1, the first of equations (3.79) is a Fredholm integral equation of 
second kind with respect to Ez

in and at E0z ≠ 0 has a unique non-trivial solution [30].
Further assume that the point source is far away from the region Ω1 and                            

E0z(x, y) can be regarded as a plane wave. Consider the case where a plane wave 
is incident along the x axis from left to right in the chosen coordinate system (Fig. 
3.14):

 ( )0 2exp .zE ik x=  (3.82)

The Green’s function in region Ω2  for 2D optical fields, satisfying the radiation 
condition, is [49]:

 
( ) ( ) ( )1

2 0 ,
4
iG Hξ ξ=

 
(3.83)

where ( ) ( )2 2
2 ' 'k x x y yξ = − + − , ( ) ( )1

0H ξ  is the Hankel function of first kind of 
zero order [50].

The field Ez, located in the system (3.81), is substituted into equation (3.60) 
(3.61), from which the components Hx, Hy of the magnetic field intensity are 
determined. Components Ez, Hx, Hy determine the electromagnetic field obtained 
as a result of diffraction of an electromagnetic wave of TE-polarization on the 
micro-objects. The existence and uniqueness of the solutions of the 2D problem of 
diffraction of the TE-polarized electromagnetic wave in an inhomogeneous micro-
object is solved using the same procedure as that described in [30], so in this work 
it is not given.

3.2.2. TM-polarization

Using the equations (3.62) (3.65) and (3.66), we obtain the Helmholtz equation for 
the projection on the z-axis of the magnetic field strength vector

( )
2

0 2 2,zE x y g G dxdy
Ω

= ∫∫

( )
2

0 2 2,zE x y g G dxdy
Ω

= ∫∫
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2
0

1 1 0.z z
z

H H
k H

x x y y
µ

ε ε
∂ ∂   ∂ ∂

+ + =   ∂ ∂ ∂ ∂     
(3.84)

Assuming from the conditions of the problem ε1 = ε1(x, y), ε2 = const, μ1 = μ2 = 1 and 
applying equation (3.84) to regions Ω1, Ω2 we obtain a system of equations:

 

( ) ( )

( ) ( )

ε ε
ε

  ∂ ∂∂ ∂
 ∆ + − + = ∈Ω   ∂ ∂ ∂ ∂ 


∆ + = − ∈Ω

in in
2 in 1 1
1 1

1

2 ext
2 2 2

1 0,
,

,

z z
z

z

H H
k H x,y

x x y y

k H g x,y
 

(3.85)

where ( )2 2
1 0 1 ,k k x yε= , 2 2

2 0 2k k ε= , g2 is a function describing the external sources.
The system (3.85) describes the 2D problem of diffraction of the TM-polarized 

electromagnetic wave on an object with an inhomogeneous refractive index.
From the first equation (3.71) in view of (3.65) and (3.66) we obtain the boundary 

condition:

 
ε ε

∂ ∂
= −

∂ ∂

in ext

1 1 2 2

1 1 .z z

S S

H H
n n

 
(3.86)

From the second equation of (4.71) we obtain

 
=in ext .z zS S

H H
 

(3.87)

After a number of auxiliary calculations to convert the first equation of (3.85):

 

in in
in 1 1

2
1 1

in in in
in

1 1 1 1

in in in

1 1

1 1

1 1 1 1             

1 1div

z z
z

z z z
z

z z z

H HH
x x y y

H H HH
x x y y x x

H H H
y y x y

ε ε
ε ε

ε ε ε ε

ε ε

 ∂ ∂ ∂ ∂
∆ − + =  ∂ ∂ ∂ ∂ 

      ∂ ∂ ∂∂ ∂ ∂
= ∆ + + = +         ∂ ∂ ∂ ∂ ∂ ∂      

    ∂ ∂ ∂∂
+ = +      ∂ ∂ ∂ ∂    

i j in

1

1div grad .zH
ε

 
=    

 
  (3.88)

In view of the expression (3.88) the first equation of the system (3.85) becomes

 ε ε
 

+ = 
 

2
in in1

1 1

1div grad 0.z z
kH H

 
(3.89)

For the operator 
ε

 
 
 

in

1

1div grad zH  we have the following Green’s integral formula 
[51]:
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1

in in
2 2

1 1

in
in 2

2
1 1 1

1 1div grad div grad

1 ,
n

z z

z
z

S

G H H G dx dy

H GG H dl
n

ε ε

ε

Ω

     − =    
     

 ∂ ∂
= −  ∂ ∂ 

∫∫

∫
 

(3.90)

where G2 is the Green’s function for 2D light fields, satisfying the equation

 ( )2
2 2 2 0, .G k G M Mδ∆ = − −  (3.91)

Then for the operator 
ε

 
 
 

2
1

1div gradG  taking into account equations (3.88) and 
(3.91) we have

 
( )δ

ε ε
ε ε εε ε

− − 
= ∆ − ∇ ∇ = − ∇ ∇ 

 

2
2 2 0

2 2 1 2 1 22 2
1 1 11 1

,1 1 1 1div grad .
k G M M

G G G G  
  (3.92)

From equation (3.90) with (3.89) and (3.92) we obtain
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0in in in1 2

2 2 2
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1
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(3.93)

which implies
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+ ∇ ∇ =  
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∫ ∫∫
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

 

(3.94)

We apply Green’s formula (3.90) for functions and taking into account the second 
of equations (3.85) and equation (3.91) and obtain

 

( )

( )
2

1ext ext
2 2 ext2 2

2 2 2 2 2 2
2

0
1 .z z

z
S

, x, y
G H H GG g dx dy dl Hn n , x, yε ε ε

εΩ

 ∈Ω
  ∂ ∂

+ − =   ∂ ∂ ∈Ω 


∫∫ ∫  
  (3.95)

Combining (3.94) and (3.95) taking into account the boundary conditions (3.86) 
and (3.87), we obtain a system of equations
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ε

Ω Ω
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
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 − ∂ + =   ∂   ∈Ω

∫∫ ∫∫

∫
 

(3.96)

where 
2

0 2 2zH G g dxdy
Ω

= ∫∫  is the given field produced by external sources. 
 
     Thus, the problem of diffraction of electromagnetic waves of TM-polarization 
is reduced to solving a Fredholm integral equation of the second kind with respect 
to the function Hz

in (x, y). The existence and uniqueness of solutions is proved 
in [30] so in this work are not given. The Green function has the form (3.83). 

By definition of the gradient 
 ∂ ∂

=  ∂ ∂ 
2 2

2grad ,G GG
x y

. Since ξ = ξ(x, y), then

 

2 2

2 2

,

.

G G
x x

G G
y y

ξ
ξ

ξ
ξ

∂ ∂ ∂
=

∂ ∂ ∂
∂ ∂ ∂

=
∂ ∂ ∂  

(3.97)

For the Hankel function the following relation holds

 

( )
( ) ( )

1
10

1 .dH H
d

ξ
ξ

= −
 

(3.98)

Given that 
( )2

2 'k x x
x
ξ

ξ
−∂

=
∂

,
( )2

2 'k y y
y
ξ

ξ
−∂

=
∂

, from (3.83) (3.97) (3.98) we have

 
( ) ( ) ( ) ( )ξ ξ

ξ ξ
 − −

= −  
 

2
1 12

2 1 1
' 'grad , .

4
k i x x y yG H H

 
(3.99)

Directional derivative in (3.96) with (3.99) can be calculated by the formula

 

∂
= ⋅

∂
2

1 2
1

grad .G n G
n  

(3.100)

Field Hz, which is determined from the system (3.96), is substituted into equations 
(3.65) and (3.66) from which the components Ex, Ey of the vector of electric strength 
are determined. The components Hz, Ex, Ey determine by the electromagnetic 
field, resulting from diffraction of electromagnetic wave of TM-polarization on a 
micro-object.
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3.2.3. Application of finite element method for solving integral 
equation

To solve the integral equations of the systems (3.81) and (3.96) we use the finite 
element method in which by expanding the required fields with respect the basis 
of interpolating functions these equations were reduced to ???. THe system of 
interpolating functions was represented by linear functions inside cells obtained 
in discretization of region Ω1. The linear interpolation functions within the 
discretization grid have the form [13]
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where Δ is the step of the ???, as shown in Fig. 3.15. ,  1,6i i∆ =  are the triangular 
cells of the neighborhood of the current point m. In Fig. 3.15 (p + 1) is the number 
of discretization nodes along the x axis.

For the case of TE-polarization of the incident wave, expansion in the basis 
(3.101) takes the form
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Fig. 3.15. A fragment of triangulation of 
region Ω1.
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where Cm are unknown coefficients.
Substituting (3.102) in the integral equation of (3.81), we obtain the ??? for the 

unknown Cm
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where
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For the case of TM-polarized incident wave expansion in the basis (3.101) takes 
the form
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where Cm are unknown coefficients.
Substituting (3.105) in the integral equation of (4.96), we obtain the ??? for the 

unknown
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Since the integrands of the integrals in (3.104) and (3.107) have a complicated form, 
then their integrals are numerically implemented for each of the six triangles of the 
current node m. In the case where m =  n the Neumann function Y0(xn, yn; xm, ym), 
which is part of the component of the function G2 has a feature, i.e. tends to –∞. To 
calculate the function Y0 in the neighborhood we need more detailed discretization 
of the triangular element formed by the ??? grid, shown in Fig. 3.16.

Here (a,c) are the coordinates of the point from which integration starts, and 
Δ' is the step of the inner ??? grid, shown in Fig. 3.16. The element is divided 
into squares, and triangles, as shown in Fig. 3.16. The integration in (3.104) is  
carried out as follows: function (k2

1 – k2
2) ψm is integrated analytically for each  

square (in each square k1 and k2 are assumed constant), and the Green’s function G2 
which is a function of distance ξ, is assumed to be constant for each square. Integrals 
for the area in (3.107) are calculated in a similar way, and to calculate the integral 
along the contour sections with the same step Δ' are used instead of squares.

Matrices Dmn of the systems (3.103), (3.106) are symmetric, fully populated 
with the dominant main diagonal. Symmetry Dmn is due to the fact that the Green 
function G2 is an even function of the distance between the observation point n 
and the current point m. The prevalence of the main diagonal is due to the fact 
that the Neumann function Y0 has a feature??? at the origin. Indeed, this feature 
occurs when n = m, i.e. when calculating the diagonal elements. For a single 
observation point n enumeration??? happens through all the points of region Ω1, 
that is in the same row of the matrix Dmn there are N elements (N is the number 
of points in the region Ω1). Thus, the resultant ??? are of order N. To solve the 
??? we used the Gauss method for complex numbers. The number of arithmetic  
operations performed in the solution of ??? can be estimated as ≈(2/3)N3 [52].

For the case of TE-polarization by solving a system of equations (3.103) we 
obtain the complex coefficients Cm, 1,m N=  which are then substituted into the 
second equation (3.118) to determine the field in the outer region Ω2:
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Fig. 3.16. Discretization of the triangular ele-
ment of the ???grid (Fig. 3.15) for numerical 
integration.
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Solving the system of equations (3.106) for the case of TM-polarization, we obtain 
the complex coefficients Cm, 1,m N=  which are then substituted into the second 
equation (3.96) to determine the field in the outer region:
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The described method has several advantages and disadvantages compared with 
other methods. In contrast to the FEM, in Gallagher’s formulation [13] the integral 
equation method does not require specification of boundary conditions and can 
operate with objects having an arbitrary boundary. However, the use of Green’s 
function considerably complicates the numerical implementation. This method 
also does not require the calculation of normal and tangential derivatives along 
the contour of the object from the light field, which distinguishes it from the finite 
element method [13] and the hybrid finite element method [53]. At the same time, 
the hybrid method computes several times faster (for the given parameters of the 
problem and discretization) than the method of integral equations, as in the hybrid 
method the ??? matrix is tridiagonal, and in this method it is completely filled out 
(which requires a significant amount of memory in numerical experiments). The 
method of the integral equation allows the calculation of the diffraction on both 
homogeneous and heterogeneous objects, and also, importantly, on the combination 
of several objects, with no need to introduce an artificial field, covering all scattering 
objects.

3.2.4. Convergence of the approximate solution

The numerical experiment showed that the method has a convergence. To do this, 
the test object was a homogeneous dielectric cylinder with permittivity ε1= 4 and 
the square cross-section of the size equal to the length of the incident wave. The 
cylinder was illuminated by a TE-polarized plane electromagnetic wave with the 
wavelength λ = 1 mm. The external environment was vacuum with the permittivity 
ε2= 1. The diffraction pattern with the size of 5×5 mm is shown in Fig. 3.17:

The main discretization grid was 100×100 nodes. Depending on the number of 
nodes of discretization of the fine grid the value of the maximum in the intensity 
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distribution in the plane XY changes. As the number of nodes of the fine grid 
increases the maximum value asymptotically approaches a constant value (Fig. 
3.18): Fig. 3.17 corresponds to the number of nodes of the fine grid N = 100.

3.2.5. The diffraction of light by cylindrical microlenses

The diffraction of light on microlens was analyzed using a collecting lens with a 
radius of curvature R = 2.5 µm (3 µm aperture of the lens), the refractive index of n 
= 2 and a thickness of 0.5 µm. A plane wave with the length λ = 1 µm impacted on 
the lens. The diffraction pattern had the dimensions 5×5 µm with discretization grid 
of 100 × 100 nodes. The fine grid – 50 nodes on the distance between two nodes 
of the main grid. The aim of light diffraction study on the microlens was to find its 
focus and compare the results with the geometrical optics approximation of a thin 
lens. A study was conducted of the impact of its orientation to the incident radiation 
of flat and convex sides on the focus position.

The experimental results are shown in Figs. 3.19 and 3.20.
As can be seen from Figs. 3.19 and 3.20, the total diffraction pattern at different 

orientations of the lens has a different intensity distribution in the plane XY. However, 

Fig. 3.17. Diffraction of a plane TE-wave by a dielectric cylinder with a square cross-
section: a) the intensity distribution in the plane XY; b) cross-section of the intensity of X

a

b

Fig. 3.18. Dependence of the maximum intensity in the 2D pattern of diffraction of a plane 
TE-wave on a square with the side λ on the number of nodes N of discretization of a ‘fine’ 
grid between two adjacent nodes of the main grid.
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from Fig. 3.19c and Fig.3.20c show in that the the intensity at the focus is almost 
identical and differs by no more than 5%.

From the geometric optics approximation for a thin lens it follows that its focal 
length is equal to

 ( ) ( )
1 2

1 2
,

1
R Rf

n R R
=

− +  
(3.110)

where R1 and R2 are the radii of curvature of the surfaces of the lens, n is the 
refractive index of the lens. Given that R1 = ∞, the formula (3.110) becomes
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Rf
n

=
−  

(3.111)

It follows from (3.111), taking into account the lens parameters, that the focal length  
is f = 2.5 µm.

From Fig. 3.19b f ≈ 3.05 µm, which is different from the theoretical result by 
22%, and from Fig. 3.20b f  ≈ 3.25 µm, which is different from the theoretical result 
by 30%. We conclude that the diffraction of light on the microlens causes shift of 
the focus of the lens, which depends on the orientation of the lens in relation to the 
incident plane wave.

Figues 3.19b and Fig. 3.20b also show that the type of diffraction pattern inside 
and in front of the lenses is significantly different: at the reflection of the plane face 
of the lens (Fig. 3.19b) there is a local maximum of intensity whose value is 1.3 
times larger than the focus.

Microlenses with a continuous profile represent a significant challenge to make, 
so the question: how accurately can these lenses can be approximated by binary 
lenses? is of considerable importance.

Fig. 3.19. Diffraction of a plane TE-wave on a microlens oriented with the flat edge to the 
incident wave: a) the intensity distribution in the plane XY; b) cross-section of the intensity 
with respect to X, c) cross-section of the intensity with respect to Y.

a
b

c
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Figure 3.21 shows the diffraction of a plane wave on a binary microlens. Its 
parameters are the same as in the previous example.

Figures 3.21a and 3.21b show that the focal length of a binary lens is 18–26% 
greater that the focal length of the ordinary lens. A large part of the energy is reflected 
back and the focal length increased to about 3.85 µm. The width of the intensity 
maximum in the cross section for the X-axis of the focus increased compared with 
the continuous lens by ≈2.3 µm against 2 µm for the normal lens (Fig. 3.19c); 
the maximum light intensity at the focus of a binary microlens was ≈88% of the 
maximum intensity of the continuous microlens (Fig. 3.19c).

Fig. 3.20. Diffraction of a plane TE-wave by a microlens oriented with the convex surface to 
the incident wave: a) the intensity distribution in the plane XY; b) cross-section of intensity 
with respect to X, c) cross-section of intensity with respect to Y.

a

b

c

Fig. 3.21. Diffraction of a plane TE wave by a binary microlens: a) the intensity distribution 
in the plane XY; b) cross-section of intensity with respect to X, c) cross-section of intensity 
with respect to Y.

a

b

c
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Note that the numerical results presented in this section differ from those obtained 
in the hybrid method in [44] also by the fact that the aperture of the lens was 3λ, 
while in [53] the aperture was 8λ.

3.2.6. Diffraction of light on microscopic objects with a piecewise-
uniform refractive index

A feature of the modification the finite element method for solving the Fredholm 
integral equation of the second kind, discussed in this chapter, is that it allows the 
calculation of diffraction not only on homogeneous objects, but also on objects with 
a piecewise-uniform refractive index. In other words, if the piecewise-homogeneous 
region Ω1 can be divided into a finite number N of homogeneous subdomains Ω1i, 
then for the case of TE-polarization the system (3.81) takes the form
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(3.112)

To test this assertion, the numerical results of the diffraction problem of a plane 
TE-polarized electromagnetic wave, obtained by the considered method and the 
analytical method described in [54, 55, 56], were compared.

Figure 3.22 shows the diffraction pattern of a plane TE-wave with a length                          
λ = 1 μm for a two-layer dielectric circular cylinder with the characteristics                                 
r1 = 0.25 μm, r2 = 0.5 μm, ε1 = 2.25; ε2 = 4. Outer space – a vacuum. The dimensions 
of the diffraction pattern were  3.33 × 3.33 μm. The sampling grid had 200×200 
nodes.

In Fig. 3.22b the intensity curve, displayed by black colour, corresponds to 
the analytical solution [56], while the gray curve corresponds to the investigated 
method (3.112). For the above mentioned parameters of the problem the compared 
results differ by 4–5%. This allows us to conclude that the method is suitable for 
calculating tdiffraction problems for piecewise-homogeneous (in the general case 
of inhomogeneous) micro-objects.

Fig. 3.22. Diffraction of a plane TE-wave on a two-layer microlenses: a) the intensity dis-
tribution in the plane XY; b) cross-section of intensity with respect to X.

Section in Xa

b
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Consider now one of the simplest examples of diffraction of light on piecewise-
homogeneous microscopic objects – the diffraction of light on layered films.

The investigated object was a plate with the following parameters (Fig. 3.23):

• dimensions: 0.5 × 3 μm;
• the refractive index:
• left layer with thickness 0.25  μm n1l = 2;
• right layer with thickness 0.25  μm; n1r = 1.5;
• the external environment n2 = 1;
• the wavelength of incident radiation λ = 1  μm,
• the number of counts in the sampling grid 200 × 200;
• the size of the outer region 10 × 10 mm.

Fig. 3.23. Diffraction of a plane TE-wave by a layered film: a) the light intensity distribution 
in the plane XY; b) cross-section of intensity in X, c) cross-section of intensity in Y.

Section in X

Section in Y
µm

µm

a

b

c
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Next, a layered film was replaced with a uniform refractive index with the same 
dimensions as the previous model (Fig. 3.24).

Figure 3.23b and  3.24b show that the layered film has a higher transmittance 
than the homogeneous film, and the bleaching effect was observed there. This 
suggests that by replacing the homogeneous object by a piecewise–uniform one 
we can achieve the required value of the reflection and transmission, which is very 
important for the design of micro-lenses and other micro-optics objects.

It is interesting to note that both models have the focusing properties, such 
as microlenses, and the magnitude of the maximum intensity at the focus can be 
controlled by the choice of layers with different refractive indices. In Fig. 3.23b the 
maximum intensity at the focus is 3 and in Fig. 3.24b it is 2.4.

Fig. 3.24. Diffraction of a plane TE-wave on a homogeneous film: a) the light intensity dis-
tribution in the plane XY; b) cross-section of intensity in X, c) cross-section of intensity in Y.

Section in X

Section in Y
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3.3. Diffraction of light on inhomogeneous dielectric cylinders

Among the many tasks of light scattering on microscopic objects special attention 
is paid to the solution of axisymmetric problems of diffraction of electromagnetic 
waves on bodies of revolution [57–61]. For example, in [62] to solve the scattering 
problem on 3D axisymmetric particles, the authors suggested the method of 
separation of electromagnetic fields into two parts: axisymmetric, independent of 
the azimuthal angle, and asymmetric, whose average over this angle is zero. The 
scattering problem is considered separately for each of these parts. At the same 
time, special selection is made of scalar potentials associated with the azimuthal 
components of the electromagnetic fields used for the axisymmetric part of these 
fields. For the asymmetric part we used the superposition of Debye potentials and 
vertical components of the Hertz vector. The formulation of the problem is reduced 
to solving an integral equation, which requires large computational costs.

In [63] the analytic solution of near-field diffraction on homogeneous metallic 
and dielectric circular cylinders in the vicinity of the dielectric surface is studied. In 
[64] the problem of a more general form, where a homogeneous circular cylinder is 
immersed in a layered medium, is solved.

In [65], the modification of the method of discrete sources was proposed for the 
two-dimensional problem of diffraction of a plane TE-polarized electromagnetic 
waves on a two-layer circular dielectric cylinder or a metal cylinder with a dielectric 
coating.

In [66] the electromagnetic scattering by a multilayer gyrotropic bianisotropic 
circular cylinder for TE-/TM-polarized incident plane waves was investigated using 
the method of eigenfunction expansion. Numerical results are presented for a three-
layer cylinder.

In [67–70] in the framework of geometrical optics the authors obtained analytical 
expressions for the dependence of the refractive index on the radial coordinate of 
gradient optical elements with spherical and transverse cylindrical symmetry (when 
an infinitely long lateral surface is perpendicular to the direction of incidence of 
the electromagnetic wave). Note that the Luneberg lens [69] is also used as a lens 
antenna for UHF band radio waves [71]. The Luneberg lens focuses the beam of 
parallel rays to a point on the surface. The inner Luneberg lens [68] focuses a beam 
of parallel rays in a given internal point lying on a diameter parallel to the incident 
rays between the centre and the far surface of the lens. The generalized Luneberg 
lens [67] focuses the incident beam of parallel rays to a point behind the lens, which 
lies on the continuation of the diameter parallel to the incident rays. In this case, the 
dependence of the refractive index on the radial variable no longer has an explicit 
analytical dependence, and is expressed in the form of integral relations. The Eaton-
Lippmann lens [70] is a dielectric gradient optical element having a spherical or 
transverse cylindrical symmetry, which reflects back all the rays falling on it. An 
explicit analytical dependence of the refractive index on the coordinate for the 
Eaton-Lippmann lens has a singularity at the origin (in the centre of the lens), which 
provides back reflection of rays incident at the centre of the lens.
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Traces of light rays in all the lenses have been studied well enough. This chapter 
discusses the passage of the electromagnetic wave through these gradient optical 
elements, in the case where the radius of the lens is the same (or similar) with the 
wavelength. In this resonance case, the beam description of diffraction of light is no 
longer valid and the question arises about the extent of change in the focusing and 
reflection properties of the given gradient gradient elements.

The analysis of electromagnetic wave diffraction on the gradient cylindrical 
optical elements, the refractive index of which has a transverse cylindrical 
symmetry, can be carried out using the method of integral equations described in 
section 3.2. The numerical solution of Fredholm integral equations of the second 
kind is generally conducted using methods for solving systems of linear algebraic 
equations (one of these methods – the finite element method – was also discussed in 
chapter 1). However, to obtain sufficient accuracy of the system we should consider 
high-order equations with completely filled matrices, which requires a considerable 
amount of computing time and a large amount of computer memory. In this 
connection there was a need to develop a method that would solve the problem of 
electromagnetic wave diffraction on a transparent body in a short time frame and 
without significant computational costs.

In this chapter, the method of separation of variables is used to develop the 
recurrent analytical method for calculating the diffraction field with TE- and 
TM-polarizations, in the event of the incidence of the electromagnetic wave on an 
inhomogeneous dielectric infinite circular cylinder whose generating line extends 
along the axis z, while the plane (x, y) is the plane of incidence. The heterogeneity 
of the cylinder is approximated by a piecewise-constant function, and the circular 
section of the cylinder at the same time will have N concentric rings with constant 
values   of the refractive index within each ring (Fig. 3.25). The method is based on 
the decomposition of the projection on the z-axis of the vectors of the electric (for 
TE-polarization) or magnetic (for TM-polarization) fields within each homogeneous 
ring into a series of cylindrical functions with unknown coefficients. The coefficients 
themselves are determined from the boundary conditions imposed on the field and 
their radial derivatives on the lines of discontinuities of the refractive index.

3.3.1. Solution of the problem of diffraction of an arbitrary wave 
on a cylindrical multilayer dielectric cylinder by separation of 
variables

Figure 3.25 schematically shows the section of an N-layered circular cylinder in each 
layer of which the refractive index is constant. The generator of the infinite cylinder 
is elongated along the axis z, and the plane of incidence of a plane monochromatic 
electromagnetic wave coincides with the plane (x, y). In this case, the system of six 
Maxwell equations splits into two independent systems of three equations: for TE- 
polarization the system of three equations includes the projections of the vectors 
of the strength of electric and magnetic fields (Ex, Hx, Hy), for TM-polarization the 
system is formed by the projections of the vectors (Hz, Ex, Ey). For TE-polarization 
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projection Ez satisfies the Helmholtz equation, and the projections Hx and Hy are 
expressed through Ez, and for TM-polarization, projection Hz satisfies the Helmholtz 
equation, and the projections Ex and Ey are expressed by Hz.

Thus, to solve the problem we need to solve the Helmholtz equation for the 
projections Ez and Hz. If we place the centre of the coordinate system (x, y) at 
the centre of the circular cylinder, then the problem can be solved in cylindrical 
coordinates ( )ϕ ϕ ϕ= =: cos , sinr, x r y r . It is known that partial solutions of the 
Helmholtz equation in cylindrical coordinates are cylindrical functions, so any 
solution of the Helmholtz equation in the variables (r, φ), where the refractive index 
is constant, can be represented as a linear combination of independent cylindrical 
functions.

TE-polarization
In this section we introduce the notation zE ψ= .

The field amplitude in the inner circle (0 < r < r1) is represented as a series of 
Bessel functions (Rayleigh seried):

 
( )ψ ε ϕ
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(3.113)

The field inside the j-th ring of the dielectric is represented as a series of Bessel and 
Neumann functions:
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(3.114)

where 1 ,  2,j jr r r j N− < ≤ = . Here rN = R.

Fig. 3.25. Multilayer dielectric cylinder.



43  

The amplitude of the field outside the dielectric is represented as a series of 
Hankel functions of the second kind, since they satisfy the Sommerfeld radiation 
condition:

 

( ) ( )ψ ψ ϕ
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m
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(3.115)

where r > R. Here we assume that in the freespace the permittivity is equal to unity 
ε2 = 1.

In equation (3.115) ( ) ( )ψ ϕ= − = −0 exp exp cosikx ikr  is the amplitude of the 
incident plane wave of unit intensity.

To find the unknown coefficients in the series (3.113)–(3.115) we use the 
boundary conditions. Equating the fields themselves and their radial derivatives at 
the radii of the jumps of the refractive index rj, we obtain a system of equations:
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(3.116)

For the expansion of ψ0 into a series in respect of Bessel functions we use the series 
connected with the generating function [50]:
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(3.117)

For a plane wave from the equations (4.117) it follows:
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(3.118)

Given that ( ) ( )21 m mi− = −  and ( ) ( )2 11 m mi i +− ⋅ − = −  from equation (3.118) we have
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(3.119)

We check the parity of the function (–i)m Jm (kR) cos m φ:

( ) ( ) ( )
( )

( ) ( ) ( ) ( )ϕ ϕ φ−
−− − = − = −

−

1cos 1 cos cos .m m m
m m mmi J kR m J kR m i J kR m

i

Here we use the property ( ) ( ) ( )1 m
m mJ kR J kR− = − .

Since the function under the sum in equation (3.119) is even, then the expansion 
of a plane wave in the series becomes
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(3.120)

When j = 1 taking into account (3.113) and (3.114) from (3.116) we have:
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(3.121)

At 2, 1j N= −  taking into account (3.114) from (3.116) we have:
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  (3.122)

When j = N, taking into account (3.114), (3.115) and (3.120) from (3.116) we have:
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  (3.123)

If the cylinder does not fall flat, and an arbitrary wave satisfying the Helmholtz 
equation, the function can be written as [72]:
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(3.124)

where h(θ) is an arbitrary function. We expand the exponent in the integrand of 
(3.124) in a series of cylindrical functions:
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(3,125)

then
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(3.126)
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If h(θ) is an even and real function, then its Fourier transform ( )im
mA e h d

π
θ

π

θ θ−

−

= ∫   
 
is also an even and real function. Thus, for any even real function we can write:
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m m
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(3.127)

where ( )cosmA h m d
π

π

θ θ θ
−

= ∫ .

A plane wave propagating along the optical axis is described by the function 
( ) ( )θ δ θ=h . In this case, Am = 1 for any m.
In view of (3.127), system (3.123) takes the form:
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  (3.128)

Because of the completeness and orthogonality of the functions cos m φ the required 
vector of coefficients { }= =,  1, 2m kmC C k N , for any m is expressed through a 
system of linear algebraic equations:

 = ,m m mA C B  (3.129)

where (see equation (3.130) on the next page)
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(3.131)

The system of equations with the size 2N × 2N is solbed for all m-th coefficients of 
the expansion into a series of cylindrical functions (3.113)–(3.115). The resulting 
coefficients are then substituted into equation (3.113)–(3.115).
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TM-polarization
The solution to the problem of diffraction of a plane TM-polarized electromagnetic 
waves on a multilayer dielectric cylinder is analogous to that in the case of TE- 
polarization, which was reviewed in the previous section. For TM-polarization we 
introduce the notation Hz = ψ. The boundary conditions take the form:
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(3.132)

Here rN = R.
Guided by the above described manner, it is easy to obtain the matrix of the 

system of equations (3.113)–(3.115), (3.132) (see equation (3.133) on the next 
page), similar to the matrix (3.130).
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Recurrent relations for the unknown coefficients
Because of sparse matrices (3.130) and (3.133), the Gauss method becomes 
ineffective. In this section, using the sweep method and taking into account the 
structure of the matrices (3.130) and (3.133), recurrence formulas are obtained for 
the unknown coefficients. Thus, the system of algebraic equations of any order to 
the matrix of the form (3.130) or (3.133) is solved. In general, the structure of the 
system of equations to which we apply the method can be represented as follows:
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  (3.134)

where ,  1,2ic i N=  are the unknown expansion coefficients in a series of cylindrical 
functions.

Direct sweep eliminates items that are below the main diagonal of the matrix. As 
a direct result the system (3.134) becomes:
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(3.135)

The matrix elements (3.135) are marked with a tilde, are related to the initial 
elements of the matrix (3.134) by the following relations:
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(3.136)

Here 2,i N= , with the exception of the last of equations (3.136), where i ≠ N
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( ) ( )
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With the reverse course it is possible to obtain an expression for solving systems of 
linear equations:
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Here 1, 1i N= − , and in the latter of equations (3.137) at i = N – 1:

 ( ) ( ) 112 1,2 1 .N i N ia a− − − − =

Raleigh series in ascending integer indices represent the diffracted field in the form of 
an infinite set of multipoles, and in this set the number of important terms increases with 
the increase of the ratio of the transverse dimension of the body to the wavelength. The 
smaller i ik rε , the more rapidly series converges. Accordingly, the diffraction field  
for small i ik rε  has a relatively simple form and becomes more complicated with 
the increase of i ik rε . The rapid decrease of the terms of the series, starting with 
the numbers ~ i im k rε , enables us to ignore the remainder of the series, even for 
large values of i ik rε .

However, for very large values   of i ik rε  the summation is difficult because of 
the very long computing time. The transition to the Watson series is effective [1].

3.3.2. The analytical solution for a two-layer cylinder

Study [1] gives an analytic solution of the two-dimensional problem of diffraction 
of a plane electromagnetic monochromatic wave of TE-/TM-polarization on a 
homogeneous dielectric circular cylinder. Using the method proposed in section 
3.3.1 we obtain an analytic solution of the problem of diffraction of an arbitrary 
electromagnetic wave on a two-layer dielectric circular cylinder, where the layers 
are represented in the form of a rod and a shell (Fig. 3.26).
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(3
.1

30
)

The system of equations (3.113)–(3.115) reduces to:
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(3.138)

The problem is reduced to finding the unknown coefficients 1 2 3 4,  ,  ,  .m m m mC C C C
Further, similarly to the case of the N-layered cylinder, as described in Section 
3.3.1, we obtain a system of four linear algebraic equations with four unknowns. It 
is not difficult to solve analytically such a system is not difficult, so here are only 
the results are presented.

TE-polarization
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The calculated coefficients are substituted into (3.138).

TM-polarization
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The calculated coefficients are substituted into (3.138).

In the equations for the coefficients , 1, 4kmC k = , the constants Am are found 
from (3.127) and characterize the incident light wave.

3.3.3. Diffraction on a gradient microlens 
Diffraction of electromagnetic waves on the internal Luneberg 
lens
Consider the diffraction of a plane TE-polarized electromagnetic wave with a length 
λ = 1 μm on a dielectric cylinder of radius R = 1 μm, whose refractive index depends 
on the radius as follows (the inner Luneberg lens) [68]:

 
( )

2 2
2 1

12
1

1 ,  1,r rn r r
r

+ −
= ≤

 
(3.139)
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where r1 is the distance from the centre of the cylinder to the point of the geometrical 
focus. As an example, consider r1 = 0.75 μm. We select the number of layers of th 
ecylinder equal to 10 and the maximum order of approximating Bessel functions in 
the series (3.113)–(3.115) as 20.

The amplitude distribution of the projection of the vector of the strength of 
electric field Ez(x, y) is shown in Fig. 3.27.

The total size of the diffraction pattern is 4×4 mm (Fig. 3.27a). The number 
of counts of the sampling grid was 300×300 pixels. The value of the focal length 
r1, calculated using the above described method, is r1 ≈ 0.787 mm. The relative 

Fig. 3.26. The two-layer dielectric cylinder.

Fig. 3.27. Distribution of electric field amplitude: a) 2D distribution, b) the section on the X 
axis (horizontal axis) through the focus, c) cross-section on the Y axis (vertical axis) through 
the focus.

Section in X

Section in Y
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b

c
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error in comparison with the specified value r1 is ≈4.9%. It should be noted that 
the calculated value r1 is compared with the value obtained for ray approximation.

Consider the problem with the same parameters, but for the case of a TM-polarized 
incident plane wave.

The amplitude distribution of the magnetic field is shown in Fig.3.28.
The value of the focal length r1 was r1 ≈ 0.653 μm. The relative deviation of the 

calculated focal length from the given value of r1 is ≈12.9%. 
The study of diffraction of light on the Luneberg lens, whose dimensions are 

comparable with the incident electromagnetic wave, with the developed method 
was carried out in a series of numerical experiments. The main task was to check 
how many layers of the lens will be sufficient to obtain a stable value of the focal 
length, and compare it with the prescribed value, which was used for calculattions 
by the beam approximation of the refractive index of the lens.

The following parameters of the diffraction pattern were chosen: the size                          
4×4 μm, number of samples 400×400 pixels, the outer radius of the cylinder 1 μm, 
the prescribed focal length 0.5 μm. 

Based on the results it was concluded that for the wavelengths comparable to the 
size of the Luneberg lens about 30–40 layers, approximating the lens, are sufficient. 
Moreover, the deviation of the calculated focal distance from the specified value  of 
the focal length, obtained using the ray approximation, is no more than 10%. 

It was also interesting to know the magnitude of the intensity at the focus of 
the Luneberg lens, and how it changes depending on the number of approximating 

Fig. 3.28. The amplitude distribution of the magnetic field: a) 2D distribution, b) the section 
on the X axis (horizontal axis) through the focus, c) cross-section in Y axis (vertical axis) 
through the focus.
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segments. The dependences obtained for fixed values   of the length of the incident 
wave are shown in Fig. 3.30. 

Based on the numerical results, it is concluded that the developed method 
provides a stable solution for a given wavelength. It should be noted that with 
decreasing wavelength the intensity at the focus increases. This is because decreasing 
wavelength the diffraction effects become weaker, and the light concentrates more 
and more at the focus. It can be assumed that with a further decrease in wavelength, 
when the ray approximation holds, the intensity of the focus will tend to 200, and 
this is the number of pixels placed on the diameter of the circle, and each pixel 
corresponds to a beam which should theoretically pass through the focus of the 
Luneberg lens.

Fig. 3.29. Dependence of the focal length of the Luneberg lens on the number of layers of 
the cylinder at different wavelengths of the incident wave: a) λ = 1 μm; b) λ = 0.8 μm, c)                       
λ = 0.6 μm, d) λ = 0.4 μm, e) λ = 0.2 μm.

µm
µm

µm
µm

µm
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Diffraction of electromagnetic waves on a generalized Luneberg lens
Consider the case where r1 > 1. The refractive index of the generalized Luneberg 
lens is written as [68]: 

 

( ) ( ) ( )
ρ

ρ ρ
π ρ

 
 = = < <
 −  

∫
1

1
2 2

arcsin /1exp ,  ,  0 1.
h r dh

n r n r r
h

 

(3.140)

The transcendental equation (3.140) was solved numerically with respect to n(r), 
since the integral in (3.140) is not taken in elementary functions. Let us assume that 
a flat TE-polarized electromagnetic wave with a wavelength of λ = 0.2 μm falls on a 
dielectric cylinder falls. The focal length is chosen equal to λ = 2.55 μm, the radius 
of the lens is R = 1 μm. We define the number of layers of the cylinder equal to 100 
and the maximum order of the approximating cylinder functions as 35. 

Fig. 3.30. Dependence of the intensity at the focus of the Luneberg lens on the number of 
layers of the cylinder at different wavelengths of the incident wave: a) λ = 1 μm; b) λ = 0.8 
μm, c) λ = 0.6 μm, d) λ = 0.4 μm, e) λ = 0.2 μm.

a b

c
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The distribution of the intensity of the electric field is shown in Fig. 3.31: 
The total size of the diffraction pattern 4×4 mm. The number of counts??? on 

the sampling grid 400×400. The value of the focal length r1, calculated using the 
above described method, was r1 ≈ 2.48 μm. The relative error in comparison with the 
specified value r1 was equal to ≈3%.

Consider the same case, but for a TM-polarized plane electromagnetic wave. 
The intensity distribution of the magnetic field is shown in Fig.3.32. 
The total size of the diffraction pattern was 4×4 mm. The number of counts??? 

on the sampling grid 400×400. The value of the focal length r1, calculated using the 
above described method, was r1 ≈ 2.5 μm. The relative error in comparison with the 
specified value r1 was equal to ≈2%.

In all these cases the dependence of the refractive index of the radius decreases 
monotonically from the centre of the circle to the surface (at a distance of 1 μm 
from the centre of the refractive index is equal to 1). In the case of the generalized 
Luneberg lens(3.140), the refractive index at the centre of the circle is n ≈ 1.134               

Fig. 3.31. The distribution of the intensity of the electric field: a) 2D distribution, b) the sec-
tion on the X axis (horizontal axis) through the focus, c) cross-section on the Y axis (vertical 
axis) through the focus, d) the dependence of the refractive index of the lens on the radial 
coordinate.
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