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Introduction
Nanophotonics examines the interaction of light with particles of matter 
or irregularities that are smaller and much less than the wavelength, 
and devices produced on the basis of the results. Nanophotonics in 
particular includes the optics of photonic crystals and photonic-crystal 
waveguides, plasmonics, near-field microscopy, metamaterials and optical 
micromanipulation.

According to the wave-particle duality, the light during its propagation 
(except for acts of emission and absorption) can always be considered as a 
wave. Even if the number of photons is small (very weak light fields) we 
can observe phenomena of diffraction and interference. Therefore, Maxwell’s  
equations always adequately describe the propagation of light – interference 
and diffraction in free or homogeneous space.

The interaction of light with matter is described by macroscopic or 
microscopic electrodynamics. In macroscopic electrodynamics Maxwell’s 
equations the matter is described by dielectric and magnetic permeability, 
charge density and the current density vector of charges; the absorption 
of light is described by the introduction of complex dielectric permittivity 
material. Microscopic electrodynamics  is based on Maxwell–Lorentz 
equations. These equations are a generalization of Maxwell’s equations, 
in which matter is described as a set of moving point charges. According 
to the electron theory, the Maxwell–Lorentz equations accurately describe 
the electromagnetic microfields any point in space (including the inter- and 
intratomic fields and even fields inside elementary particles) at any time.

Adequate microscopic description of the emission, absorption, and 
scattering of light by material is provided by quantum electrodynamics. 
Quantum electrodynamics quantitatively describes the effects of the 
interaction of radiation with matter, and also consistently describes 
the electromagnetic interaction between charged particles. Diffractive 
nanophotonics, which is the subject of this book, deals with the processes 
and devices in which the wave properties of light are predominant. 
Diffractive nanophotonics suggests the possibility of describing the 
processes of behaviour of light by the Maxwell equations. The Maxwell 
equations can be used when working with coherent electromagnetic fields. In 
this case, the characteristic dimensions of the optical elements and structures 
should significantly exceed the atomic size. This is necessary to describe 
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the optical properties with the macroscopic characteristics of  dielectric 
permittivity and magnetic permeability. Thus, diffractive nanophotonics 
studies light diffraction on macro-objects with minimal irregularities of the 
order of tens of nanometers, up to the quantum dots of about 10 nm in size 
(this is much larger than the size of individual atoms and simple molecules 
of the substance). Therefore, the substance is described at the macrolevel, 
i.e. in the framework of macroscopic electrodynamics. The limitation is 
that in diffraction of light on free micro- and nanoinhomogeneities (e.g., 
solid microparticles in fluids), light presses on microparticles with a force 
of units and tens piconewtons and makes them to move. Thus, strictly 
speaking, it is required to solve the non-stationary problem of the diffraction 
of light on a moving heterogeneity and take into account the change in the 
wavelength of light.

The main purpose of this book is to demonstrate the fruitfulness of 
the well-established methods of diffractive computer optics in solving 
nanophotonics tasks. There are 8 chapters and 3 appendices in the book.

In the first chapter the basic equations of the diffractive nanophotonics 
and related transformation are considered. A system of Maxwell equations 
is presented and the formulation of the conditions on the interfaces and the 
Poynting theorem is discussed.

The basic equations that can be obtained from the system of the Maxwell 
equations are presented. These include the wave equation (with the time 
dependence of the field), the Helmholtz equation (without such dependence), 
the Fock–Leontovich equation (approximation of the scalar diffraction 
theory) and the eikonal equation and transfer (ray tracing approach). The 
integral theorems of optics expressing the field values in the integral form 
are presented. These include the Green (scalar case) and the Stratton–
Chu (vector representation) formulas. The scalar integral transforms 
are considered for use in optics to calculate the diffraction field in a 
homogeneous space: the Kirchhoff integral corresponds to the decomposition 
of the complex amplitude of the field in spherical waves, the Fresnel 
integral – along parabolic, and the Fourier transform – for plane waves.

The second chapter is devoted to numerical methods for solving 
diffraction problems under the strict electromagnetic theory. The first 
section presents difference method for solving Maxwell’s equations (FDTD 
approach). The Yee explicit difference schemes, based on the replacement of 
the difference derivatives by relationships for grid functions are discussed. 
In addition, each projection of the electromagnetic field is defined by its 
grid domain, which improves the order of approximation of the differential 
problem. The method of transition from grid functions in space and time 
to complex amplitudes of the field components is developed. Particular 
attention is given to the imposition of absorbing layers, simulating the 
free space around the computing domain. The problem of the formation 
of the electromagnetic wave incident on the optical element is solved. 
A method is proposed for the decomposition of the grid area, allowing a 
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large reduction of the duration of calculations by taking into account the 
structure of the optical elements. The second part of this chapter deals with 
approaches to numerical solution of the Helmholtz equation. A review of 
existing approaches is given and their classification in the family of BPM 
methods (beam propagation method) discussed, and the principal differences 
between the different versions of the method are shown. The solutions of 
the scalar Helmholtz equation for paraxial cases (in the approximation of 
the smooth envelope) and non-paraxial (based on the approximation of 
the differential operator) distribution are presented. The finite-difference 
schemes for solving equations and boundary conditions for some variants 
of the boundary conditions are given. Approaches to solving the Helmholtz 
equation for the vector case are discussed, including the media with an 
inhomogeneous distribution of the refractive index.

The third chapter examines the diffraction of light on two-dimensional 
microscopic objects of arbitrary shape. The problem of diffraction of 
electromagnetic waves with TE or TM-polarization on two-dimensional 
dielectric objects is solved using the finite element method (FEM) in 
different conditions. The Helmholtz equation is solved by the combined 
Galerkin FEM and the boundary element method. Two types of this method 
are considered for the analysis of diffraction on non-periodic microscopic 
inhomogeneities and on periodic objects – subwavelength diffractive 
gratings. As examples, problems of diffraction of plane electromagnetic 
waves on dielectric and conductive cylinders with the diameter equal to 
the wavelength are solved. The finite element method is also used to solve 
the problem of diffraction of a plane wave on a one-dimensional binary 
dielectric grating with a period of fractions of the wavelength to several 
wavelengths. Another variation of the FEM is related to the solution of the 
integral equation of diffraction on a uniform sampling grid. In this case, the 
problem is reduced to solving a linear system of Gauss algebraic equations. 
In contrast to the boundary element method, this method does not require 
the calculation of derivatives of the field, normal to the boundary surface of 
the local inhomogeneity. A solution of the problem of diffraction of a plane 
wave on a multilayer dielectric cylinder in the form of a series of cylindrical 
functions is presented. The coefficients of the series in a general case are 
found from the recurrence relations. Explicit formulas for the coefficients 
of the series were derived for a two-layer cylinder. These methods were 
used to simulate the diffraction of light on Luneburg and Eaton–Lippmann 
gradient microlenses. This chapter also considers an iterative method for 
solving integral equations for electromagnetic diffraction of waves with the 
TE- and TM-polarizations. The conditions under which this method has a 
relaxation, i.e., is a reduction of the mean error with increasing number of 
iterations, are determined. The method effectively allows to calculate the  
diffraction field inside and outside the dielectric inhomogeneity of a size 
equal to or less than the wavelength.
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The fourth chapter is a numerical method for solving the problem of 
diffraction on periodic diffractive micro- and nanostructures. The method 
is used to calculate and study the diffraction structures for a number of 
modern trends in nanophotonics, including plasmonics, metamaterials, 
nanometrology. The method of rigorous coupled-wave analysis (RCWA) is 
used to solve the problem of diffraction of a plane wave on two- and three-
dimensional diffractive structures and diffractive gratings. This numerical 
method for solving Maxwell’s equations is focused on the analysis of 
micro- and nanostructures described by a periodic function of the dielectric 
permittivity. Surface electromagnetic waves (SEW) (surface plasmon–
polaritons) are studied, and calculation and study of diffractive structures 
designed to form interference patterns SEW are carried out. The diffractive 
structures are composed of a dielectric diffractive grating and a metallic 
layer deposited on the substrate. The parameters of the diffractive structure 
are calculated from the excitation conditions at the lower boundary of the 
metallic layer of a given set of surface electromagnetic waves of different 
configurations and directions. As a result, directly below the metallic layer 
there forms a periodic interference pattern of surface electromagnetic waves. 
Periods of generated interference patterns significantly subwavelength. A 
promising area of ​​application of the considered structures is nanolithography 
based on registration of interference patterns of surface electromagnetic 
waves in the electron resist. The magneto-optical properties of bilayer 
metal–dielectric heterostructures consisting of a metallic diffractive grating  
and a dielectric magnetized layer are studied. The calculations show that 
these structures have resonant magneto-optical effects due to the rotation 
of the polarization plane of the incident wave and change of the reflectance 
(transmittance) index of the structure when the magnetization of the layer 
changes. These structure can be used as magnetic field sensors, gas sensors, 
light intensity modulation devices, controlled by the external magnetic field.

The fifth chapter describes the simulation of electromagnetic waves 
in nanophotonic devices. The FullWAVE software is used to calculate the 
passage of light through two-dimensional photonic crystals in the case 
in which the light frequency does not fall into the stop band. The results 
of modelling sharp focusing of light by the two-dimensional gradient 
photonic–crystal lenses, as well as the results of using these lenses as a 
coupling device for matching the two planar waveguides with different 
widths, are considered. It is shown that the width of the focal spot, which 
is formed near the surface of the photonic crystal (PC) lens, is equal to 0.3 
wavelength. The results of experiments with fabrication of two-dimensional 
photonic-crystal lenses in a film of silicon on fused silica are outlined. 
The chapter also discussed the radial FDTD-method, which is adapted to 
solutions of Maxwell’s equations for an axially symmetric diffraction laser 
beam with radial polarization on an axially symmetric optical element. The 
results of modelling of sharp focusing of laser light with radial polarization 
using a microaxicon and Mikaelian three-dimensional gradient lenses are 
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presented. The simulation results showed that in both cases focal spots are 
formed near the surface of the optical element with the inhomogeneous 
surface waves involved in their formation and it is therefore possible 
to overcome the diffraction limit. The diameter of the focal spot at half 
intensity was equal to 0.35 of the wavelength.

The sixth chapter discusses two methods of calculating the spatial 
modes of microstructured photonic crystal fibres (PCF). This is a relatively 
new class of optical fibres, which uses the properties of photonic crystals. 
In the cross section the PCFs have a quartz or glass microstructure with 
a periodic or aperiodic system of microinclusions, mostly cylindrical 
microperforations, oriented along the fibre axis. The ‘defect’ of the 
microstructure, corresponding to the absence of one or more elements in 
its centre, is the core of the optical fibre, providing a waveguide mode of 
propagation of electromagnetic radiation. Two methods for calculating the 
mode of optical fibres are discussed in detail: the approximate analytical 
method of matched sinusoidal modes, and grid method based on the use 
of finite-difference approximations to the stationary wave equations. The 
basic idea of the method of matched sinusoidal modes (MSM-method), 
also known as the transverse resonance technique, is based on dividing 
the PCF section into homogeneous rectangular areas, and the description 
in each field of a homogeneous area using a system of local sinusoidal 
modes. The MSM-method is modified by the iterative Krylov method in 
the most computationally complex stage of the solution of the non-linear 
problem of eigenvalues of the large matrix to which the problem of finding 
the propagation constants of modes is reduced. The MSM-method was used 
to calculate both scalar and vector modes of conventional round step-index 
fibres and the modes of photonic crystal fibres with a filled core. The basis 
of the finite-difference method (FD-method) under review in this chapter 
is the approach based on the use of finite-difference approximations to 
the stationary vector wave equations for monochromatic light such as the 
Helmholtz equations. The FD method wins in the speed of the algorithm in 
the MSM method because the problem of finding the propagation constant 
and the sampling grid solutions for the transverse components of the electric 
or magnetic components is directly reduced to a linear matrix problem for 
the eigenvalues ​​and vectors. The FD method also allows for full vector 
analysis of modes of photonic crystal fibres with a hollow core. Examples 
of calculation of modes of Bragg fibres with filled and hollow cores are 
presented.

The seventh chapter contains the theory of paraxial and non-paraxial 
laser beams with axial symmetry and an orbital angular momentum. Such 
beams are called vortex beams, because their energy is propagating in a 
spiral around the optical axis, forming a ‘funnel’ as with a wind swirl. In 
nanophotonics the vortex laser beams are used for optical trapping and 
rotating micro- and nanoparticles in a ring in the cross-sectional plane 
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of the beam. In near-field diffraction the radius of the ring of the optical 
vortex is comparable with the wavelength, and considering this radius for 
the specified intensity level, the radius of the optical vortex can be several 
times smaller than the wavelength. This property of vortex laser beams is 
used in modulation nanolithography .

This chapter examines the diffraction of plane, Gaussian and conical 
waves on a spiral phase plate and a spiral axicon. Explicit analytical 
expressions are presented for the complex amplitudes of light of vortex 
beams in the area of ​​Fresnel diffraction and far-field diffraction. The 
Rayleigh–Sommerfeld integral is used to study paraxial and non-paraxial 
vector theory of vortex laser beams. It is shown that for the beam waist 
radius close to the wavelength, the longitudinal component of the vector 
of the electric field is only a few percent of the transverse component. 
Considered are the scalar paraxial hypergeometric beams formed by the 
logarithmic axicon and spiral phase plate. The complex amplitude of the 
vortex laser beams is proportional to the confluent hypergeometric function 
or Kummer function. In addition, the family of such hypergeometric beams 
forms a basis, they all have a ring structure (the intensity on the optical 
axis is zero), and the thickness of the intensity rings of the transverse 
diffraction pattern decreases with increasing ring number, tending to zero in 
the limit. A special form of hypergeometric laser beams are hypergeometric 
modes that retain their intensity during propagation in space. Non-paraxial 
hypergeometric beams whose complex amplitude is proportional to the 
product of two Kummer functions are discussed. Numerical examples of the 
propagation of such beams and the experimental results on the formation of 
vortex laser beam using diffractive optical elements are presented.

The eighth chapter discusses methods for calculating the force and 
torque, exerted by the electromagnetic field focused onto the microparticle 
of arbitrary form, whose dimensions are comparable with the wavelength 
of light. There are two ways of calculation of light pressure on the micro-
object: the rigorous electromagnetic method (two-dimensional case) and 
the geometrical optics method (three-dimensional case). The results of 
both methods of calculation of the pressure force of a Gaussian beam on a 
dielectric microcylinder are compared. The chapter also describes optical 
circuits, including diffractive optical elements (DOE) that form the laser 
vortex beams: Bessel mode, hypergeometric modes of different orders. Such 
DOEs are produced by optical and electron lithography. In some experiments 
vortex laser beams were formed by the dynamic liquid crystal microdisplays. 
The results of the experiments with multiorder optical elements forming 
multiple vortex beams having different angular orbital angular momentum 
are discussed. The diameters of the light rings on which microparticles 
rotated, were tens of microns, and the linear velocity of rotation was equal 
to a few microns per second.

The book was written by the Institute of Image Processing Systems, 
Russian Academy of Sciences: Chapter 1 – D. Golovashkin, V.V. Kotlyar, 
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