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Preface 

Since ancient times, mankind has been able to focus light with the help of lenses 
and mirrors. At the focus, not only is the energy of light concentrated, but all six 
projections of the electromagnetic field vectors are added at the focus, forming 
complex three-dimensional distributions of amplitude, phase, and polarization states. 
Recently, many interesting optical effects have been discovered in a sharp focus of 
coherent laser radiation: rotation of polarization vectors only in the longitudinal 
plane—photon wheels; the presence of points and lines of polarization singularity, 
in which the direction of the linear polarization vector is not determined; the reverse 
flow of light energy, when the longitudinal projection of the Poynting vector is 
directed in the opposite direction with respect to the direction of propagation of the 
focused light; spin-orbit conversion, when a transverse energy flux is formed at the 
focus of a Gaussian beam with circular polarization, which can rotate a microparticle 
along a circular trajectory. Another interesting effect that has recently been discov-
ered in the focus of laser light is the optical Hall effect. The usual Hall effect consists 
in a transverse displacement, in different directions, in a magnetic field of charges of 
different signs or different spins, which carry an electric current. In optics, particles 
with different spins correspond to light beams with left and right circular polariza-
tions. Therefore, the optical spin Hall effect in focus consists in the formation of 
regions separated in space, in which light has a different direction of elliptical or 
circular polarization. 

The book will be of interest to a wide range of scientists, engineers working in the 
field of optics, photonics, laser physics, optoinformation technologies, and optical 
instrumentation. It can also be useful for bachelors and masters in the specialties 
applied mathematics and physics, applied mathematics and informatics, optics and 
graduate students specializing in these areas. 

Samara, Russia Victor V. Kotlyar 
Alexey A. Kovalev 
Anton G. Nalimov

v



Introduction 

The Hall effect consists in the occurrence of a transverse voltage (Hall voltage) in a 
metal conductor at the edges of a sample placed in a transverse magnetic field when 
a current flows perpendicular to the field. Hall voltage was discovered by Edwin Hall 
in 1879, and the effect is named after him. Due to the many types of Hall effects, 
for clarity, the original effect is sometimes referred to as the ordinary Hall effect to 
distinguish it from other types that may have additional physical mechanisms. In 
semiconductors, the Hall effect leads to separation of electrons and holes in space. 
Note that electrons and holes have different spins. In the absence of a magnetic field 
in non-magnetic conductors, current carriers with opposite directions of spins can be 
deflected in different directions perpendicular to the electric field. This phenomenon, 
called the spin Hall effect, was theoretically predicted by Dyakonov and Perel in 1971. 
There are external and internal spin effects. The first of them is associated with spin-
dependent scattering, and the second, with spin-orbit interaction. The spin Hall effect 
is closely related to another interesting effect, the Magnus effect. The Magnus effect 
was discovered by Heinrich Magnus in 1853 and occurs when a liquid or gas flows 
around a rotating body. In this case, a force acting perpendicular to the flow acts on 
the body. This phenomenon is often used in sports, for example, a dry leaf football 
kick, as well as in a twisted serve in table tennis (a spinning tennis ball deviates from 
a straight line). In optics, an effect similar to the Magnus effect was discovered in 
multimode fibers in 1990 by Zel’dovich B. Ya. It was shown that the vortex modes 
of a fiber with left and right circular polarization propagate at different angles to the 
optical axis of the fiber. In 1992, A. V. Volyar discovered a similar Magnus effect in 
uniaxial crystals. The spin Hall effect in optics was discovered later. In 2004, Onoda 
M. et al. theoretically showed that when reflected from the interface between two 
media, linearly polarized light is divided into two beams with left and right circular 
polarization, propagating at different angles to the surface. In 2005, Kavokin A. 
experimentally observed the optical spin Hall effect during the passage of light with 
linear polarization through a multilayer structure. In the transmitted light, the regions 
with left and right circular polarizations were separated in space. The theory of optical 
effects of Magnus and Hall based on the geometric phase of Berry and spin-orbit 
interaction was developed in 2004 by Bliokh K. Y. The geometric phase of Berry
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viii Introduction

(1984) as applied to light with circular polarization consists in the fact that light 
with circular polarization, passing the same distance in a gradient medium with light 
with linear polarization, acquires an additional phase incursion. Also, between the 
light with left circular and right circular polarizations, an additional phase delay can 
occur. This leads to the fact that in a gradient (or other inhomogeneous) medium, 
light with left and right circular polarizations can propagate along different paths 
and be separated in space. The question arises: Can the optical Hall effect manifest 
itself not due to the interaction of light with the medium, but when propagating in 
free space, for example, in a sharp focus? In 1992, Allen L. et al showed that an 
individual photon has an orbital angular momentum. And in 2011, Bliokh K. et al. 
showed that spin-orbit conversion takes place in a sharp focus of light. That is, even 
at the focus, one can find the conditions under which the Hall effect occurs. 

This book is devoted to the optical Hall effect in the sharp focus of laser radiation. 
On the basis of the theory of Richards-Wolf (1959), which adequately describes the 
behavior of light at the focus, many specific examples of light fields show that both 
spin and orbital Hall effects take place near the focus. In this case, there can be many 
regions with left and right circular polarization at the focus. Their number depends 
on some parameter of the focused beam. The spin Hall effect is when local regions 
are formed in the plane of focus (or near it), in some of which the light has a right 
elliptical polarization, and in others it has a left one. In this case, in the initial plane, 
the light had linear polarization at each point. The orbital Hall effect appears when 
there are local areas in the plane of focus, in some of which the transverse energy flow 
rotates clockwise, and in others—counterclockwise. In the simplest case, the spin 
Hall effect occurs when a linearly polarized Gaussian beam is focused. In this case, 
four local regions are formed near the focus (before and after, but not in the focus 
itself), in which the light has a left-hand elliptical polarization along one diagonal, 
and a right-hand polarization along the other diagonal. The spin and orbital Hall 
effects also arise at the focus of light fields with non-uniform linear polarization, 
when at each point in the beam cross section the polarization is linear, but changes 
its direction from point to point. For such cylindrical vector fields, under certain 
conditions, the Hall effect occurs at the focus itself, and for other beam parameters, 
near the focus. For such beams, the presence or absence of the Hall effect at the focus 
is associated with the absence or presence of polarization singularity points in the 
initial light field. 

The authors are grateful for the numerical simulation by Ph.D. Stafeev S. S. and 
Ph.D. Kozlova E. S. 

The results included in the monograph were supported by the Russian Science 
Foundation grant 23-12-00236.
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Chapter 1 
Spin Hall Effect at the Focus for Light 
with Linear Polarization 

1.1 Circular Polarization Near the Tight Focus of Linearly 
Polarized Light 

Sharp focusing of laser radiation is understood as the focusing of light by lenses with 
a high numerical aperture, and it is no longer possible to neglect the vector nature 
of the light wave. In this case, to calculate the light field at the focus, it is necessary 
to take into account all the components of the strength of the electric and magnetic 
field of the light wave. The classical formulas for calculating the light field in a sharp 
focus were obtained by Richards and Wolf in [1]. 

At present, a large number of works are devoted to the sharp focusing of light. 
However, most of the works are devoted to studying the behavior of the intensity 
at the focus, for example, obtaining focal spots of various shapes [2–7]. Much less 
work is presented on the study of other characteristics of the light field, such as the 
energy flux (Poynting vector) [8–10], spin or orbital angular momentum [11–14]. 
We also note that the main attention of researchers is focused on the study of the 
behavior of light directly in focus; less attention is paid to the behavior of light at 
some distance from the plane of sharp focus. 

In this section, the sharp focusing of linearly polarized light is considered. It was 
shown that, with distance from the focal plane, regions arise in which the polarization 
ceases to be linear. In this case, when passing through the plane of focus, the direction 
of polarization in these regions changes to the opposite—in regions with right circular 
polarization, the direction changes to left circular and vice versa. 

1.1.1 Theoretical Background 

In [1], expressions were obtained for the projections of the electric field strength 
vector at the focus of the aplanatic system. The Jones vector for an initial field with
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linear polarization directed along the y-axis has the form: 

Elin = A(θ )

(
0 

1

)
(1.1) 

and the projections of the vector of the electric field strength and magnetic field 
strength near the focus for the initial field (1.1) have the form: 

Ex = −iI2,2 sin 2ϕ, 
Ey = −i

(
I0,0 − I2,2 cos 2ϕ

)
, 

Ez = −2I1,1 sin ϕ, 
Hx = i

(
I0,0 + I2,2 cos 2ϕ

)
, 

Hy = iI2,2 sin 2ϕ, 
Hz = 2I1,1 cos ϕ, (1.2) 

where 

Iν,μ =
(
4π f 

λ

) θ0∫
0 

sinν+1

(
θ 
2

)
cos3−ν

(
θ 
2

)

cos1/2 (θ )A(θ )eikz cos θ Jμ(x)dθ (1.3) 

where λ is the wavelength of light, f is the focal length of the aplanatic system, x = 
kr sinθ, J μ(x) is the Bessel function of the first kind, and NA = sinθ 0 is the numerical 
aperture. The angle ϕ in Eq. (1.2) is the conventional polar (or azimuthal) angle in 
the transverse planes, including the focal plane. A positive angle value increases 
counterclockwise from the horizontal x-axis. In the initial plane, the light field has 
only linear polarization directed along the vertical y-axis, and the Jones vector (1) 
does not depend on the polar angle ϕ. In Eqs. (1.2) and (1.3), angle θ is the tilt angle 
of the rays to the optical axis, θ0 is the maximal tilt angle, determining the numerical 
aperture NA, z is the direction of the optical axis, z = 0 is the focal plane, k is the 
wavenumber of light, (x, y) are the Cartesian coordinates in the cross sections of the 
light beam converging into the focus (x is the horizontal axis, y is the vertical axis). 
The initial amplitude function A(θ ) (suppose it is a real function) can be constant 
(plane wave) or in the form of a Gaussian beam. From (1.2), one can obtained the 
intensity distributions of each component of the electric vector 

Ix = I2 2,2 sin
2 (2ϕ), 

Iy = I2 0,0 + I2 2,2 cos
2 (2ϕ) − 2I0,0I2,2 cos(2ϕ), 

Iz = 4I2 1,1 sin
2 (ϕ). (1.4)
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We note that formulae (1.1)–(1.4) differ from the formulae obtained in [1], since 
the initial field (1.1) is polarized along the y-axis, whereas in [1] the initial field was 
polarized along the x-axis. Despite the initial light field (1.1) has only one component 
Ey, Maxwell’s equations indicate that, upon light propagation, all three components 
of the E-field appear. If the light field propagates at a small angle to the optical axis, 
then the other two field components (Ex and Ez) are small and can be neglected. At 
tight focusing, light propagates at large angles to the optical axis, so that all three 
components of the E-field (1.2) have a comparable value [15, 16]. It can be seen 
from (1.1) that the intensity distribution Ix of the horizontal projection of the electric 
vector in the plane of focus will have the form of four local maxima (light spots), the 
centers of which are located on a circle centered on the optical axis and lying on the 
rays emanating from the center at angles ϕ = π /4, 3π /4, 5π /4, 7π /4. 

The intensity distribution Iy will have the form of an almost circular spot with 
a maximum on the optical axis Iy = I2 0,0. The difference from the round shape of 
the spot arises from the fact that the distribution of intensity Iy along the vertical 

axis (ϕ = π /2) will be greater (Iy =
(
I0,0 + I2,2

)2 
) than along the horizontal axis (ϕ 

= 0, Iy =
(
I0,0 − I2,2

)2 
). Intensity distribution (1.4) at the focus of the longitudinal 

component of the electric vector Iz will have the form of two light spots, the centers 
of which lie on the vertical axis. This type of intensity distribution of electric vector 
individual components leads to the fact that the distribution of the total intensity at 
the focus has the form of an ellipse elongated along the vertical axis: 

I = Ix + Iy + Iz = I2 0,0 + I2 2,2 + 2I2 1,1 − 2
(
I2 1,1 + I0,0I2,2

)
cos(2ϕ). (1.5) 

Let us find the longitudinal component of the spin angular momentum (SAM) 
vector near the field focus (1.1) using the formula [17]: 

S =
(
c2ε0 
2ω

)
Im

(
E∗ × E

)
(1.6) 

where c is the speed of light in vacuum, ω is the angular frequency of the monochro-
matic light, ε0 is the vacuum permittivity, Im is the imaginary part of the number, 
× is the sign of vector multiplication, * is the sign of complex conjugation. Below, 
we omit the constant [(c2ε0)/(2ω)] for brevity. We note that sometimes, due to the 
electric–magnetic democracy, Eq. (1.6) is written with two terms rather than one: 
[c2/(2ω)]Im[

ε0(E∗ × E) + μ0(H∗ × H)
]
, with μ0 being the vacuum permeability 

(c2ε0 = μ−1 
0 ). However, immediately from the expression for the Poynting vector, 

only one term is obtained either for the E-vector or for the H-vector [17]. In addition, 
due to different constants, both terms will give different contribution to the compo-
nents of the SAM vector. Thus, expression (1.6) is correct. Substituting from (1.2) 
into (1.6), we will assume that integrals (1.3) are complex, since z is different from 
zero. We get: 

Sz = 2Im
(
E∗ 
x Ey

) = 2 sin(2ϕ)Im
(
I∗ 
2,2

(
I0,0 − cos(2ϕ)I2,2

))
(1.7)
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Certainly, near the tight focus, all 6 components of the E- and H-vectors (1.2) are  
significant, and none of these components can be neglected. Therefore, similarly to 
Eq. (1.7), we can write expressions for the components Sx and Sy: 

Sx = 2Im
(
E∗ 
y Ez

)
= 4 sin(ϕ)Re

(
I1,1

(
cos(2ϕ)I∗ 

2,2 − I∗ 
0,0

))
, 

Sy = 2Im
(
E∗ 
z Ex

) = 4 sin(ϕ) sin(2ϕ)Re
(
I∗ 
1,1I2,2

)
. (1.8) 

Let us single out the real and imaginary parts of the integrals included in (1.7) 
I0,0 = R0 + iI0, I2,2 = R2 + iI2. Then, instead of (1.7), we write: 

Sz = 2 sin(2ϕ)(I0R2 − I2R0) (1.9) 

The integrals R0, R2 in (1.9) include the co-multiplier cos(kzcosθ) ≈ 1 at  kz � 1, 
and the integrals I0 , I2 include the co-multiplier sin(kz cos θ ) ≈ kz cos θ at kz � 1. 
With this in mind, instead of (1.9), we write: 

Sz ≈ 2kz sin(2ϕ)
(
I0R2 − I2R0

)
. (1.10) 

In (1.10), the following notations are used: 

R0 = I0,0(z = 0), R2 = I2,2(z = 0), 
I0 = I0,0(z = 0), I 2 = I2,2(z = 0), 

I ν,μ =
(
4π f 

λ

) θ0∫
0 

sinν+1

(
θ 
2

)
cos3−ν

(
θ 
2

)
cos3/2 (θ )A(θ )eikz cos θ Jμ(x)dθ. (1.11) 

Let on a circle of some radius the expression in parentheses in (1.10) be greater 
than zero I0R2−I 2R0 > 0, and since sin(2ϕ) in (1.10) is positive in 1 and 3 quadrants, 
and negative in 2 and 4, then before the focus (z < 0) the longitudinal component 
SAM Sz in (1.10) will be positive in 2 and 4 quadrants, and negative in 1 and 3. 
And since the sign of the entire expression after focus (z > 0) will change to the 
opposite, the longitudinal component of SAM Sz in (1.9) will be positive in 1 and 
3 quadrants, and negative in 2 and 4. This means that before the focus in the 2 and 
4 quadrants the polarization vector will rotate counterclockwise (right circular or 
elliptical polarization), and after focus in these quadrants, the polarization vector 
will rotate clockwise (left circular or elliptical polarization). Recall that in the plane 
of focus, the light at each point has only linear polarization, since at z = 0 the  
longitudinal component of the SAM Sz in (1.10) is equal to zero. The defocusing 
magnitude z in Eq. (1.10) affects the size of the areas in the transverse plane, where 
polarization is not linear. At a distance z nearly equal to λ, the size of the circular 
polarization area is maximal (for NA = 0.95 it is approximately λ/2). As z tends to 
zero (i.e., in the focus), the size of the area with circular polarization decreases to 
zero.
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Note also that the longitudinal component of the SAM is exactly equal to the third 
component of the Stokes vector: 

Sz = 2Im
(
E∗ 
x Ey

) = s3, (1.12) 

which shows the presence of circular and elliptical polarization in the light field. In the 
next section, the presented theoretical predictions will be confirmed by simulation. 
We note that the change in the rotation direction of the polarization vector to the 
opposite beyond the focal plane, as follows from Eq. (1.10), can be explained by the 
angular momentum (AM) conservation law. Since polarization in the initial plane 
and in the focal plane is locally linear, Sz = 0. Therefore, if there are areas with 
left-handed circular polarization before the focus, then beyond the focus, circular 
polarization in these areas should become right-handed. However, the presence of 
such areas near the focus does not follow from the AM conservation. 

1.1.2 Simulation by Richards-Wolf Formula 

In this work, using the Richards-Wolf formulas, focusing of a linearly polarized plane 
wave (wavelength 633 nm) was simulated by choosing a lens with NA = 0.95. The 
field near the tight focus was calculated using the integrals [1]: 

U(ρ,  ψ,  z) = −  
if 

λ 

θ0∫
0 

2π∫
0 

B(θ,  ϕ)T (θ )P(θ,  ϕ) 

× exp{ik[ρ sin θ cos(ϕ − ψ) + z cos θ ]} 
sin θd θd ϕ, (1.13) 

where U(ρ, ψ, z) is the strength of the electric or magnetic field, B (θ, ϕ) is the electric 
or magnetic field at the input of the wide-aperture system in coordinates of the exit 
pupil (θ is the polar angle, ϕ is the azimuthal angle), T (θ ) is the lens apodization 
function, f is the focal length, k = 2π /λ is the wavenumber, λ is the wavelength 
(in the simulation it was considered equal to 633 nm), θ 0 is the maximum polar 
angle determined by the numerical aperture of the lens (NA = sinθ 0), P (θ, ϕ) is the  
polarization vector, for the strength of the electric and magnetic fields has the form: 

P(θ,  ϕ) = 

⎡ 

⎣ 
1 + cos2 ϕ(cos θ − 1) 
sin ϕ cos ϕ(cos θ − 1) 

− sin θ cos ϕ 

⎤ 

⎦a(θ,  ϕ) 

+ 

⎡ 

⎢⎣ 
sin ϕ cos ϕ(cos θ − 1) 
1 + sin2 ϕ(cos θ − 1) 
− sin θ sin ϕ 

⎤ 

⎥⎦b(θ,  ϕ), (1.14)
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where a (θ, ϕ) and b (θ, ϕ) are functions describing the polarization state of the 
x- and y-components intensities of the focused beam. In contrast to formulae (1.2) 
and (1.3), we gave Eqs. (1.13) and (1.14) in a general form to show that further 
modeling is carried out by the general formulae (1.13), (1.14) and that the simulation 
results confirm the theoretical conclusions, following from the expressions (1.11), 
(1.12). After calculating the components of the electric field, the behavior of the 
components of the Stokes vector near the sharp focus was calculated. The Stokes 
vector components are calculated using the formulas: 

s0 = ExE
∗ 
x + EyE

∗ 
y , 

s1 = ExE
∗ 
x − EyE

∗ 
y , 

s2 = 2Re
(
E∗ 
x Ey

)
, 

s3 = 2Im
(
E∗ 
x Ey

)
. (1.15) 

Similarly to the expressions (1.7)–(1.9), substitution of Eq. (1.2) into Eq. (1.15) 
allows obtaining explicit expressions for the Stokes components s1 and s2 near the 
focus. For instance, more simple expression is derived for s2 at kz � 1: 

s2 ≈ 2 sin(2ϕ)R2
(
R0 − R2 cos(2ϕ)

)
. (1.16) 

At small kz � 1, the second Stokes component (1.16) does not depend on z and 
therefore does not change sign when passing through the focus (z = 0). Below, this 
is confirmed by simulation. Similarly, the first Stokes component s1 in Eq. (1.15), 
expressed via the components of the E-vector (1.2), is also independent of z near the 
focus. 

To estimate the relative contribution of individual polarization components, it 
is convenient to use the Stokes vector components normalized to the transverse 
intensity: (S1, S2, S3) =

(
s1

/
s0, s2

/
s0, s3

/
s0

)
. It is known that when focusing light 

of linear polarization at the focus, all three components of the electric field strength 
are observed [18]. Figure 1.1 illustrates the distribution of the total intensity and 
its individual components in the focus of an aplanatic lens with NA = 0.95 when 
focusing a plane wave with a wavelength of 633 nm and polarization along the y-axis. 
To estimate the effect of defocusing, Fig. 1.2 shows the same distributions of the total 
intensity and of the individual intensity components as in Fig. 1.1, but at a distance 
λ from the focal plane. The intensity distributions have the same shape at the same 
distance before and after the focus.

Figure 1.1 shows that the initial component makes the main contribution to the 
focal spot formation, but the longitudinal component of the intensity also begins to 
make a significant contribution. The component perpendicular to the input polariza-
tion is rather small but present, while the light at the focus is still linearly polarized. 
Note that the distributions of the total intensity at the focus and the intensity of indi-
vidual components in Fig. 1.1 confirm the theoretical predictions that follow from
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Fig. 1.1 Distribution of the total intensity Ix + Iy + Iz (a) and individual components of the 
intensity Ix (b), Iy (c), Iz (d) in the plane of focus 

Fig. 1.2 Distribution of the total intensity Ix + Iy + Iz (a) and individual components of the 
intensity Ix (b), Iy (c), Iz (d) at a distance λ after the focus
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Fig. 1.3 Distribution of the Stokes vector components s1 (a), s2 (b) and  s3 (c) at a distance λ after 
the focus 

Fig. 1.4 Distribution of the components of the normalized Stokes vector S1 (a), S2 (b) and  S3 (c) at  
a distance λ after the focus 

expressions (1.4) and (1.5). Figure 1.2 indicates that a small shift from the focal plane 
(by a distance λ) leads to decrease of the maximum intensity 5 times. 

The distribution of the components of the Stokes vector (s1, s2, s3) and the normal-
ized components of the Stokes vector (S1, S2, S3) at the distance z = λ after the focus 
is shown in Figs. 1.3 and 1.4, respectively. 

From Figs. 1.3 and 1.4, it can be seen that the polarization after focus is predom-
inantly linear. In the center of the focal spot in Fig. 1.3a, a minimum is observed, 
which indicates that the polarization at the focus is directed along the y-axis. This 
is also confirmed by Fig. 1.4a: for a wave fully polarized along the y-axis S1 = −1. 
From Fig. 1.4a can be seen that the polarization does not change its direction at the 
focus and along the x and y axes, but along the straight lines located at an angle of ± 
45° to the axes, the deviation from the initial polarization turns out to be maximum. 
From Figs. 1.3 and 1.4, it is also seen that the diverging beam contains regions with 
circular polarization. Recall that there are no such regions at the focus itself—the 
light is linearly polarized. From Fig. 1.4c it is seen that the contribution of circular 
polarization in such regions is quite noticeable—for S3 = ±1 the polarization is 
completely circular, but here in some regions S3 reaches values of ± 0.8. 

Figures 1.5and 1.6 similarly show the distribution of the Stokes vector and 
normalized Stokes vector at a distance of one wavelength in front of the focus.

Comparison of Figs. 1.4 and 1.6 shows that the first two components of the Stokes 
vector describing linear polarization have not changed, and the third has changed its 
sign to the opposite. After passing the plane of the focus, the direction of circular 
(elliptical) polarization is reversed—for example, in the first quarter, the light in front
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Fig. 1.5 Stokes vector components s1 (a), s2 (b), and s3 (c) at a distance λ before the focal plane 

Fig. 1.6 Distribution of the components of the normalized Stokes vector S1 (a), S2 (b) and  S3 (c) at  
a distance λ before the focal plane

of the focus plane was with left circular polarization, and after focus—with right 
polarization. Before the focus, the right circular (elliptical) polarization appears in 
the 2nd and 4th quadrants and the left circular polarization appears in the 1st and 3rd 
quadrants (Fig. 1.6c). It agrees with the theoretical prediction based on expression 
(1.10). And the change in the direction of rotation of the polarization vector in these 
quadrants after passing through the focus also follows from (1.10). 

Below we show how the distribution of S3 changes with the distance from the focal 
plane. Figure 1.7 shows the intensity distribution (Fig. 1.7a) and the longitudinal 
Stokes component S3 (Fig. 1.7b) in the longitudinal plane yz along the z-axis, rotated 
by an angle ϕ = 45° (i.e., passing through the S3 maximum in Fig. 1.6). 

Figure 1.7 demonstrates that in the focal plane, the light field is linearly polar-
ized. However, directly beyond the focal plane, areas with elliptical polarization are 
generated (red areas in Fig. 1.7). It is also interesting that as we move away from the

Fig. 1.7 Distributions of the intensity and of the third Stokes component in the longitudinal plane 
yz along the z-axis (by an angle 45°) 



10 1 Spin Hall Effect at the Focus for Light with Linear Polarization

focus, direction of rotation of the polarization vectors changes to the opposite (blue 
areas in Fig. 1.7). Figure 1.7b also shows how the size of the area with elliptical 
polarization changes with the distance z. 

1.1.3 Modeling the Formation of Circular Polarization Using 
the FDTD Method 

To check the correctness of calculations by the Richards-Wolf formulas, an additional 
simulation was performed using the FDTD method. Focusing of a linearly polarized 
plane wave (λ = 633 nm) by a Fresnel zone plate with a focal length of f = 500 nm 
and a diameter of 7.9 μm was considered. The numerical aperture of such a lens is 
NA = 0.99. Focusing was simulated using the FDTD method implemented in the 
FullWave software. Note that the FDTD method implemented in FullWave makes it 
possible to calculate the values of the electromagnetic field components at individual 
moments of time. To calculate the complex amplitude on the basis of individual 
instantaneous values of the field amplitudes, the method proposed in [19] was used. 
Figure 1.8 shows the distribution of the components of the normalized Stokes vector 
at a distance of one wavelength after the focus. 

From Fig. 1.8, it can be seen that simulating using the FDTD method confirms 
the results obtained using the Richards-Wolf formulas. In particular, Fig. 1.8a shows  
that light is predominantly linearly polarized along the y-axis, and Fig. 1.8c shows  
that quadrants 1 and 3 contain right-handed circular polarization, and quadrants 2 
and 4—left. 

Comparison of Figs. 1.4 and 1.8 indicates that although the structures of both 
patterns are similar, there are also significant differences. This is because the simu-
lations by the Richards-Wolf method [1] and by the FDTD method [19] were carried 
out under different conditions. In the latter case, tight focusing of light was simulated 
by passing the light field through a real Fresnel zone plate with a focal length equal 
to the wavelength ( f = λ) and with a numerical aperture NA = 0.99. At the same 
time, the Richards-Wolf formalism adequately describes the light field at the focus of 
an ideal spherical lens if f � λ. Thus, the Richards-Wolf formalism approximately

Fig. 1.8 Components of the Stokes vector S1 (a), S2 (b) and  S3 (c) when calculating using the 
FullWAVE software at a distance of z = 0.65 μm after the actual focus 
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Fig. 1.9 Distribution of the components of the normalized Stokes vector S1 (a), S2 (b) and  S3 
(c) for a lens with a numerical aperture NA = 0.6 

describes the behavior of light near the focus, whereas the FDTD method, based on 
a rigorous solution of the Maxwell equations, adequately describes the behavior of 
light at the focus near the surface of the focusing zone plate. Therefore, modeling by 
the FDTD method expands the boundaries of the discovered optical phenomenon: 
generation of local areas with circular (elliptical) polarization near the tight focus of 
light with initially linear polarization. 

1.1.4 Reducing the Contribution of Circular Polarization 
with Decreasing Numerical Aperture of the Lens 

Let us now consider the contribution of reducing the numerical aperture of the lens 
to NA = 0.6 (corresponding to a standard 40 × aplanatic lens). The result is shown in 
Fig. 1.9. Figure 1.9 shows that the maximum S3 has decreased by 2 times. And from 
Fig. 1.9a, it can be seen that the relative contribution of linear polarization (along the 
y-axis) increased significantly: the maximum in Fig. 1.4 was equal to − 0.5, and in 
Fig. 1.9a to  − 0.92. Recall that for S1 = ±1, the polarization is completely linear. 

1.1.5 Calculation of the Moment of Forces Acting 
on a Dielectric Microparticle Near the Focus 

Let us calculate a force and a torque, acting onto a microbed from the light field. The 
force F and the torque M relative to an arbitrary point A, are equal to [20, 21]. 

F = −
∮
S 

(σ · n)dS (1.17) 

M =
∮
S 

[r × (σ · n)]dS (1.18)
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Fig. 1.10 Intensity pattern (a) and a spherical bed with radius R = 0.3 μm. The position of the 
bed is xp = 0.3 μm, yp = 0.3 μm. Shown at the right are a schematic position of the bed (b) and  
directions of the positive torques values along x, y and z axis (c) 

where r is the radius-vector from the point A(x, y, z) to the point of integration on 
the surface S, n is an external normal vector to the surface S, A is the point relative to 
which the torque M is calculated, and σ is the Maxwell stress tensor, the components 
of which in the CGS system can be written [22] 

σik = 
1 

4π

( |E|2 + |H|2 
2 

δik − EiEk − HiHk

)
(1.19) 

where Ei, Hi are the electric and magnetic field components and δik is the Kronecker 
symbol (δi=k = 1, δi �=k = 0). 

Shown in Fig. 1.10 is a simulation result of the torque and force calculation acting 
on the spherical microbed. 

Calculations show that for the position of the particle xp = 0.3 μm, yp = 0.3 μm 
the force projections are Fx = 2.79 pN, Fy = 3.7 pN, Fz = 8.78 pN. The torque 
projections are Mx = 2.81 · 10−19 Nm, My = −5.55 × 10−19, Mz = 1.73 × 10−19 

Nm. If shift the bed at the position xp = 0.3 μm, yp = −0.3 μm, then the result 
force projections will be Fx = 2.66 pN, Fy = –3.58 pN, Fz = 8.9 pN, and the torque 
projections will be Mx = −3.0×10−19 Nm, My = −5.9×10−19, Mz = −1.5×10−19 

Nm. Figure 1.10 shows that in the first quadrant the axial moment of forces is positive 
(Mz = 1.73 × 10−19), and in the fourth quadrant the moment of forces is negative 
(Mz = −1.5 × 10−19). This proves that the longitudinal projection of the SAM is 
positive in the first quadrant and negative in the fourth (Figs. 1.8 and 1.9). 

In this section, theoretically, using the Richards-Wolf formalism and using two 
different modeling methods, it was shown that with sharp focusing of light with linear 
polarization in the planes before and after the focus, there are regions that arise in pairs 
in even and odd quadrants, and in which light is circularly or elliptically polarized
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(e.g., even to the right and to the odd to the left) [22]. Moreover, after passing through 
the focus in these areas, the direction of rotation of the polarization vector changes 
to the opposite (in even quadrants, it is now left-handed, and in odd quadrants, it is 
right-handed circular or elliptical polarization). This result allows the use of linearly 
polarized light to rotate microparticles (the size of the circularly polarized region is 
about 0.6 μm by 0.6  μm) around its center of mass. We note that a similar result 
has been obtained in [23]. It has been shown that certain structures allow generating 
before the focus and beyond the focus two conjugate optical vortices with opposite-
sign topological charges and with longitudinal axial polarization. In our work, we 
have not used any additional structures. 

1.2 Focusing a Vortex Laser Beam with Polarization 
Conversion 

When strongly focusing a circularly polarized Gaussian beam, a near-focus orbital 
energy flow has been generated thanks to spin-orbital conversion [24–30]. In the 
original plane, such a beam has no orbital angular momentum (OAM), only having 
a non-zero on-axis projection of the spin angular momentum (SAM) vector thanks 
to circular polarization. However, a non-zero longitudinal component of the elec-
tric vector that occurs in the strong focus leads to the generation of a transverse 
energy flow, which produces the non-zero longitudinal OAM component. Behav-
ioral patterns of SAM and OAM in the tight focus of optical vortices were studied in 
[31–35]. On the other hand, there have been publications concerned with a reverse 
energy flow in the tight focus of optical vortices [1, 10, 36, 37] and some laser beams, 
like vector X-waves [38], non-paraxial Airy beams [39], Weber beams [40], vector 
Bessel beams [41], and fractional Bessel vortex beams [42]. 

In this section, using Richards-Wolf formulae, we derive analytical relationships 
to describe projections of the Poynting vector (the energy flow) and the SAM vector 
when tightly focusing a linearly polarized optical vortex with the topological charge 
2. In the original plane, all SAM vector components of such a beam are zero, but they 
all become non-zero near the strong focus. This can be explained by the effect inverse 
to the spin-orbital conversion. Thus, in the case under study, thanks to the orbital-
spin conversion, the original linearly polarized vortex beam generates a circularly 
polarized vortex beam in the tight focus. It is important to mention that a vortex beam 
with the topological charge (TC) m = 2 has a specific feature—that of generating 
an on-axis reverse energy flow in the tight focus (characterized by the negative 
longitudinal projection of the Poynting vector). Besides, there will be non-zero on-
axis intensity. At any m > 2, except for m = 1 and m = 2, both the on-axis intensity 
of light and energy flow are zero. 

We note that for spin-orbital coupling to occur the beam needs to propagate 
in a medium and because of this throughout the text below, we use the notion of 
spin-orbital conversion. Thanks to the beam rays converging to the focus, there
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appears a non-zero longitudinal projection of the electric field vector that, combined 
with the transverse components, produces a transverse energy flow (although the 
original energy flow has only a longitudinal component), which, in turn, produces a 
longitudinal projection of the OAM vector. In the focus, two transverse projections 
of the electric field vector have a relative phase shift of π /2, generating a circularly 
polarized beam, which, in turn, generates the longitudinal component of the SAM 
vector. 

1.2.1 Energy Flow and SAM in the Strong Focus 

Previously, relationships to describe projections of the electric and magnetic fields in 
the vicinity of the tight focus of an original linearly polarized optical vortex with an 
arbitrary integer TC m have been derived [29]. In this case, a near-axis reverse energy 
flow in the focus was shown to occur at any m ≥ 2. However, with the reverse energy 
flow being maximal on the optical axis only at m = 2, below, we look into focusing a 
linearly polarized optical vortex with TC m = 2. Based on the Richards-Wolf theory 
[1], it is possible to derive projections of the electric field vector in the tight focus of 
an aplanatic optical system. If the original light field is given by 

E = A(θ )ei2ϕ
(
1 

0

)
, H = A(θ )ei2ϕ

(
0 

1

)
(1.20) 

where E and Н are the electric and magnetic field of Jones vectors, projections of 
the electric field vector in the focal plane will be given by [29] 

Ex = ie2iϕ
(
I0,2 + 

1 √
2 
e2iϕ I2,4 + 

1 √
2 
e−2iϕ I2,0

)
, 

Ey = −e2iϕ
(

− 
1 √
2 
e2iϕ I2,4 + 

1 √
2 
e−2iϕ I2,0

)
, 

Ez = 2e2iϕ
(

1 √
2 
eiϕ I1,3 − 

1 √
2 
e−iϕ I1,1

)
, (1.21) 

where 

Iν,μ =
(
4π f 

λ

) θ0∫
0 

sinν+1

(
θ 
2

)
cos3−ν

(
θ 
2

)
cos1/2 (θ )A(θ )eikz cos θ Jμ(x)dθ,  (1.22) 

and λ is the incident wavelength, f is the focal length of the aplanatic system, x  
= krsinθ, Jμ(x) is the first-kind Bessel function, and NA = sinθ 0 is the numerical 
aperture. Assuming the initial amplitude A(θ ) to be a real function, it can be given 
by a constant (plane wave) or a Gaussian beam
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A(θ ) = exp
(−γ 2 sin2 θ 

sin2 θ0

)
(1.23) 

where γ is constant. We seek to derive projections of the SAM vector 

S = 
1 

2 
Im

[
E∗ × E

]
(1.24) 

where Im is the imaginary part of the number, E* denotes complex conjugation of the 
electric field vector, ×—vector multiplication sign. Substituting (1.21) into (1.24) 
yields expressions for projections of the SAM vector in the focal plane (z = 0) for 
an initially linearly polarized optical vortex (m = 2), Eq. (1.20): 

Sx =
(
I1,1I2,0 − I1,3I2,4

)
sin ϕ + (

I1,1I2,4 − I1,3I2,0
)
sin 3ϕ, 

Sy = −(
I1,1I2,0 − I1,3I2,4

)
cos ϕ− 

− (
I1,1I2,4 − I1,3I2,0

)
cos 3ϕ − 

√
2I2,0

(
I1,1 − I1,3

)
cos ϕ, 

Sz = 
1 

2

(
I2,0 − I2,4

)(
I2,0 + I2,4 +

√
2I0,2 cos 2ϕ

)
. (1.25) 

From Eq. (1.25), the on-axis longitudinal projection of the SAM vector is seen to 
be non-zero and positive: 

Sz(r = z = 0) = 
1 

2 
I2 2,0. (1.26) 

This means that the light wave in the focus near the optical axis has right-handed 
circular polarization (electric vector rotates anticlockwise). From the last equation in 
(1.25) the light is also seen to be inhomogeneously polarized in the focal plane. For 
instance, light will be linearly polarized on the radii where the inequality I2,0 = I2,4 
holds, because Sz = 0. Meanwhile, in the regions where Sz < 0, the light wave will 
be left-handed circularly polarized. Along the rays in the focal plane outgoing from 
the center at angles ϕ: π /4, 3π /4, 5π /4, and 7π /4, alternating polarization states will 
occur: being right-handed circular at I2 2,0 > I2 2,4, linear at I2 2,0 = I2 2,4, and left-handed 
circular at I2 2,0 < I2 2,4. From the first two equations of Eq. (1.25), it is seen that at ϕ 
= πn, n = 1, 2, … Sx = 0 and at ϕ = π /2 + πn, n = 1, 2, … Sy = 0. This means 
that in the longitudinal planes yz and xz, light is circularly (or elliptically) polarized 
near the strong focus. 

Next, let us consider expressions for projections of the Poynting vector (energy 
flow) P = 1 2 Re

[
E∗ × H

]
in the focal plane when focusing an optical vortex (m = 2) 

with linear original polarization (1.20): 

Px = −Q(r) sin ϕ, 
Px = Q(r) cos ϕ,



16 1 Spin Hall Effect at the Focus for Light with Linear Polarization

Pz = 
1 

2

(
I2 0,2 − I2 2,4 − I2 2,0

)
, 

Q(r) = 
1 

2

[
I1,3

(
I0,2 + I2,4

) + I1,1
(
I0,2 + I2,0

)]
. (1.27) 

From the comparison of (1.25) and (1.27), the focal-plane distribution of the 
SAM vector is seen to be radially asymmetric because the original light is linearly 
polarized, whereas the distribution of the longitudinal projection of the energy flow 
is circularly symmetric. We note that, as is the case with the SAM distribution, the 
intensity distribution in the focal plane is also radially asymmetric: 

I = |Ex|2 +
∣∣Ey

∣∣2 + |Ez|2 = 
= I2 2,0 + I2 0,2 + I2 2,4 + 2I2 1,1 + 2I2 1,3− 

− 2I1,1I1,3 cos ϕ + √
2I0,2

(
I2,0 + I2,4

)
cos 2ϕ (1.28) 

being non-zero on the optical axis: (I (r = 0) = I2 2,0). From Eq. (1.27), it follows 
that the on-axis energy flow equals in magnitude the longitudinal projection of the 
SAM vector in Eq. (1.26), but opposite in sign: 

Pz(r = z = 0) = −Sz(r = z = 0) = −  
1 

2 
I2 2,0. (1.29) 

Hence, we infer that the on-axis energy flow is negative in the focus (being 
directed oppositely to the incident light beam). Equation (1.27) also suggests that 
the transverse energy flow rotates anticlockwise around the optical axis: 

Pr = 0, Pϕ = Q(r). (1.30) 

Directly on the optical axis, the transverse energy flow is zero (Pϕ(r = 0) = 
Q(0) = 0). Hence, we can infer that in the focal plane near the optical axis both the 
transverse energy flow and the polarization vector rotate anticlockwise. However, 
as distinct from the zero on-axis value of the transverse energy flow of (1.30), the 
longitudinal component of the SAM of (1.26) takes the maximum positive value on 
the axis. If an absorbing microsphere centered on the optical axis is placed in the 
focus, the longitudinal SAM projection may be expected to make the microsphere 
rotate about the optical axis anticlockwise [43]. 

Below, we demonstrate that if TC of the linearly polarized optical axis changes 
sign (m = −2), the on-axis reverse energy flow in the focus will still occur, whereas 
the longitudinal SAM component will become negative. Actually, instead of Eq. 
(1.21), projections of the electric field in the focus for the initial linearly polarized 
optical vortex (m = −2) will be given by 

Ex = ie−2iϕ

(
I0,2 + 

1 √
2 
e2iϕ I2,4 + 

1 √
2 
e−2iϕ I2,0

)
,
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Ey = −e−2iϕ

(
− 

1 √
2 
e2iϕ I2,4 + 

1 √
2 
e−2iϕ I2,0

)
, 

Ez = 2e−2iϕ

(
1 √
2 
eiϕ I1,3 − 

1 √
2 
e−iϕ I1,1

)
. (1.31) 

Making use of Eq. (1.31), the longitudinal components of the Poynting vector and 
the SAM vector can be defined as 

Pz = 
1 

2

(
I2 0,2 − I2 2,4 − I2 2,0

)
, 

Sz = −  
1 

2

(
I2,0 − I2,4

)(
I2,0 + I2,4 +

√
2I0,2 cos 2ϕ

)
. (1.32) 

The comparison of (1.25), (1.27), and (1.31) suggests that when the sign of the 
optical vortex is reversed, the longitudinal component of the energy flow vector 
remains unchanged and the longitudinal SAM component only changes its sign. 
This means that a reverse on-axis energy flow and a negative on-axis projection of 
the SAM vector (left-handed circular polarization) occurs in the focus: 

Pz(r = z = 0) = Sz(r = z = 0) = −  
1 

2 
I2 2,0. (1.33) 

Thus, thanks to the effect of orbital-spin conversion, in the focal plane of a strongly 
focused linearly polarized optical vortex is observed an on-axis reverse energy flow 
and the right-handed (m = 2) or left-handed (m = −2) circular polarization of light. 
Notably, the on-axis polarization vector and the transverse energy flow have the same 
handedness: anticlockwise (m = 2) or clockwise (m = −2). 

The above-described reasoning can be shortly summarized as follows. In the 
initial plane, there is a linearly polarized optical vortex, which has only a longitudinal 
component of OAM (with the electric field vector having only components in the 
original plane (Eq. 1.20), with all SAM vector projections being equal to zero. The 
angular momentum vector is known to be composed of the sum of OAM and SAM 
vectors and conserve upon free-space propagation [27, 28, 33]. Therefore, thanks to 
all projections of the SAM vector becoming non-zero in the tight focus, all projections 
of the OAM vector in the focus may also be expected to become non-zero. 

1.2.2 Numerical Simulation 

In the numerical simulation, an incident beam of wavelength λ = 633 nm is passed 
through an 8-μm aperture. The field is described by a linearly polarized plane wave 
of unit intensity and a phase vortex with m = 2 (Fig. 1.11), multiplied by a spherical 
wave converging at a distance of f = 1.31 μm (NA  = 0.95):
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Fig. 1.11 a A phase vortex with m = 2 embedded into an incident field and, b the resulting phase 
of the initial field containing a spherical wave 

Ex = exp(i(kf − mϕ − ωt)), 
Ey = 0. (1.34) 

Assuming the above-defined original field, the intensity pattern depicted in 
Fig. 1.12 is observed in the focal plane. The FDTD-aided numerical simulation 
was conducted using the FullWave software. The calculation was conducted for λ/ 
30 mesh along all three axes, with the initial field containing 601 × 601 pixels. By 
taking an odd number of pixels we ensured symmetry of the field relative to the 
origin.

Figure 1.12 suggests that in the strong focus of a linearly polarized wave, there is 
a 0.3  μm × 0.27 μm region (on the x- and y-axis, respectively) where the projection 
of the Poynting vector on the optical axis is negative. From Fig. 1.12e, it can also be 
seen that in this region a gradual linear-to-circular on-axis polarization conversion 
occurs, with the E-vector rotating anticlockwise on and near the axis. On the edges 
of this central region, there are two regions where the E-vector rotates clockwise: x 
= 0, − 0.2 μm <  y < − 0.1 μm and 0.1 μm <  y < 0.2  μm. Besides, in the distribution 
pattern of the Poynting vector, there is a ring of approximate radius 0.66 μm (e.g., 
0.622 μm <  x < 0.693 μm at  y = 0) in which the Poynting vector projection is also 
negative (Fig. 1.12d). Within the ring, linear-to-circular polarization conversion also 
occurs, with the E-vector rotating clockwise, as seen from Fig. 1.12e. 

Fig. 1.13 depicts a two-dimensional distribution of the SAM vector projection 
Sz (Eq. (1.24)) alongside its x- and y-axis profiles on the optical axis. The z-axis 
projection of the SAM vector is seen to be non-zero and positive on the optical axis 
within the region (0.267 μm <  x < 0.267 μm), (− 0.13 μm <  y < 0.13  μm).

An absorbing nanoparticle placed in the field depicted in Fig. 1.12 may be expected 
to experience a torque making it rotate around its center of mass thanks to circular 
polarization. Shown in Fig. 1.14 is the result of calculating the projection of a torque 
Mz exerted on a 0.3-μm nanoparticle (with refractive index n = 1.5 + 0.3i) relative
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Fig. 1.12 a Intensity, c the Z-axis projection of the Poynting vector in the focus of a linearly 
polarized spherical wave containing a phase vortex with m = 2, b, d their respective profiles along 
the x- and  y-axes, and e polarization pattern in the focal plane at f = 1.31 μm. Ellipse-shaped curves 
in Fig. 1.12e depict trajectories of the ends of the rotating polarization vectors, with their origins 
found at the ‘ellipse center’. Bold dots mark begins of each single rotation periods. The z-axis is 
directed towards the reader
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Fig. 1.13 a Z-axis projection Sz of the SAM vector and b its profiles along the x- and  y-axes

to the optical z-axis. For a 100-mW incident beam, the numerical simulation was 
conducted on a λ/30 mesh over the whole field, with a smaller mesh of λ/80 utilized 
immediately in the nanoparticle neighborhood on all three coordinate axes in the 
region − 1.5 μm <  x < 1.5  μm, − 0.65 μm <  y < 0.65  μm, and 0.3 μm <  z < 2.3  μm. 

From Fig. 1.14, the torque is seen to be maximal at the beam center (x = 0), 
making the nanoparticle rotate anticlockwise according to the on-axis polarization 
handedness. Then, as the particle is being moved off the center in the positive direc-
tion of the x-axis, the torque decreases and reverses its sign, before again becoming 
maximal in the absolute value at a point x = ~0.6 μm and having clockwise hand-
edness (the ring region where Sz is negative in Fig. 1.12c,d). From Fig. 1.12e, the 
polarization is seen to again become elliptical with the E-vector rotating clockwise, 
similar to the torque Mz handedness. 

In this section, based on the Richards-Wolf theory, we derived analytical expres-
sions for projections of the Poynting vector and SAM vector close to the strong 
focus of a linearly polarized optical vortex with TC m = +2 and m = −2 [44]. The

Fig. 1.14 Projection Mz of 
the torque exerted on an 
off-center microparticle 
along the x-axis (x = y = 0, 
z = f ). The refractive index 
of the microparticle—n = 
1.5 + 0.3i, beam power is 
100 mW 
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relations derived suggest that near the optical axis in the focal plane there occurs 
a reverse energy flow. In the reverse energy flow region, the right- (for m = 2) or 
left-handed (m = −2) polarization of light is observed. In the meantime, inhomo-
geneous polarization is found at the periphery of the focal plane, where polarization 
is alternating from right-handed circular (or elliptical) to left-handed circular (or 
elliptical) and to linear. At the same time, close to the optical axis, the handedness 
of the polarization vector rotation coincides with that of the transverse energy flow 
rotation: with the both rotating anticlockwise at m = 2 and clockwise at m = −2. 
The generation of circular polarization in the reverse energy flow region enables the 
latter to be detected. Actually, if an absorbing nanoparticle is placed near the focus 
in the reverse energy flow region, the SAM will make it rotate around its center of 
mass. With the on-axis transverse energy flow being zero, it will hardly contribute to 
the nanoparticle rotation. The handedness of the nanoparticle rotation will be defined 
by the TC sign of vortex beam. 

1.3 Hall Effect at the Focus of an Optical Vortex 
with Linear Polarization 

In 1909, Poynting [45] predicted that left-handed circularly polarized light has a spin 
angular momentum (SAM), or in short, a spin of − 1, and right-handed circularly 
polarized light has a spin of +1. More precisely, he predicted that each photon could 
have a spin equal to Planck’s constant: either − � or �. In 1936, Beth [46] proved 
this experimentally by showing that when linearly polarized light passes through 
a quarter-wave plate, the plate acquires a torque. In 1992, Allen showed [47] that 
light, including each photon with a vortex phase described by the angular harmonic 
exp(inϕ), has an orbital angular momentum (OAM) �n, where n is the topological 
charge (TC). In the paraxial case, SAM and OAM are independent and are preserved 
separately during light propagation in free space. However, spin–orbit conversion 
(SOC) can occur when light is sharply focused near the focus [33]. At present, a lot 
of papers are devoted to the study of SAM, OAM, and SOC [48]. Paper [48] is a  
small review on SOC in a tight focus of structured light. In [49], the tight focusing 
of radially polarized light was studied. In this work, it is shown that the intensity of 
the longitudinal light component at the focus increases with increasing numerical 
aperture, and becomes equal to the intensity of the transverse component at a unit 
numerical aperture. The Hall effect [50] was investigated at the focus of an optical 
vortex with radially polarization [51]. It was shown in [50] that for tight focusing of 
an optical vortex with radial polarization the SAM is positive at the focus near the 
optical axis if the TC of the vortex is + 1, and the SAM is negative if the TC of the 
vortex is− 1. This is the so-called catalyst-like effect. In [51], the authors showed that 
when focusing an optical vortex with radial polarization the longitudinal projection 
of the SAM vector has different signs at different distances from the optical axis in 
the focal plane. This is the radial spin Hall effect. In [52], the 3D SAM was studied
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in the tight focus of an optical vortex with linear polarization. In this study, the force 
vector was calculated that will act on an ellipsoidal particle that is in focus. The tight 
focusing of an optical vortex with azimuthal polarization was observed in [13]. It 
was shown in [13] that when the optical vortex TC sign changes near the optical axis 
in the focus, the sign of the SAM longitudinal projection also changes, and therefore 
the particle placed in the focus changes the rotation direction around its own axis 
and around the optical axis. In [53], the angular momentum (AM) in a sharp focus 
of hybrid cylindrical vector beams was studied. It was shown in [53] that, for such 
light fields the longitudinal component of SAM is equal to zero at the focus. The 
orbital motion of microparticles in a tight focus of optical vortices with circular and 
radially polarization was investigated in [54]. In [55], SOC was considered in non-
paraxial beams with hybrid polarization. It was shown in [55] that when light with 
a high-order hybrid polarization is tightly focused, regions are formed in the focus 
in which the longitudinal components of the OAM and the SAM change signs. That 
is, the spin and orbital Hall effects take place. Beams with hybrid polarization in 
a tight focus were observed in [56]. It was shown in [56] that when focusing light 
whose polarization changes only along the radius, the polarization in the focal plane 
will also change along the radius. Linear polarization and elliptical polarization will 
alternate, but of the same sign. In [57], the paraxial focusing of Bessel beams with 
circular polarization was studied. It was shown in [57] that the sign of the angular 
momentum vector will be different on different sides of the light intensity ring in 
the beam. The tight focusing of high-order Poincare beams was considered in [58]. 
In our recent works, we investigated the Hall effect in the tight focus of high-order 
cylindrical vector beams [59], beams with hybrid inhomogeneous polarization [60], 
Poincaré beams [61], and optical vortices with circular polarization [62]. Another 
version of the Hall effect in a sharp focus appears when the center of a vortex laser 
beam gravity is shifted at the case of its limitation by a diaphragm [63]. The Hall 
effect in the tight focus of an optical vortex with linear polarization has not been 
considered before. 

We note that the spin Hall effect arises not only in a tight focus, but also when light 
is scattered by inhomogeneous structures. Thus, it was shown theoretically in [64] 
and experimentally in [65], that when a laser beam with linear polarization is reflected 
from a microresonator with Bragg mirrors, four regions with circular polarization 
of different signs are formed in the beam. And in [66], it was experimentally shown 
that the scattering of a Hermite-Gaussian (HG0,1) beam with linear polarization on 
a silver nanowire (AgNW) also gives the spin Hall effect. It was shown in [14] that, 
due to the SOC gold particles placed in the tight focus of the Laguerre-Gaussian 
vortex beam (LG0,1) rotate at different speeds for light with left and right circular 
polarization. 

In this section, we consider the tight focusing of an optical vortex with an integer 
TC and linear polarization. Using the Richards-Wolf theory [1], which accurately 
describes light in the vicinity of a tight focus of coherent light, exact analytical 
expressions are obtained for the longitudinal components of the SAM, OAM, and 
AM vectors in the focal plane for an optical vortex with linear polarization. It is 
shown that the longitudinal SAM and OAM components, averaged over the beam
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cross section, are preserved in the initial and the focal planes. It is also demonstrated 
that, there is a separation of regions with different signs of the SAM longitudinal 
component and regions with different signs of the AM longitudinal component at 
the focus. It is found that the AM and the SAM values are independent and sufficient 
to describe the light at the focus, while the meaning of the OAM value at the focus 
is not clear since the AM is not the sum of the SAM and OAM. However, it is easy 
to prove the conservation of the OAM value, while it was not possible to prove the 
conservation of the AM. 

1.3.1 Components of the Electric and the Magnetic Fields 
and the Energy Flux at the Focus 

Consider the initial Jones vector for an optical vortex with linear polarization: 

En(ϕ) = exp(inϕ)

(
1 

0

)
(1.35) 

where (r, ϕ) are polar coordinates in the beam cross section, n is the TC and is 
integer, the linear polarization vector is directed along the horizontal x-axis. In [64], 
the electric and the magnetic fields components in the plane of tight focus for the 
initial field (1) were obtained: 

Ex = 
in−1 

2 
einϕ

(
2I0,n + e2iϕ I2,n+2 + e−2iϕ I2,n−2

)
, 

Ey = 
in 

2 
einϕ

(
e−2iϕ I2,n−2 − e2iϕ I2,n+2

)
, 

Ez = in einϕ
(
e−iϕ I1,n−1 − eiϕ I1,n+1

)
, 

Hx = 
in 

2 
einϕ

(
e−2iϕ I2,n−2 − e2iϕ I2,n+2

)
, 

Hy = 
in−1 

2 
einϕ

(
2I0,n − e2iϕ I2,n+2 − e−2iϕ I2,n−2

)
, 

Hz = in+1 einϕ
(
e−iϕ I1,n−1 + eiϕ I1,n+1

)
. (1.36) 

Formulas (1.36) include functions Iν,μ depending only on the radial variable r:
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Iν,μ = 2kf 
α∫

0 

sinν+1

(
θ 
2

)
cos3−ν

(
θ 
2

)
cos1/2 (θ )× 

× A(θ )eikz cos θ Jμ(kr sin θ )dθ, (1.37) 

where k = 2π /λ is the wave number of monochromatic light with a wavelength of 
λ, f is the focal length of the lens, α is the maximum angle of the rays inclination 
to the optical axis, which determines the numerical aperture (NA) of the aplanatic 
lens NA = sin α, Jμ(krsinθ ) is the  μ-th order Bessel function of the first kind. In 
Eq. (1.36) and everywhere below, the indices ν and μ will take the following values: 
ν = 0, 1, 2; μ = n − 2, n − 1, n, n + 1, n + 2. A(θ ) is a real function that determines 
the radially symmetric initial field amplitude which depends on the inclination angle 
θ of the beam emanating from a point on the initial spherical front and converging 
to the center of the focus plane. The description of the light field at the focus using 
functions (1.37) was obtained for the first time in the classic study by Richards and 
Wolf [1]. Next, we find the components of the Poynting vector: 

P = 
c 

2π 
Re

(
E∗ × H

)
(1.38) 

where E and H are vectors of the electric and the magnetic fields, signs “*” and “× 
” mean complex conjugation and vector product, Re is the real part of a complex 
number, and c is the speed of light in vacuum. Next, we will omit the constant c/ 
(2π ). Substituting (1.36) into (1.38), we obtain in polar coordinates at the focus of 
field (1.35): 

Pr = 0, 
Pϕ = Q(r), 

Pz = 
1 

2

(
2I2 0,n − I2 2,n+2 − I2 2,n−2

)
, 

Q(r) = I1,n+1
(
I0,n + I2,n+2

) + I1,n−1
(
I0,n + I2,n−2

)
. (1.39) 

It follows from (1.39) that the transverse energy flux at the focus of the field (1.35) 
rotates counterclockwise if Q(r) > 0 and clockwise if Q(r) < 0. The longitudinal 
component of the energy flow at different radii r can be positive or negative. It can 
be shown that the total energy of each term in Pz at the focus is equal to the expression:
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Wν,μ = 2π 
∞∫
0

∣∣Iv,μ(r)
∣∣2 rdr 

= 4π f 2 
α∫

0 

sin2ν+1

(
θ 
2

)
cos5−2v

(
θ 
2

)
|A(θ )|2 dθ = Wν (1.40) 

Equation (1.40) was obtained using Eqs. (1.37) and the orthogonality of the Bessel 
functions: 

∞∫
0 

Jμ(k sin θr)Jμ

(
k sin θ ′r

)
rdr = 

1 

k2 
δ
(
sin θ − sin θ ′)

sin θ 
. 

It can be seen from (1.40) that the energy (or power) does not depend on the order 
of the Bessel function μ. Applying formula (1.40) to the axial energy flow crossing 
the focus (1.39), we obtain: 

P̂z = 
∞∫
0 

rdr 

2π∫
0 

d ϕPz(r) = W0 − W2 

= W − 2W1 − 2W2. (1.41) 

In (1.41) W is the total power of the laser beam. It can be shown that the power 
W0 is approximately 7 times greater than the power W2 (it is exactly greater 7 times 
for α = π /2 and for |A(θ)| ≡ 1). Therefore, the total flow (1.41) is always positive, 
although the energy flux density (1.39) at different radii r can be both positive and 
negative (reverse energy flux [65]). Equation (1.41) shows that not all of the power 
W crosses the focus plane from left to right (in the positive direction of the z-axis). 
The part of the power 2W1 propagates in the direction perpendicular to the optical 
axis and does not cross the focus plane. The part of the power W2 crosses the focus 
plane in the opposite direction. And only the part of the power W0 flows along the 
positive direction of the z-axis. It is interesting that the power ratio (1.41) does not 
depend on the TC of the beam (1.35). 

1.3.2 The Longitudinal Component of the SAM Vector 
at the Focus 

Next, we find the axial SAM component which shows the presence of light with 
elliptical and circular polarization in the focus. The longitudinal SAM component is
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defined as follows [66]: 

Sz = 2Im
{
E∗ 
x Ey

}
(1.42) 

where Im is the imaginary part of a complex number. Substituting (1.36) into (1.42), 
we obtain the axial SAM component at the focus for field (1.35): 

Sz = 
1 

2

(
I2,n+2 − I2,n−2

)(
I2,n+2 + I2,n−2 + 2 cos(2ϕ)I0,n

)
(1.43) 

It can be seen from (1.43) that if the first factor is not equal to zero then there 
are 4 regions in the focus plane, where SAM sign is different. Centers of these areas 
lie on the Cartesian axes: two regions centered on the vertical axis and two regions 
centered on the horizontal axis. If I2,n+2 − I2,n−2 > 0, then at ϕ = 0 and ϕ = π the 
second factor is positive and Sz > 0, while at ϕ = π /2 and ϕ = 3π /4 the second 
factor in (1.43) is negative and Sz < 0. If, conversely, I2,n+2 − I2,n−2 < 0, then SAM 
is positive on the vertical axis and negative on the horizontal axis. The first factor is 
equal to zero only in the absence of an optical vortex (n = 0). Thus, it follows from 
(1.43) that the spin Hall effect takes place for the field (1.35) at the focus at n �= 0. It 
leads to the separation of the vectors with left and right elliptical polarizations (with 
different spins) from each other and their localization in four regions along in pairs 
on the vertical and horizontal axes. Since the axial SAM component in the initial 
plane (1.35) is equal to zero (due to linear polarization), then the total spin at the 
focus must be equal to zero. Indeed, if we integrate the SAM in (1.43), we get: 

Ŝz = 
∞∫
0 

rdr 

2π∫
0 

dϕSz(r, ϕ) 

= 
1 

2 

∞∫
0 

rdr 

2π∫
0 

dϕ
(
I2 2,n+2 − I2 2,n+2 − 2 cos 2ϕI0,n(I2,n−2 − I2,n+2)

)

= 
1 

2 
(W2 − W2 + 0) = 0. (1.44) 

Integration over the entire focus plane of the first and second terms gives the differ-
ence between two identical energies (1.40). The third term depending on cos(2ϕ) is  
zero when integrated over an integer number of the angle ϕ periods. Since the total 
spin at the focus is zero, regions with different spins must appear in pairs to cancel 
each other out.
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1.3.3 The Intensity and the Longitudinal OAM Component 
at the Focus 

Next, we find the longitudinal component of the OAM vector at the focus of the field 
(1.35). The longitudinal OAM component is equal to the expression [62]: 

Lz = Im
(
E∗ 
x 

∂ 
∂ϕ 

Ex + E∗ 
y 

∂ 
∂ϕ 

Ey + E∗ 
z 

∂ 
∂ϕ 

Ez

)
, (1.45) 

Substituting (1.36) into (1.45), we get: 

Lz = 
1 

2

{
2nI2 0,n + 2(n + 1)I2 1,n+1 + 2(n − 1)I2 1,n−1 

+ (n + 2)I2 2,n+2 + (n − 2)I2 2,n−2 + 2 cos(2ϕ) 
×[

2(n + 1)I0,nI2,n+2 + 2(n − 1)I0,nI2,n−2 − nI1,n−1I1,n+1
]}

. (1.46) 

Since expression (1.46) has the form Lz = A(r) + cos(2ϕ)B(r), then it has two 
maxima on the horizontal axis at ϕ = 0 and ϕ = π and two minima on the vertical 
axis at ϕ = π /2 and ϕ = 3π /4. It can be shown that the main contribution is made 
by terms containing integrals (1.37) with zero first index, that is, expression (1.46) 
can be written approximately as follows: 

Lz ≈ nI2 0,n + 2 cos(2ϕ)I0,n
(
(n + 1)I2,n+2 + (n − 1)I2,n−2

)
nI0,n

(
I0,n + 4I2,n+2 cos(2ϕ)

)
. (1.47) 

It can be seen from (1.47) that at ϕ = 0 and ϕ = π there are regions with Lz > 
0 in focus, and at ϕ = π /2 and ϕ = 3π /2 there are regions with Lz < 0. That is, 
there is a spatial separation of the OAM with different signs at the focus of field 
(1.35). Moreover, the location in the focal plane of these 4 regions with centers on 
the horizontal and vertical axes correlates with areas of elliptical polarization with 
different signs (1.43). It should be noted that in the initial plane (1.35) the  OAM  
axial component (1.45) is equal to: Lz = nW, where W is the total beam power. If 
we integrate (1.46) over the entire focus plane, we will get that the terms containing 
cos(2ϕ) disappear since the integration over the angle is performed over an integer 
number of periods. Integration of other terms will lead to the expression:
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L̂z = 
∞∫
0 

rdr 

2π∫
0 

dϕLz(r, ϕ) 

= 
1 

2 

∞∫
0 

rdr 

2π∫
0 

dϕ
(
2nI2 0,n + 2(n + 1)I2 1,n+1 + 2(n − 1)I2 1,n−1 

+ (n + 2)I2 2,n+2 + (n − 2)I2 2,n−2

)
= nW0 + (n + 1)W1 + (n − 1)W1 + 

1 

2 
(n + 2)W2 

+ 
1 

2 
(n − 2)W2 = n(W0 + 2W1 + W2) = nW . (1.48) 

The last equality in (1.48) follows from the power balance of the entire beam and 
its components at the focus. The balance can be obtained by integrating the intensity 
distribution over the entire beam cross section. The intensity distribution at the focus 
follows from (1.38) and is equal to: 

I = 
1 

2

[
2I2 0,n + I2 2,n+2 + I2 2,n−2 + 2I2 1,n+1 + 2I2 1,n−1+ 

+ 2 cos(2ϕ)
(
I0,nI2,n+2 + I0,nI2,n−2 − 2I1,n+1I1,n−1

)]
. (1.49) 

We integrate expression (1.49) for the intensity over the entire beam cross section 
at the focus and obtain: 

W = 
∞∫
0 

2π∫
0 

I(r, ϕ)rdrdϕ = 
1 

2 

∞∫
0 

2π∫
0 

rdrdϕ
[
2I2 0,n + I2 2,n+2 + I2 2,n−2 + 2I2 1,n+1 

+ 2I2 1,n−1 + 2 cos(2ϕ)
(
I0,nI2,n+2 + I0,nI2,n−2 − 2I1,n+1I1,n−1

)]
= W0 + W2 + 2W1. (1.50) 

In (1.50), Eq. (1.40) and the fact that the integration of the term with cos(2ϕ) over 
the period gives zero are used. It can be seen from (1.50) that the total beam power 
is equal to: 

W = W0 + W2 + 2W1 (1.51) 

Equation (1.51) was used in the last step of (1.48). Thus, we have shown that the 
longitudinal OAM component averaged over the beam cross section is preserved for 
field (1.35). Preservation of the full OAM during propagation of the beam (1.35) is  
the reason for the formation of an even number of regions in the focus, in which the 
OAM component has a different sign (the orbital Hall effect).
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1.3.4 The Longitudinal Component of the AM Vector 
at the Focus 

Next, we compare the longitudinal components of the AM and of the sum of SAM 
and OAM. The AM is given by the equation [14]: 

J = (r × P) (1.52) 

The longitudinal AM component is determined only by the angular component 
of the energy flux at the focus (1.39) and is equal to: 

Jz = rQ(r) = r
[
I1,n+1

(
I0,n + I2,n+2

) + I1,n−1
(
I0,n + I2,n−2

)]
(1.53) 

From (1.53) it can be seen that the AM longitudinal component on the optical axis 
is always equal to zero, since the “leverage” is equal to zero. We compare expression 
(1.53) with the sum of SAM (1.43) and OAM (1.46) for field (1.35) in the focus: 

Sz + Lz = 
1 

2

{
2nI2 0,n + 2(n + 1)I2 1,n+1 + 2(n − 1)I2 1,n−1+ 

+ (n + 1)I2 2,n+2 + (n − 1)I2 2,n−2 + 2 cos(2ϕ)× 
× [

(4n + 3)I0,nI2,n+2 + (4n − 3)I0,nI2,n−2 − 2nI1,n+1I1,n−1
]}

. (1.54) 

Comparison of (1.53) and (1.54) shows that the AM is not equal to the sum of the 
SAM and OAM. For example, the angular momentum (1.53) is radially symmetric 
and does not depend on the angle ϕ, while the sum of SAM and OAM (1.54) depends 
on the azimuth angle as cos(2ϕ). Therefore, there must be a third term Xz, which 
must be added to the sum (1.54) in order for the equality to hold: 

Jz = Sz + Lz + Xz (1.55) 

Several questions arise from this information. What is transferred to the particle 
and causes it to rotate along a circular path: AM (1.53) or OAM  (1.46)? And what 
should be called the orbital Hall effect: separation of regions with different OAM 
signs (1.46) or AM signs (1.53)? Most likely, the orbital Hall effect is determined by 
the different direction of the transverse energy flow (1.39), since the transverse flow 
“catches” the microparticle and forces it to rotate along the “orbit” [1]. Therefore, 
the AM, which is proportional to the transverse energy flux Q(r), is responsible for 
the rotation of the particle along a circular trajectory.
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1.3.5 Physical Meaning of the Third Term in the Equation 
for the AM 

In this section, we will show that the terms SAM and OAM in (1.55) are artificially 
formed, and that only two characteristics are sufficient for the light field. These 
characteristics are SAM and AM, which are not related to each other. We start with 
the definition of the AM (1.52) and write out explicitly the quantities included in it: 

J = (r × P) = Im
(
r × (E∗ × (∇ ×  E)

)
(1.56) 

In (1.56), all dimensional constants are omitted. Further, for definiteness, we 
consider obtaining the longitudinal component of the SAM vector in Cartesian 
coordinates. From (1.56) we get: 

Jz = Im{x [
E∗ 
x

(
∂Ex 

∂y 
− 

∂Ey 

∂x

)
+ E∗ 

z

(
∂Ez 

∂y 
− 

∂Ey 

∂z

)]

− y
[
E∗ 
y

(
∂Ey 

∂x 
− 

∂Ex 

∂y

)
+ E∗ 

z

(
∂Ez 

∂x 
− 

∂Ex 

∂z

)]}

= Im
[
x

(
E∗ 
x 

∂Ex 

∂y 
+ E∗ 

z 

∂Ez 

∂y 
− E∗ 

x 

∂Ey 

∂x 
− E∗ 

z 

∂Ey 

∂z

)

−y

(
E∗ 
x 

∂Ey 

∂x 
+ E∗ 

z 

∂Ez 

∂x 
− E∗ 

y 

∂Ex 

∂y 
− E∗ 

z 

∂Ex 

∂z

)]
. (1.57) 

Let us write in a general form the expression for the OAM longitudinal component 
(1.45), but using Cartesian coordinates: 

Lz = Im
[
E∗ 
x

(
x 

∂ 
∂y 

− y 
∂ 
∂x

)
Ex + E∗ 

y

(
x 

∂ 
∂y 

− y 
∂ 
∂x

)
Ey 

+ E∗ 
z

(
x 

∂ 
∂y 

− y 
∂ 
∂x

)
Ez

]
= Im

[
x

(
E∗ 
x 

∂Ex 

∂y 
+ E∗ 

y 

∂Ey 

∂y 

+E∗ 
z 

∂Ez 

∂y

)
− y

(
E∗ 
x 

∂Ex 

∂x 
+ E∗ 

y 

∂Ey 

∂x 
+ E∗ 

z 

∂Ez 

∂x

)]
. (1.58) 

Comparing (1.57) and (1.58), there are four terms at x and y in (1.57) and three 
terms at x and y in (1.58). Therefore, in order to form in (1.57) a separate term as in 
(1.58), we add and subtract two terms in (1.57). Then instead of (1.57) we get: 

Jz = Im
[
x

(
E∗ 
x 

∂Ex 

∂y 
+ E∗ 

z 

∂Ez 

∂y 
+

〈
E∗ 
y 

∂Ey 

∂y 
− E∗ 

y 

∂Ey 

∂y

〉
− E∗ 

x 

∂Ey 

∂x 
− E∗ 

z 

∂Ey 

∂z

)

−y

(
E∗ 
x 

∂Ey 

∂x 
+ E∗ 

z 

∂Ez 

∂x 
+

〈
E∗ 
x 

∂Ex 

∂x 
− E∗ 

x 

∂Ex 

∂x

〉
− E∗ 

y 

∂Ex 

∂y 
− E∗ 

z 

∂Ex 

∂z

)]
. (1.59)
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The added terms in (1.59) are marked with triangular parentheses. They do not 
change the value of the expression (1.57). Now in (1.59) we group the terms in order 
to explicitly separate the term equal to Lz (1.58): 

Jz = Lz − Im[x

(
E∗ 
x 

∂Ey 

∂x 
+ E∗ 

y 

∂Ey 

∂y 
+ E∗ 

z 

∂Ey 

∂z

)

− y
(
E∗ 
x 

∂Ex 

∂x 
+ E∗ 

y 

∂Ex 

∂y 
+ E∗ 

z 

∂Ex 

∂z

)]
. (1.60) 

Next, we add and subtract in (1.60) the SAM longitudinal component (1.42) and 
get: 

Jz = Lz + Sz − Im[x

(
E∗ 
x 

∂Ey 

∂x 
+ E∗ 

y 

∂Ey 

∂y 
+ E∗ 

z 

∂Ey 

∂z

)

− y
(
E∗ 
x 

∂Ex 

∂x 
+ E∗ 

y 

∂Ex 

∂y 
+ E∗ 

z 

∂Ex 

∂z

)
+

〈
E∗ 
x Ey − E∗ 

y Ex

〉]
= Lz + Sz + Xz. (1.61) 

Thus, from (1.57) we have obtained (1.55). In (1.61), the difference between the 
two terms in small triangular brackets is equal to the SAM with the opposite sign. 
That is, OAM and SAM in the expression for AM are artificially formed by adding 
and subtracting additional terms. As a result, the third term Xz appeared, which 
has no meaning in the general case. Although in some cases it can be attributed 
a certain meaning. For instance, if Lz + Sz = 0, then the term Xz is equal to the 
angular momentum of the light field (Xz = Jz). The conclusion from this subsection 
is presented below. The orbital Hall effect occurs at the focus when the regions with 
the AM longitudinal component of different signs are separated, that is, the regions 
appear with a different direction of the transverse energy flow rotation. The spin Hall 
effect occurs at the focus when the regions with the SAM longitudinal component 
of different signs are separated from each other, that is, the regions in which the 
polarization vector rotates in different directions are separated. 

1.3.6 Simulation 

Figure 1.15 shows the distributions of the intensity, as well as the densities of the 
SAM, the OAM, and the AM of the beam (1.35) in a tight focus at n = 1 (Fig. 1.15a– 
d), n = 3 (Fig. 1.15e–h), n = 5 (Fig. 1.15i–l). Figure 1.15 confirms formula (1.43), 
according to which the maximum and minimum values of the SAM density are 
achieved on the Cartesian axes. Figure 1.15 also confirms formulas (1.43) and (1.47), 
according to which the OAM density is symmetric with respect to the Cartesian axes, 
and the AM density has radial symmetry.
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Fig. 1.15 Distributions of the intensity (a, e, i), the SAM density (b, f, j), the OAM density (c, g, 
k), and the AM density (d, h, l) of the  beam  (1.35) in a tight focus at n = 1 (a–d), n = 3 (e–h), n = 
5 (i–l) and with the following calculation parameters: wavelength λ = 532 nm, focal length f = 
10 μm, numerical aperture NA = 0.95, the size of the computational domain is 4 × 4 μm2. The  
scale mark in all figures means 1 μm. The numbers on the color scales below each figure indicate 
the minimum and maximum values 

It follows from Fig. 1.15 that the spin Hall effect occurs at the focus (Fig. 1.15b, 
f, j), when four local regions with positive and negative (approximately equal in 
absolute value) SAM are formed at different radii in the focal plane. The orbital Hall 
effect also takes place at the focus (Fig. 1.15d, h, l). However, firstly, it is radial, and, 
secondly, it is weakly expressed, since the positive AM distributed over a ring of the 
one radius is much larger by modulus of a negative AM distributed over a ring of 
another radius. In Fig. 1.15d, h, l, the blue ring with the negative AM is not visible, 
but the value of the negative AM is shown on the horizontal color scale.
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Fig. 1.16 Dependence of 
the intensity and of the 
longitudinal component of 
the Umov-Poynting vector, 
integrated over the transverse 
plane, on the distance to the 
focus z. The upper curve is 
the total intensity (power), 
the lower curve is the total 
longitudinal power flow. 
Calculation parameters are 
the same as in Fig.  1.15 

Figure 1.16 illustrates the dependences of the total intensity (power) and the total 
longitudinal power flux on the distance to the focus. 

The graphs show the curves for n = 1 and n = 3, but they are almost coincide 
with each other. It was assumed that the distribution of the focused light is uniform 
(|A(θ)| ≡ 1). In this case, the total energy is 2π f 2 ≈ 628 μm2. Numerically obtained 
values are approximately equal to

∫ ∫
Idxdy ≈ 600 μm2. Тhe theoretical value of the 

total longitudinal power flow is π f 2 ≈ 314 μm2. Numerically obtained values are 
approximately equal to

∫ ∫
Pzdxdy ≈ 310 μm2. 

Figure 1.16 confirms formula (1.51), according to which the total light energy 
(power) should be equal to 2π f 2 (at α = π /2 and |A(θ)| ≡ 1) and formula (1.41), 
according to which the total longitudinal power flow should be equal to π f 2. That 
is, the representation of the longitudinal power flow through the forward flow, the 
perpendicular flow, and the reverse flow is also confirmed. 

1.3.7 Discussion of Results 

In this section, we have shown that the longitudinal SAM and OAM components 
averaged over the focus plane for an initial optical vortex (with arbitrary radially 
symmetric real amplitude) with linear polarization are preserved separately. However 
it is not true in any cases. For example, if we consider the tight focusing of an 
optical vortex with circular polarization [62], then the averaged axial SAM and 
OAM components are not conserved. Instead, only their sum is conserved. Indeed, 
the density of the longitudinal components of the SAM and OAM vectors at the focus 
of an optical vortex with right-hand circular polarization 

E(θ, ϕ) = 
1 √
2 
exp(inϕ)

(
1 

i

)
(1.62)
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have the form, respectively: 

Sz = I2 0,n − I2 2,n+2, (1.63) 

Lz = nI2 0,n + (n + 2)I2 2,n+2 + 2(n + 1)I2 1,n+1. (1.64) 

We integrate both of these quantities (1.63) and (1.64) over the plane of the focus 
and get: 

Ŝz = 
∞∫
0 

rdr 

2π∫
0 

dϕSz(r, ϕ) 

= 
∞∫
0 

rdr 

2π∫
0 

dϕ
(
I2 0,n − I2 2,n+2

) = (W0 − W2), (1.65) 

L̂z = 
∞∫
0 

rdr 

2π∫
0 

dϕLz(r, ϕ) 

= 
1 

2 

∞∫
0 

rdr 

2π∫
0 

dϕ
(
nI2 0,n + (n + 2)I2 2,n+2 + 2(n + 1)I2 1,n+1

)
= nW0 + (n + 2)W2 + 2(n + 1)W1 = nW + 2(W2 + W1). (1.66) 

And the sum of (1.65) and (1.66) is equal to: 

Ŝz + L̂z = (n + 1)W . (1.67) 

We obtain the following expressions for the SAM and the OAM in the initial 
plane: 

Ŝz = W , L̂z = nW , Ŝz + L̂z = (n + 1)W . (1.68) 

It can be seen from (1.67) that in the initial field for an individual photon, the sum 
of the spin and the OAM for the beam (1.62) was equal to Sz + Lz = (n + 1)� while 
for the entire beam it was Ŝz + L̂z = (n + 1)W . During focusing the total spin of the 
beam (1.62) decreased in the focal plane, while the total OAM increased in it: 

Ŝz = (W0 − W2) = W − 2(W2 + W1), 
L̂z = nW + 2(W2 + W1). (1.69)
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This effect is called SOC [33]. So, if the initial field (1.35) has no spin (no SAM), 
then there is no SOC in the focus and the total spin is zero (1.44): Ŝz = 0. However, the 
spin Hall effect (1.43) can be formed at the focus. The OAM for the field (1.35) is also  
preserved (1.48) and is equal to L̂z = nW , and there is an orbital Hall effect (1.46), 
(1.47) at the focus. If there is SAM (1.63) in the initial field (1.62), then due to SOC 
it is not kept in focus, but decreases, according to (1.69), partially converting into 
OAM. The beam (1.62) also has the spin and the orbital Hall effects [62]. However, 
both of these effects are radial, i.e., the sign of the SAM and the OAM is different at 
different radii from the optical axis. 

In this section, the following results are obtained. It is shown that during tight 
focusing of an optical vortex with an arbitrary radially symmetric amplitude function 
and with linear polarization the distribution of the SAM axial component (1.43) in the  
focal plane depends on the azimuthal angle ϕ as cos(2ϕ), and, therefore, for TC n �= 0 
the spin Hall effect takes place at the focus [67]. This effect leads to formation of two 
regions on the vertical and horizontal axes in which the polarization vector rotates in 
different directions (clockwise and counterclockwise) and SAM has different signs. 
Similarly, it is derived that the OAM axial component (1.46) depends on the azimuth 
angle ϕ as cos(2ϕ) at the focus. However, we cannot call these four regions with 
different signs of the OAM longitudinal component a manifestation of the orbital 
Hall effect, since we do not know how the transverse energy flow behaves in these 
regions (changes the direction of rotation or not). It is also demonstrated that the 
transverse energy flux rotates in the plane of focus in opposite directions at different 
radii from the optical axis (1.39). Such a distribution of the transverse energy flux 
at the focus can be called the radial-orbital Hall effect, since the energy flux will 
rotate dielectric microparticles trapped at different radii at the focus clockwise or 
counterclockwise (the angular tractor [1]). 
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Chapter 2 
Spin Hall Effect at the Focus for Light 
with Circular Polarization 

2.1 High-Order Orbital and Spin Hall Effects in a Tight 
Focus of Laser Radiation 

The Hall effect in optics and photonics has been known since 2004 [1]. In [2, 3], 
the theory of the Hall effect for light was developed. In [4, 5], the Hall effect in 
optics was experimentally discovered. There are several reviews on the Hall effect 
in photonics [6, 7]. In optics, the role of electrons with different spins is played by 
photons with left or right circular polarization. Therefore, instead of the quantum 
Hall effect, which consists in the spatial separation in the magnetic field of particles 
with different charges and different spins, the Hall effect in optics is reduced to the 
spatial separation of light beams with different directions of circular polarization 
(left and right) or is reduced to the spatial separation of light beams with an orbital 
angular momentum (OAM) of different signs. The first case is the spin Hall effect [8, 
9], and the second one is the orbital Hall effect [10, 11]. Usually, the Hall effect in 
optics is observed when light is reflected from the interface between media [11], or 
when it passes through multilayer media [4], crystals [12], or metalens [13]. There 
are almost no publications on the Hall effect in a tight focus of laser light [14, 15]. 

In this section, using the Richards-Wolf method [16], it is theoretically and numer-
ically shown that in the tight focus of a vortex laser beam with linear polarization, as 
well as in the tight focus of a vortex-free beam, which is a superposition of beams 
with azimuthal polarization of the m-th and zero orders, high-order spin and orbital 
Hall effects are taking place.
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2.1.1 The Spin Hall Effect in the Focus of an Optical Vortex 
with Circular Polarization 

We consider a tight focusing of an optical vortex with a circular polarization. In 
[17], the projections of the electric field of an optical vortex with circular and linear 
polarization were obtained, but no expressions were obtained for the longitudinal 
projection of the spin angular momentum (SAM), which indicates the presence of 
circular (or elliptical) polarization in tight focus. In this section, we will obtain an 
expression for the longitudinal projection of the SAM for an optical vortex with 
topological charge m and circular polarization. We consider the initial light electric 
field with the next Jones vector: 

E = 
A(θ )eimϕ 

√
2

(
1 

σ i

)
, (2.1) 

where σ = 1 is right circular, σ = −1 is left circular and σ = 0 is linear polarization. 
For convenience, we take the projections of the electric field near the tight focus of 
the aplanatic optical system from [17]: 

Ex = −  
im+1 

√
2 
eimϕ

(
I0,m + γ+ei2ϕ I2,m+2 + γ−e−i2ϕ I2,m−2

)
, 

Ey = 
im √
2 
eimϕ

(
σ I0,m − γ+ei2ϕ I2,m+2 + γ−e−i2ϕ I2,m−2

)
, 

Ez = −2 
im √
2 
eimϕ

(
γ+eiϕ I1,m+1 − γ−e−iϕ I1,m−1

)
, (2.2) 

where 

Iν,μ =
(
4π f 
λ

) θ0∫
0 

sinν+1

(
θ 
2

)
cos3−ν

(
θ 
2

)
cos1/2 (θ ) 

A(θ )eikz cos θ Jμ(x)dθ, (2.3) 

In these equations, f is the focal length of the aplanatic system, λ is wavelength, 
NA = sin θ 0 is numerical aperture, Jμ(x) is the first kind Bessel function of the μ-th 
order, x = kr sin θ, (r, ϕ, z) are cylindrical coordinates, γ± = (1 ± σ )/2, k is wave 
number. The functions of Gauss, Bessel-Gauss or a constant value (plane wave) can 
be used as A(θ ). The spin density vector or the SAM vector is given by: 

S = 1 

16πω  
Im(E ∗ ×E), (2.4)
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where ω is the cyclic frequency of light. Further, the constant 1/(16πω) will be 
ignored. It can be seen from (2.4) that the longitudinal component of the SAM 
(without taking into account the constant) coincides with the unnormalized third 
component of the Stokes vector s3: 

s3 = Sz = 2Im
(
E∗ 
x Ey

)
. (2.5) 

Substituting the projections of the electric field (2.2) into (2.5), we obtain: 

Sz =
(
σ I2 0,m − γ 2 +I

2 
2,m+2 + γ 2 −I

2 
2,m−2

)
+ cos(2ϕ)

(
γ+I2,m+2(σ − 1) + γ−I2,m−2(σ + 1)

)
. (2.6) 

The next expression for the SAM longitudinal projection of the an optical vortex 
with right circular polarization (σ = 1, σ = 1, γ  2+ = 1, γ  2− = 0) follows from (2.6): 

Sz+ = I2 0,m − I2 2,m+2. (2.7) 

It can be seen from (2.7) that near the optical axis Sz+ > 0 (right circular polar-
ization), since I2 0,m > I2 2,m+2, and there will be left circular polarization on those radii 
where I2 0,m < I2 2,m+2, since Sz+ < 0. Separation of left and right polarizations at 
different radii from the optical axis is a demonstration of the radial spin Hall effect. 
It is interesting that the Hall effect will also appear for a vortexless beam (m = 0). 
For the initial left circular polarization, from Eq. (2.6) instead of (2.7) we obtain 
(σ = −1, γ  2+ = 0, γ  2− = 1): 

Sz− = −I2 0,m + I2 2,m−2. (2.8) 

It follows from (2.8) that at m = 0 near the optical axis Sz− < 0 (left circular 
polarization), since I2 0,0 > I2 2,−2 = I2 2,2, and there will be right circular polarization 
on those radii where I2 0,0 < I2 2,2, since Sz− > 0. At  m �= 0 it is impossible to say 
unequivocally what polarization will be near the optical axis. For example, at m = 2 
instead of (2.8) we can write Sz− = −I2 0,2+I2 2,0 > 0. That is, although the initial field 
had left circular polarization, the focused field will have right circular polarization on 
the optical axis. Such an anomalous behavior of the polarization is due to the fact that 
at m = 2 the energy flux (Poynting vector) has a negative longitudinal projection near 
the optical axis, i.e., there is a reverse energy flow [18]. The alternation of directions 
of the polarization vector rotation (the Hall effect) depending on the radial variable 
also takes place for vortex fields with an initial left circular polarization.
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2.1.2 The Spin-Orbital Hall Effect in the Focus of an Optical 
Vortex with Linear Polarization 

In this subsection, we consider a vortex field with linear polarization along the x-axis. 
In this case, the longitudinal component of the SAM vector does not have circular 
symmetry (σ = 0, γ  2+ = γ 2− = 1): 

SzL = 
1 

2 
(I2,m−2 − I2,m+2)(I2,m−2 + I2,m+2 + cos(2ϕ)I0,m). (2.9) 

For definiteness, we write (2.9) for  m = 1 

SzL1 = −  
1 

2 
(I2,1 + I2,3)(−I2,1 + I2,3 + cos(2ϕ)I0,1). (2.10) 

It follows from (2.10) that at ϕ = 0 and ϕ = π the longitudinal component of the 
SAM is negative near the optical axis (it is equal to zero on the optical axis) SzL1 < 0, 
and at ϕ = π /2 and ϕ = 3π /2 it will be positive SzL1 > 0, since (I2,1 + I2,3) >  
0, (−I2,1 + I2,3 − I0,1) <  0. It should be noted that according to (2.9) there will 
be linear polarization in the entire focus plane at m = 0 (non-vortex light), since 
SzL0 = 0. This means that the presence of a minimum optical vortex (m = 1) in a 
beam with linear polarization leads to the formation of 4 subwavelength regions in the 
focus, in which the polarization changes its sign: the left circular polarization in two 
regions and the right circular polarization in the other two areas. This distribution of 
the spin in the focus is another variation of the spin Hall effect. We will show further 
that simulation confirms theory prediction. 

2.1.3 The Spin-Orbital Hall Effect in the Focus 
of a Superposition of a Cylindrical Vector Beam 
and a Beam with Linear Polarization 

The Hall effect for the superposition of a beam with m-th order radial polarization 
and a beam with linear polarization along the horizontal axis was shown in [19]. 
Both beams should be in same phase. It was shown in [19] that, although the initial 
field of such a superposition has zero longitudinal projection of the SAM (there is no 
spin), 2m subwavelength regions with different rotation directions of the transverse 
energy flux (clockwise or counterclockwise) are formed in the focus for odd m. In  
this section, we show that the superposition of the beam with m-th order azimuthal 
polarization and linearly polarized field in antiphase produces a non-zero longitudinal 
component of the SAM in the focal plane. In this case, local regions with the opposite 
rotation direction and polarization, and the transverse energy flow are formed in the
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focus for an even number m. It is a demonstration of the spin-orbital Hall effect in 
the focus. 

We propose the initial light field with a Jones vector of the form: 

E = A(θ )

(
− sin(mϕ) 
ia + cos(mϕ)

)
= A(θ )

[(
− sin(mϕ) 
cos(mϕ)

)
+ ia

(
0 

1

)]
, Im a = 0. (2.11) 

It can be seen from (2.11) that the initial field is an axial superposition of the 
light field with m-th order azimuthal polarization [20] and linear polarization along 
the y-axis. Further, using the formalism of Richards-Wolf [16], projections of the 
electric and magnetic fields vectors in the tight focus of the aplanatic system for the 
initial beam (2.11) can be obtained: 

Ex = im+1
(
I0,m sin(mϕ) + I2,m−2 sin((m − 2)ϕ)

) + aI2,2 sin(2ϕ), 
Ey = −im+1

(
I0,m cos(mϕ) − I2,m−2 cos((m − 2)ϕ)

) + a
(
I0,0 − I2,2 cos(2ϕ)

)
, 

Ez = −2im I1,m−1 sin((m − 1)ϕ) − 2iaI1,1 sin(ϕ), 
Hx = im+1

(
I0,m cos(mϕ) + I2,m−2 cos((m − 2)ϕ)

) − a
(
I0,0 + I2,2 cos(2ϕ)

)
, 

Hy = im+1
(
I0,m sin(mϕ) − I2,m−2 sin((m − 2)ϕ)

) − aI2,2 sin(2ϕ), 
Hzs = −2im I1,m−1 cos((m − 1)ϕ) + 2iaI1,1 cos(ϕ). (2.12) 

The axial projection of the SAM vector (2.5) for the field (2.12) in the focus can 
be written as: 

Sz = 

⎧⎪⎨ 

⎪⎩ 

2a(−1)p
[
sin(mϕ)

(
I0,0I0,m − I2,2I2,m−2

)
+ sin((m − 2)ϕ)

(
I0,0I2,m−2 − I2,2I0,m

)]
, m = 2p, 

0, m = 2p + 1, p = 0, 1, 2, ... 
(2.13) 

It can be seen from (2.13) that the SAM longitudinal projection of the field (2.11) 
in the focus is non-zero only for even numbers m, provided that the real parameter 
a is non-zero. The expressions in parentheses in (2.13) is a constant on a circle with 
radius r and center on the optical axis, since all functions Iμ,ν depend only on the 
radial variable r. Therefore, the SAM projection changes sign 2m times around this 
circle. That is, there will be 2m local regions in the focus plane in which the elliptical 
(or circular) polarization changes the rotation direction. There will be right circular 
polarization in those areas where Sz > 0 and there will be left circular polarization in 
those areas where Sz < 0. Thus, the regions with right and left elliptical or circular 
polarization are separated in the focus of the field (2.11) with even m. This is a  
demonstration of the spin Hall effect of the m-th order. 

Further we show that the orbital Hall effect of the m-th order also takes place 
in the focus of the field (2.11). To do this, using the projections of the electric and 
magnetic fields (2.12), we calculate the Poynting vector transverse projections
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P = 
c 

2π 
Re(E ∗ ×H), (2.14) 

where E and Н are vectors of electric and magnetic fields, * is complex conjugation, 
× is vector multiplication, c is the light speed in vacuum. Further, we will ignore the 
constant c/(2π ). Substituting (2.12) into (2.14), we obtain transverse projections of 
the energy flux vector: 

Px = 

⎧⎪⎨ 

⎪⎩ 

2a(−1)p
[
cos((m − 1)ϕ)

(
I1,1I2,m−2 − I0,0I1,m−1

)
+ cos((m + 1)ϕ)

(
I2,2I1,m−1 − I1,1I0,m

)]
, m = 2p, 

0, m = 2p + 1, p = 0, 1, 2, 3, ... 

Py = 

⎧⎪⎨ 

⎪⎩ 

2a(−1)p
[− sin((m − 1)ϕ)

(
I1,1I2,m−2 − I0,0I1,m−1

)
+ sin((m + 1)ϕ)

(
I2,2I1,m−1 − I1,1I0,m

)]
, m = 2p, 

0, m = 2p + 1, p = 0, 1, 2, 3, ... 
(2.15) 

It follows from (2.15) that, both projections of the Poynting vector change sign 
2(m + 1) around a circle of some radius centered on the optical axis when the 
expressions in parentheses are constant. This means that the centers of 2m local 
subwavelength regions, in which the transverse energy flux will rotate along a closed 
trajectory, will lie in focus on a certain circle centered on the optical axis. Moreover, 
the rotation will be directed in different directions (clockwise and counterclockwise) 
in neighboring regions. Thus, we have shown that, transverse energy fluxes rotating 
in different directions are separated in the tight focus of the field (2.11). That is, there 
is an orbital Hall effect of the m-th order. 

2.1.4 Simulation 

Hall Effect in the Focus of an Optical Vortex with Linear Polarization 

The focusing of an optical vortex with a unit topological charge (m = 1) and linear 
polarization along the x-axis was simulated by the Richards-Wolf integral method 
[16]. The wavelength is λ = 532 nm, numerical aperture of aplanatic objective is NA 
= 0.95. 

It can be seen from Fig. 2.1 that the spin density has the form of a Maltese cross, 
in the upper and lower parts of which there is a right circular (elliptical) polarization, 
since Sz > 0, and in the left and right parts of the cross there is a left circular (elliptical) 
polarization, since Sz < 0.

Hall Effect in the Focus of a Beam with Hybrid Polarization 

Using the Richards-Wolf formulas, the focusing of a beam (2.11), which is a super-
position of a cylindrical vector beam of the m-th order and a plane wave with linear 
polarization along the y-axis, was simulated. The wavelength is λ = 532 nm, order
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Fig. 2.1 Distribution of the SAM longitudinal component Sz in the focus of an aplanatic objective 
with NA = 0.95 illuminated by an optical vortex (m = 1) with linear polarization along the x-axis

of azimuthal polarization is m = 4, parameter a is equal to 1. Focusing was proposed 
by a flat diffractive lens with a numerical aperture NA = 0.95. 

Figure 2.2a shows the beam intensity (2.11) in the focus. It can be seen that the 
focal spot is an ellipse extended along the direction of the polarization axis y. Also,  
the intensity in Fig. 2.2 has 6 side lobes determined by the longitudinal component 
(Fig. 2.2c). The transverse intensity distribution (Fig. 2.2b) has 2m = 8 isolated 
intensity nulls (the energy flux is zero at these points). The transverse energy flow 
rotates along a closed trajectory (Fig. 2.3)) around these zeros.

Figure 2.3 shows the intensity distribution (same as in Fig. 2.2a) and the direction 
and magnitude (marked by arrows) of the transverse energy flux Pxex + Pyey, where 
ex, ey are unit vectors along Cartesian coordinates in the focus plane. It can be seen 
from Fig. 2.3 that 2m = 8 local subwavelength regions with a diameter of 200– 
300 nm are formed in the focus. The centers of these areas lie on a certain circle 
drawn around the optical axis and passing through the intensity zeros surrounding the 
focal spot. In each of these regions, the transverse energy flow rotates along a closed 
trajectory. The direction of rotation is different in neighboring regions. That is, the 
OAM axial projection has a different sign in neighboring regions. Such a separation 
in space of transverse energy flows rotating in different directions is a demonstration 
of the orbital Hall effect of the 4-th order. 

In this section, using the Richards-Wolf formalism, which adequately describes 
the behavior of a vector light field in a tight focus, if the focal length is much 
greater than the wavelength, it is shown that in the focus of an optical vortex with
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a) b) 

c) 

Fig. 2.2 Distribution of the total intensity for the initial field (2.11) I = |Ex|2 +
∣∣Ey

∣∣2 + |Ez |2 (а), 
and its components: transverse |Ex|2 +

∣∣Ey
∣∣2 (b) and longitudinal |Ez|2 (c) in the focus plane (m = 

4, a = 1)

circular polarization there will be circular polarizations of different signs (left and 
right circular polarizations) at different radii from the optical axis [21]. That is, 
photons that fall into focus at different distances from the optical axis will have 
different spins: either left circular polarization or right circular polarization. Such 
an effect can be called the radial spin Hall effect. It is also shown by using the 
Richards-Wolf formalism that four local subwavelength regions about 200 nm in 
size (the wavelength is 532 nm, numerical aperture is 0.95), in which the spin is 
directed in different directions in neighboring regions, are formed in the tight focus 
of an optical vortex with a unit topological charge and linear polarization. That is, 
in two vertically adjacent areas, the longitudinal projection of the SAM is positive 
(right elliptical polarization), and in two horizontally located areas, the longitudinal 
projection of the SAM is negative (left circular or elliptical polarization). Such a 
spatial separation of regions with different spins in the focus can be called the spin 
Hall effect of the 2-th order.
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Fig. 2.3 Intensity 
distribution and direction 
and magnitude (arrows) of 
the transverse energy flux in 
the focus

It is also shown that in the tight focus of the superposition of a cylindrical vector 
beams with m and zero orders, 2m local regions are formed, in neighboring of which 
the transverse energy flux rotates in different directions. That is, the OAM longitu-
dinal component has different signs in neighboring regions. This is the orbital Hall 
effect of the m-th order. 

These effects arise in the focus due to the conservation of the angular momentum of 
the beam and due to the spin–orbit conversion. In the first example (an optical vortex 
with linear polarization), the SAM is zero in the initial plane and the SAM is also zero 
at the focus. However, in this case an even number of local regions are formed in the 
focus, in which the SAM is non-zero and has different signs in neighboring regions. 
In this case, the Hall effect was formed due to the orbital-spin transformation. In the 
second example (superposition of non-vortex cylindrical beams of the mth and 0th 
orders), the OAM is equal to zero and the SAM is non-zero in the initial plane. It 
the focus, 2m regions are formed, in which the OAM is non-zero and has different 
signs in neighboring regions. The total OAM in the focus is still zero. In this case, 
the Hall effect appeared due to the spin-orbital conversion. 

2.2 Spin-Orbital Transformation in a Tight Focus 
of an Optical Vortex with Circular Polarization 

In modern optics, many optical effects are based on the interaction between the 
polarization of light and the vortex phase of light. A review on spin–orbital conver-
sion (SOC) (interaction, coupling) in photonics can be found in [22]. By SOC, we 
mean the ability of light with circular polarization to create a rotation of the trans-
verse energy flow. The spin–orbital transformation underlies the spin Hall effect in



48 2 Spin Hall Effect at the Focus for Light with Circular Polarization

an inhomogeneous medium [23], upon reflection from the interface between two 
media [1–3], tight focusing [21, 24–27], light scattering [28–30], and while light 
transmission through waveguides [31–33], anisotropic crystals [34, 35], metasur-
faces [36–38], and in nanostructures [39–41]. Due to SOC, excitation of optical 
vortices was observed in the nanodisk laser when the disk was excited by light with 
circular polarization [42]. The spin Hall effect was experimentally observed as a 
submillimeter Imbert–Fedorov shift when light was reflected from the surface of a 
birefringent symmetric planar waveguide with a metal shell [43]. Light in free space 
demonstrates an intrinsic quantum spin Hall effect when surface modes with strong 
spin–momentum locking are formed [44]. A review of works on SOC in optics is 
presented in [45]. Due to SOC, when light with linear polarization is reflected from 
twisted few-layer hyperbolic metasurfaces, two shifted beams with circular polariza-
tion of different directions are formed [46]. In this case, when a beam with circular 
polarization propagates at an angle to the optical axis, then the transverse flow of the 
Poynting vector through a plane perpendicular to the optical axis will be displaced 
or separated. In [47], this phenomenon was called the geometric spin Hall effect. 
If a paraxial vortex beam with cylindrical vector polarization is limited by a sector 
diaphragm, that is, the circular symmetry of the beam is broken, then regions with 
left and right circular polarization appear in the transmitted beam [48]. The spin Hall 
effect also arises if a radially polarized laser beam passes through a sector diaphragm 
[8]. Then, regions with left and right circular polarization will be formed in the beam 
after passing the aperture. In the works listed above, the question of what part of 
the spin angular momentum (SAM) is transferred to the orbital angular momentum 
(OAM) is not considered. SAM is the spin density in the cross section of the light 
beam. Light with linear polarization has no spin, i.e., SAM is zero. However, light 
with circular polarization has a maximum spin denseness, that is, SAM is equal to the 
power of the beam. The normalized to beam power SAM of circularly polarized light 
is plus one for right-hand polarization and minus one for left-hand circular polar-
ization. The normalized SAM of light with elliptical polarization is less than one. 
OAM is a value that indicates the presence of a vortex energy flow in the beam. The 
normalized to the beam power OAM of vortex laser beams is equal to the topological 
charge. Therefore, spin–orbit transformation occurs when circularly polarized light 
that has SAM is converted into light with a vortex energy flow that has OAM. 

SOC is a universal physical phenomenon and is present in many processes. For 
example, it is known that due to SOC, no collapse occurs during Bose–Einstein 
condensate [49]. That is, due to SOC, the initial Gaussian quantum state does not 
decrease to zero in a finite time, but transforms into a vortex state and increases in 
size with time. 

In this section, within the Richards-Wolf formalism, exact formulas are obtained 
for the case of sharp focusing of a circularly polarized optical vortex. Here, we 
proposed right-hand circular polarization. These formulas show what part of the 
total longitudinal SAM transforms into the total longitudinal part of the OAM in the 
focus. It is also shown that the maximum part of the SAM that can convert into the 
OAM is equal to half of the beam power.
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2.2.1 The Denseness of Lengthwise Projections of the SAM 
and OAM 

The Jones vector for the electric and magnetic fields of the source beam have the 
form: 

E(ψ, ϑ) = 
A(ψ) √

2 
exp(imϑ)

(
1 

i

)
, H(ψ, ϑ) = 

A(ψ) √
2 

exp(imϑ)

(
−i 

1

)
, (2.16) 

where A(ψ) is an amplitude of the radially symmetric launch field, (ρ, ϑ) are polar 
coordinates in the cross section of the light beam, ρ = f cosψ, f is a focal length of a 
spherical lens. Figure 2.4 shows the optical scheme, which is studied in this section. 
The light beam from the laser acquires a linear polarization after the polarizer P1 
and enters the light modulator SLM. The modulator has a transmission in the form 
of a diffraction grating with a fork. The number of teeth at the fork is equal to the 
topological charge of the optical vortex, which is formed after SLM. After a quarter 
wave plate, the optical vortex acquires circular polarization. Aperture D cuts out the 
working + 1 order of diffraction that is formed by the grating. A microobjective 
focuses light onto a CCD-camera. Thus, the diagram in Fig. 2.4 makes it possible 
to register the distribution of light intensity in the focus of the light field (2.16). In 
Fig. 2.4, for definiteness, a wavelength of 633 nm is used. Simulation results will 
be also given for this wavelength, but the effect of spin–orbital transformation takes 
place for any wavelength. 

The phase distribution in the form of a grating with a fork (shown in the inset) 
is generated in the modulator window. The formula after the quarter-wave plate 
describes the transverse components of the field (2.16). 

The amplitudes in the proposed launch field (2.16) are given for right-hand circular 
polarization. At the source, the lengthwise projection of the SAM Sz = 2Im

(
E∗
x Ey

)
of the field (2.16) is equal to Sz,0 = A2(ψ), and the total spin in the source plane is

Fig. 2.4 Optical scheme: laser with a wavelength of 633 nm; P1, P2 are polarizers; SLM is 
liquid crystal light modulator; λ/4 is quarter-wave plate; L2 is spherical lens; D is aperture: O1 
is microobjective with a numerical aperture NA = 0.95; CCD is camera 
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equal to the total energy (power) of the beam W: 

Ŝz,0 = 2π 
∞∫
0 

2π∫
0 

A2 (ψ)ρd ρ = W (2.17) 

In reference [17], using the Richards-Wolf formalism [16], formulas for the inten-
sity of the lengthwise component of the SAM in the focal plane were derived. The 
distributions of the intensity and the SAM lengthwise component of the focused field 
(2.16) will have the form: 

I (ρ,  ϑ) = |Ex|2 +
∣∣Ey

∣∣2 + |Ez|2 = ϒ2 
0,m + ϒ2 

2,m+2 + 2ϒ2 
1,m+1, (2.18) 

Sz = 2Im
(
E∗ 
x Ey

) = ϒ2 
0,m − ϒ2 

2,m+2. (2.19) 

Formulas (2.18) and (2.19) include functions Υ ξ ,χ which rely only on the radial 
variable ρ: 

ϒξ,χ = 2kf 
β∫

0 

sinξ +1

(
ψ 
2

)
cos3−ξ

(
ψ 
2

)
cos1/2 (ψ)A(ψ)eikz cos ψ Jχ (kρ sin ψ)d ψ, 

(2.20) 

where k = 2π /λ is the wavenumber of light with the wavelength of λ; f is the focal 
length; β is the maximum inclination angle of the rays to the optical axis, which 
determines the numerical aperture of the aplanatic lens NA = sinβ; Jχ (kρsinψ) is  
the Bessel function of the first kind of χ-th order. In Expression (2.20) and below, 
the indices χ and ξ can get the next values: ξ = 0, 1, 2; χ = m − 2, m − 1, m, m + 
1, m + 2. 

By virtue of the circular polarization of the launch field in the focus, both the 
intensity (2.18) and the spin denseness (2.19) distributions have circular symmetry. 
In reference [32], an equation for the distribution of the OAM in the focus of the 
field (2.16) was obtained: 

Lz = Im
(
E∗ 
x 

∂Ex 

∂ϑ 
+ E∗ 

y 

∂Ey 

∂ϑ 
+ E∗ 

z 

∂Ez 

∂ϑ

)
= mϒ2 

0,m + (m + 2)ϒ2 
2,m+2 + 2(m + 1)ϒ2 

1,m+1. (2.21) 

Adding Expressions (2.19) and (2.21), we obtain the sum of the lengthwise 
projections of the OAM and SAM: 

Jz = Lz + Sz = (m + 1)
(
ϒ2 

0,m + ϒ2 
2,m+2 + 2ϒ2 

1,m+1

) = (m + 1)I . (2.22)
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Expression (2.22) shows that the lengthwise component of the sum of orbital and 
spin angular momenta in the focus of the field (2.1) is equal to the intensity (2.18) of  
light in the focus multiplied by the sum of the topological charge m and the “spin” 
of the launch field, which equals to 1. 

2.2.2 The Total Lengthwise OAM and SAM Averaged Over 
the Cross Section of the Beam 

In reference [50], an expression was obtained for the partial power of the angular 
harmonics included in (2.18), (2.19), and (2.22) in the  form:  

Wξ = 4π f 2 
β∫

0 

sin2ξ +1

(
ψ 
2

)
cos5−2ξ

(
ψ 
2

)
|A(ψ)|2 dψ (2.23) 

Integrals (2.23) can be analytically calculated only in ordinary cases, but, never-
theless, it is possible to estimate the contribution of each angular harmonic. For 
instance, if a uniform field with a constant amplitude A(ψ) ≡ 1 is focused, then [50]: 

W0 = 4π f 2 
β∫

0 

sin

(
ψ 
2

)
cos5

(
ψ 
2

)
dψ = 

4 

3 
π f 2

[
1 − cos6

(
β 
2

)]
, 

W1 = 4π f 2 
β∫

0 

sin3
(

ψ 
2

)
cos3

(
ψ 
2

)
dψ = 

2 

3 
π f 2 sin4

(
β 
2

)[
1 + 2 cos2

(
β 
2

)]
, 

W2 = 4π f 2 
β∫

0 

sin5
(

ψ 
2

)
cos

(
ψ 
2

)
dψ = 

4 

3 
π f 2 sin6

(
β 
2

)
, 

W = 2π f 2 [1 − cos(β)]. (2.24) 

In the limiting case, when the numerical aperture is close to unity, i.e., β ≈ π / 
2, it can be obtained: W0 = (7/6)π f 2, W1 = (1/3)π f 2, W2 = (1/6)π f 2. All energy 
coincides with the area of the hemisphere: W = W0 + W2 + 2W1 = 2π f 2. It also  
should be noted that W0 − W2 = W/2. 

Based on (2.18), (2.19), (2.22), and (2.23), we find the total (averaged over the 
cross-section of the whole beam) intensity (total beam power), the OAM, and the 
lengthwise SAM in the focal plane: 

Î = W = 
∞∫
0 

2π∫
0 

I (ρ,  ϑ)ρdρdϑ = 
∞∫
0 

2π∫
0 

ρdρdϑ
(
ϒ2 

0,m + ϒ2 
2,m+2 + 2ϒ2 

1,m+1

)
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= W0 + W2 + 2W1. (2.25) 

Ŝz = 
∞∫
0 

2π∫
0 

Szρdρdϑ = 
∞∫
0 

2π∫
0 

ρdρdϑ
(
ϒ2 

0,m − ϒ2 
2,m+2

) = W0 − W2. (2.26) 

L̂z = 
∞∫
0 

2π∫
0 

Lzρdρdϑ = 
∞∫
0 

2π∫
0 

ρdρdϑ 

× (
mϒ2 

0,m + (m + 2)ϒ2 
2,m+2 + 2(m + 1)ϒ2 

1,m+1

)
= mW0 + (m + 2)W2 + 2(m + 1)W1. (2.27) 

Expressions (2.25)–(2.27) are the main result of this section. It follows from them 
that the sum of the full longitudinal OAM and SAM is equal to: 

Ŝz + L̂z = mW0 + (m + 2)W2 + 2(m + 1)W1 + W0 − W2 

= (m + 1)(W0 + W2 + 2W1) = (m + 1)W . (2.28) 

Equation (2.28) should be supplemented with a similar sum in the initial beam 
plane (2.16). To do this, we obtain the denseness of the lengthwise OAM component 
and the total longitudinal OAM in the launch plane from (2.1): 

Lz,0 = Im
(
E∗ 
x 

∂Ex 

∂ϕ 
+ E∗ 

y 

∂Ey 

∂ϕ

)
= m|A(ψ)|2 , 

L̂z,0 = 
∞∫
0 

2π∫
0 

Lz,0ρd ρd ϑ = mW . (2.29) 

Adding (2.17) and (2.29), we obtain the sum of the OAM and SAM in the initial 
plane of the beam (2.16): 

Ŝz,0 + L̂z,0 = W + mW = (m + 1)W . (2.30) 

2.2.3 The Spin-Orbit Conversation upon the Light Focusing 

Comparing (2.28) and (2.30), it can be seen that the sum of the total lengthwise 
projections of the OAM and SAM is conserved upon focusing. However, separately, 
the full longitudinal OAM and SAM are not conserved due to the SOC. The total 
SAM during focusing decreases and partially passes into the full OAM, which, in 
contrast, increases. It is especially evident when m = 0. In the launch plane, in this
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case, the total SAM is equal to the total beam power (2.16): Ŝz,0 = W , and the total 
OAM is zero: L̂z,0 = 0. During the focusing process, the total SAM will decrease 
and will be equal to (2.26) in the focus: Ŝz = W0 − W2, and the total OAM will 
grow and will be equal to (2.27) in the focus: L̂z = 2W2 + 2W1 = W − (W0 − W2). 
Taking into account (2.24) and at β ≈ π /2, the full longitudinal SAM will decrease 
in focus compared to the initial plane by 2 times (Ŝz = W0 − W2 = W /2), and the 
total longitudinal OAM will increase in focus compared to the initial plane, also by 
2 times (L̂z = W /2). This means, that, in the limiting case (A(ψ) = 1, β = π /2) 
with a plane wave with right-hand circular polarization focusing, half of the total 
longitudinal SAM will transform into a longitudinal OAM. For a smaller numerical 
aperture (β < π /2) and for any other real amplitudes A(ψ) < 1, with field (2.16) 
focusing, a part less than half will pass from the SAM to the OAM. From (2.24), it 
can be found how much the SAM and OAM change due to the SOC for the case with 
a smaller numerical aperture, for instance, at β = π /3 (m = 0, A(ψ) = 1). Then, we 
get that SAM and OAM in the focus will be equal to Ŝz = 3W /4 and L̂z = W /4, 
respectively. That is, at a numerical aperture sin β = √

3/2 ≈ 0.87, the limit value 
of the OAM that can occur in the focus of the field (2.16) is equal to one-fourth of 
the total beam power. 

It is clear that similar formulas can also be obtained for an optical vortex with 
left-hand circular polarization. Then, for an optical vortex with topological charge n 
and left circular polarization, instead of (2.26), (2.27), and (2.28) we get: 

Ŝz = W2 − W0, 
L̂z = mW0 + (m − 2)W2 + 2(m − 1)W1, 

Ŝz + L̂z = (m − 1)(W0 + W2 + 2W1) = (m − 1)W . (2.31) 

2.2.4 Transformation of the Longitudinal Energy Flux 
into the Transverse Energy Flux 

It is interesting to follow how the total longitudinal energy flux (the lengthwise 
Poynting vector component averaged over the beam cross-section) changes while 
tight focusing of the beam (2.16). It was shown in [50] that the distribution of the 

longitudinal Poynting vector component in the focus Pz = Re
(
E∗
x Hy − E∗

y Hx

)
is 

equal to the lengthwise projection of the SAM: 

Pz = Sz = ϒ2 
0,m − ϒ2 

2,m+2. (2.32) 

Therefore, the total longitudinal energy flux averaged over the beam cross-section 
in the focus will be equal to (2.26):
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P̂z = 
∞∫
0 

2π∫
0 

Pzρdρdϑ = W0 − W2. (2.33) 

In the initial plane of the field (2.16), the denseness of the longitudinal energy 
flow and the total longitudinal energy flux are equal to the expressions: 

Pz,0 = |A(ψ)|2 , P̂z,0 = W . (2.34) 

It can be seen from a comparison of (2.33) and (2.34) that, upon focusing, the total 
longitudinal energy flux decreases in the same way as the total longitudinal SAM. 
Due to the fact that during focusing, a longitudinal component of the electric field 
strength Ez appears, a transverse energy flux also appears. This occurs simultaneously 
with the SOC. That is, a transverse energy flow appears as the SAM decreases and the 
OAM appears. This means that part of the initial longitudinal energy flux is converted 
into a transverse energy flux, and the longitudinal flux decreases by exactly the same 
amount as the longitudinal SAM decreases. It should be noted that that the value of 
the total longitudinal energy flux does not depend on the value of the topological 
charge, but depends only on the numerical aperture sinβ of the focusing optical 
system and on the initial radially symmetric amplitude A(ψ) of the light field. These 
facts follow from (2.23) and (2.33). 

2.2.5 Separate Measurement of the OAM and SAM 
in the Focus 

In reference [51], formulas are given that relate the force �F F and the moment of the 
force T �T , which influence on a Rayleigh (smaller than wavelength) microparticle 
with a complex permittivity ε, with the intensity I, the canonical vector of the energy 
flow P �P0, and the SAM vector S �S:

�F = 
Re(ε) 
4 

∇I + 
Im(ε) 
2

�P0,

�T = 
Im(ε) 
2

�S. 
(2.35) 

In (2.35), we use next notation: 

I = |Ex|2 +
∣∣Ey

∣∣2 + |Ez|2 ,
�P = �P0 + �Ps = 

Re 

8πc

(�E∗ × �H
)

= 
Im 

16π c

(�E∗ · (∇)�E
)

+ 
1 

2
∇ × �S,

�S = 
Im 

16π c

(�E∗ × �E
)
, (2.36)
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where c is the speed of light in vacuum and �Ps is the spin flow. Therefore, the method 
of separate measurement of the SAM and OAM in the focal plane of the field (2.16) 
is as follows. It follows from (2.18) that at m = 0, there is an intensity maximum 
I (ρ = 0) = ϒ2 

0,0 in the focus center. The microparticle in focus will move to the 
center, where the intensity is maximal and the gradient is equal to zero. Due to the 
absorption of the particle (Im ε �= 0), the moment of the force (2.35) effecting on 
the particle will rotate it around its center of mass and around the optical axis. The 
value of this moment of forces will be proportional to the lengthwise projection of 
the SAM vector: Tz ~ Sz. At a large numerical aperture (close to unity), the focal 
spot is smaller than the wavelength and the particle captured by such a focal spot will 
rotate under the influence of the total longitudinal component of the SAM equal to 
Ŝz = W0 − W2 ≈ W /2. Therefore, by measuring the speed of the particle rotation, it 
is possible to estimate the force moment, which will be proportional to the SAM Ŝz. 
To measure the transverse energy flux Pϕ , it is necessary to form a ring of light in the 
focus. It follows from (2.3) that at m = 1 the intensity on the optical axis will be zero 
in the focus, since I (ρ = 0) = ϒ2 

0,1 + ϒ2 
2,3 + 2ϒ2 

1,2 = 0. This means that a light ring 
will form in the focus, because of the presence of an optical vortex with a topological 
charge m = 1. The particle in focus will shift to the ring due to the minimum intensity 
gradient on the ring, and the force Fϑ ~ Pϑ will shift this particle along the light 
ring. This force will be proportional to the transverse energy flow Pϑ , which, in 
turn, is proportional to the longitudinal component of the angular momentum and 
the lengthwise projection of the OAM: Jz = Lz = ρPϑ . It was  shown in [50] that the 
distribution of the transverse flux in the focal plane of the field (2.16) is described 
by the expression Pϑ = ϒ1,m+1

(
ϒ0,m + ϒ2,m+2

)
. The speed of the particle moving 

along a ring of small radius will be influenced not by the full longitudinal OAM, but 
by a partial one, since the particle is captured not by the entire circular trajectory, 
but only by its part. By experimental estimation of the value of the light ring, which 
falls on the particle (γ < 1), it is possible to estimate the part of the total longitudinal 
OAM that is transferred to the particle γ L̂z = γ (2W − W0 + W2) ≈ 3γ W /2. This  
value can be found by measuring the average speed of the particle along the light ring 
in the focus of the field (2.16), since this speed v is proportional to the force (2.35), 
which is proportional to the transversal energy flow Pϑ , which is proportional to the 
longitudinal projection of the OAM L̂z: v ∼ F ∼ Pϑ ∼ γ L̂z. 

2.2.6 Simulation Results 

This section presents the results of numerical simulation of light field (2.16) focusing 
on different topological charges of incident beams. The simulation was performed 
by using the solution of the Richards-Wolf integral [16]. Focusing of light with a 
wavelength of 633 nm by aplanatic objectives was considered. This wavelength was 
chosen because it can be implemented in practice using a conventional helium–neon 
laser. As an example of the calculated patterns of intensity and SAM, the results of 
focusing for vortices with topological charges of m = 0 (no vortex) and m = 1 are



56 2 Spin Hall Effect at the Focus for Light with Circular Polarization

presented. Figure 2.5 shows the intensity pattern and its individual components for 
m = 0. Patterns of the SAM vector components for the same topological charge (m 
= 0) are presented in Fig. 2.6. Figures 2.7 and 2.8 show the distribution of intensity 
and SAM for m = 1. Figure 2.9 shows the ratio Ŝz/L̂z depending on the numerical 
aperture of the focusing lens. All figures are given for the numerical aperture of 
the focusing lens equal to NA = 0.95. Microobjectives with 100× magnification 
have such a numerical aperture. A large numerical aperture was chosen for modeling 
because the effect of SOC is noticeable starting from a numerical aperture of 0.8 and 
reaches a maximum at a numerical aperture of 1. 

The comparison of Fig. 2.5a and Fig. 2.6c shows that at m = 0, the intensity 
I and the lengthwise SAM projection Sz in the focal plane are almost the same in 
shape (bright round spot) and in magnitude Imax � Sz,max � 16. This follows from 
Eqs. (2.18) and (2.19), since I � Sz � ϒ2 

0,0, because it follows from (2.24) that 
ϒ2 

0,0 � ϒ2 
2,2 , ϒ2 

0,0 � 2ϒ2 
1,1. 

The comparison of Figs. 2.7a and 2.8c shows that at m = 1, the intensity I and 
the lengthwise SAM projection Sz in the focal plane have the form of a ring with 
approximately the same radius and size, although Sz,max ~ 4 is slightly less than Imax

Fig. 2.5 Distribution of intensity I (a) and its components Ix (b), Iy (c), Iz (d) in the  focus of the  
beam with circular polarization (without vortex) for NA = 0.95
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Fig. 2.6 Patterns of the SAM components Sx (a), Sy (b), Sz (c) in the focus of the beam with 
circular polarization (without vortex) for NA = 0.95

~ 5. This follows from Eqs. (2.18) and (2.19): I = ϒ2 
0,1+ϒ2 

2,3+2ϒ2 
1,2 , Sz = ϒ2 

0,1− 
ϒ2 

2,3, taking into account (2.24): ϒ
2 
0,1 � ϒ2 

2,3 , ϒ2 
0,1 � 2ϒ2 

1,2. Figure 2.9 shows the 
ratio of SAM to OAM Ŝz/L̂z in the focus of light field (2.16) at different numerical 
apertures of a spherical lens and for different topological charges of incident light: 
m = 0 (line 1), m = 1 (line 2), m = −  1 (line 3). In Sect. 2.2.3, specific values 
Ŝz and L̂z were also obtained for the numerical aperture NA = 0.87. It is obtained 
that Ŝz = W0 − W2 ≈ 3W /4 , L̂z ≈ W /4 for m = 0, and Ŝz ≈ 3W /4 , L̂z = 
W + W /4 ≈ 5W /4 for m = 1. Therefore, it can be seen from Fig. 2.9 that for m = 
0 Ŝz/L̂z = 3, and for m = 1 Ŝz/L̂z = 3/5 = 0.6 at a numerical aperture of 0.87. If n 
= −  1, then Ŝz ≈ 3W /4 , L̂z = −W + W /4 ≈ −3W /4, that is Ŝz = −  ̂Lz, and 
their ratio is equal to Ŝz/L̂z = −1 for any numerical aperture. This can be seen from 
Fig. 2.9 (curve 3). It means that an optical vortex with right circular polarization and 
a topological charge of −1 has no angular momentum, since the OAM and SAM are 
equal and have different signs.
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Fig. 2.7 Distribution of intensity I (a) and its components Ix (b), Iy (c), Iz (d) in the  focus of the  
optical vortex with unit topological charge and with circular polarization for NA = 0.95

2.2.7 Discussion 

In tight focusing, SOC occurs when light passes through a spherical lens. If the optical 
vortex with the right circular polarization (2.16) before the spherical lens had a full 
longitudinal SAM Ŝz , equal to beam power W (2.17), then the total longitudinal SAM 
of the beam would decrease immediately after the spherical lens and become equal to 
(2.26)Ŝz = W0−W2. After the spherical lens, beam (2.16) has three vortex harmonics 
[17]: exp(imϑ), exp(i(m + 2)ϑ), and exp(i(m + 1)ϑ), instead of one vortex harmonic 
exp(imϑ). Therefore, the total beam power W after the spherical lens is distributed 
between these three harmonics W = W0 + W2 + 2W1. The vortex harmonic with the 
topological charge m + 1 has a linear polarization directed along the optical axis z. 
That is, it propagates perpendicular to the optical axis and does not contribute to the 
longitudinal projection of the SAM. An optical vortex with topological charge m + 2 
has a left-hand circular polarization, and therefore its contribution to the longitudinal 
projection of the SAM will be negative. Therefore, the total longitudinal SAM of 
the beam (2.16) after the spherical lens is reduced by the sum of the powers of the 
indicated harmonics Ŝz,in− ̂Sz,after = W −(W0−W2) = 2(W1+W2). This difference,
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Fig. 2.8 Patterns of the SAM components Sx (a), Sy (b), Sz (c) in the focus of optical vortex with 
unit topological charge and with circular polarization for NA = 0.95 

Fig. 2.9 Ratio Ŝz/L̂z in the 
focus of light field (2.16) at  
different numerical apertures 
of the focusing lens for 
beams (2.16) with different 
topological charges: m = 0 
(without vortex, blue line 1), 
m = 1 (red line 2), m = −  1 
(yellow line 3). The vertical 
dotted line drawn through 
the NA = 0.87
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by which the spin has decreased due to the SOC, is exactly equal to the amount by 
which the total longitudinal OAM, which the beam (2.16) did not have before the 
spherical lens if m = 0, has increased: L̂z = 2(W1 + W2). On the other hand, this is 
confirmed by considering the energy flow (the Pointing vector). Before the spherical 
lens, the beam (2.16) had only a longitudinal energy flux (2.34), which was equal 
to the beam power P̂z = W . After a spherical lens, the longitudinal energy flux 
decreased and became equal to (2.33) P̂z = W0 − W2. As well as for the spin Ŝz 
two new vortex harmonics exp(i(m + 2)ϑ) and exp(i(m + 1)ϑ), which are generated 
after the spherical lens, do not participate in the formation of the longitudinal energy 
flux. They do not participate in the formation of the longitudinal energy flow because 
one of these harmonics exp(i(m + 1)ϑ) propagates across the optical axis, while the 
other harmonic exp(i(m + 2)ϑ) propagates in the opposite direction z. Both of these 
harmonics form a transverse azimuthal energy flux, which rotates around the optical 
axis, and which is equal to P̂ϑ = 2(W1 +W2). This azimuthal energy flux is exactly 
equal to the total longitudinal OAM of the beam at m = 0: P̂ϑ = L̂z = 2(W1 + W2). 

The presented research [52] shows that if an initial optical vortex with right-hand 
circular polarization has a total (averaged over the beam cross-section in the source 
plane) longitudinal SAM equal to the beam power and a total longitudinal OAM equal 
to the beam power multiplied by the beam topological charge, then while focusing, 
the sum of the total longitudinal OAM and SAM will be conserved and will be equal 
to the beam power multiplied by the topological charge increased by one. The total 
longitudinal SAM in the focus decreases and becomes equal to the power difference 
between the zero and second angular harmonics in the beam since the beam contains 
zero exp(imϑ), second exp(i(m + 2)ϑ), and first exp(i(m + 1)ϑ)) angular harmonics. 
The total longitudinal OAM in the focus will increase and become equal to the beam 
power multiplied by the topological charge, minus the power of the zero harmonic, 
and plus the power of the second harmonic. It is also shown that the maximum value 
by which the total longitudinal SAM can decrease upon focusing is achieved at a 
constant initial beam amplitude and at a numerical aperture of 1 and is equal to 
half the beam power. In other words, no more than half of the beam power can be 
converted from the spin component to the orbital component due to SOC. The results 
obtained in the research can be used in the problems of microparticles manipulation 
[53–55]. 

2.3 Spin and Orbital Angular Momenta in the Tight Focus 
of a Circularly Polarized Optical Vortex 

Angular momentum (AM) of light is an important property of non-paraxial light 
fields with a different polarization state [56, 68]. Angular momentum of light can 
be decomposed into the spin angular momentum (SAM) and the orbital angular 
momentum (OAM) [57, 58]. Of special interest is studying the AM in the tight focus 
of light [59, 72]. To the angular momentum of light, a recent review is dedicated



2.3 Spin and Orbital Angular Momenta in the Tight Focus of a Circularly … 61

[70]. A number of works [51, 60, 69] are dedicated to the spin-orbital conversion, 
which is inherent to the angular momentum and is especially prominent in the tight 
focus. In the tight focus, interesting optical phenomena are known, related with the 
AM and with the spin-orbital conversion: Hall effect [21, 26], “photonic wheels” 
[61], reverse energy flow [18]. The behavior of light in the tight focus is adequately 
described by the Richards-Wolf (RW) theory [16]. In [62, 71], the Poynting vector 
(electromagnetic energy flow) was shown to be the sum of two vectors: orbital flow 
and spin flow. The spin flow does not carry light energy, although the spin flow 
generates the SAM vector that can be transferred to an absorbing small particle and 
to rotate it about its center of mass. The presence of the spin term in the Poynting 
vector explains the reason of the reverse flow in the focus [18]. If the spin flow has 
a negative longitudinal component (parallel to the optical axis) and is greater by 
magnitude than the orbital energy flow (canonical energy flow), then in this area in 
space the Poynting vector has the negative longitudinal component. 

In this section, based on the RW formalism, we derive exact expressions for the 
longitudinal components of the AM, SAM and OAM vectors in the focal plane of an 
optical vortex with right circular polarization. It turned out that the sum of the SAM 
and OAM is not equal to the AM. We found in a literature [63] a general expression 
for the AM vector via the SAM and OAM vectors. It turned out that only the total 
(integrated over the whole space) AM is equal to the sum of total momenta SAM 
and OAM. 

2.3.1 Components of the Electric and Magnetic Field Vectors 
in the Focus 

Here we consider an initial light field with the transverse components of the electric 
field strength vector being described by the following Jones vector: 

E(θ, ϕ) = 
A(θ ) √

2 
exp(inϕ)

(
1 

i

)
(2.37) 

where ϕ is the angular polar coordinate in the plane of the exit pupil of the aplanatic 
optical system, θ is the azimuthal angle, describing the tilt of the light rays to the 
optical axis, A(θ) is the amplitude of the initial light field (real-valued function), 
rotationally symmetrical with respect to the optical axis, n is the topological charge 
of the optical vortex (integer number), (1, i) is the transposed Jones vector for right 
circular polarization. For the initial field (2.37), tightly focused by an aplanatic system 
(ideal spherical lens), the RW formalism [16] allows deriving all the components of 
the electric and magnetic field strength vectors near the tight focus [64]: 

Ex = 
in−1 

√
2 
einϕ

(
I0,n + e2iϕ I2,n+2

)
,
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Ey = 
in √
2 
einϕ

(
I0,n − e2iϕ I2,n+2

)
, 

Ez = −  
√
2in ei(n+1)ϕ I1,n+1, 

Hx = 
−in √
2 
einϕ

(
I0,n + e2iϕ I2,n+2

)
, 

Hy = 
in−1 

√
2 
einϕ

(
I0,n − e2iϕ I2,n+2

)
, 

Hz =
√
2in+1 ei(n+1)ϕ I1,n+1. (2.38) 

In Eq. (2.38), Iν,μ denote the following integrals, where the first index is the type 
of the integral (ν = 0, 1, 2) and the second index (μ = 0, ± 1, ± 2, …) is equal to 
the order of the Bessel function Jν(ξ ) in the integrand: 

Iν,μ =
(
4π f 

λ

) θ0∫
0 

sinν+1

(
θ 
2

)
cos3−ν

(
θ 
2

)
cos1/2 (θ )A(θ )eikz cos θ Jμ(ξ )dθ (2.39) 

where k = 2π /λ is the wavenumber of light with the wavelength λ, f  is the focal 
distance of an aplanatic system, (r, ϕ, z) are the cylindrical coordinates, θ 0 is the 
maximal tilt angle of rays to the optical axis, defining the numerical aperture of the 
aplanatic lens NA = sin(θ 0), ξ = krsin(θ ). Expressions (2.38) allow deriving the 
expressions for all main characteristics of light in the focus (at z = 0). 

2.3.2 Intensity of Light, Poynting Vector and the Spin 
Angular Momentum Vector in the Focus 

From Eq. (2.38), we obtain an expression for the intensity distribution in the focus 
of the field (2.37): 

I(r, ϕ,  z = 0) = |Ex|2 +
∣∣Ey

∣∣2 + |Ez|2 
= I2 0,n + I2 2,n+2 + 2I2 1,n+1. (2.40) 

As seen in Eq. (2.40), the intensity in the focus is independent of the polar angle 
ϕ, i.e., is circularly symmetric. On the optical axis (r = 0), the intensity is non-zero 
only at n = 0, − 1, − 2. For other values n, the intensity (2.40) on the optical axis is 
zero, i.e., there is a light ring in the focus. 

Further, using Eq. (2.38), we derive expressions for the components of the 
Poynting vector (energy flow) in the focus of the field (2.37). The Poynting vector P 
is given by [16]:



2.3 Spin and Orbital Angular Momenta in the Tight Focus of a Circularly … 63

P = 
c 

2π 
Re

(
E∗ × H

)
(2.41) 

where E and H are the strength vectors of the electric and magnetic fields, ‘*’ means 
complex conjugation, × means the cross product, Re is the real part of a complex 
number, and c is the speed of light in vacuum. Below we omit the constant c/(2π ). 
Then, for the components of the energy flow vector in the focus we get the following 
expressions: 

Px = −Q(r) sin ϕ, 
Py = Q(r) cos ϕ, 
Pz = I2 0,n − I2 2,n+2, 

Q(r) = I1,n+1
(
I0,n + I2,n+2

)
. (2.42) 

In the cylindrical coordinates, the Poynting vector in the focus of the field (2.37) 
has the following components: 

Pr = 0, 
Pϕ = Q(r), 
Pz = I2 0,n − I2 2,n+2. (2.43) 

As seen from Eq. (2.43), the energy flow in the transverse plane is rotated coun-
terclockwise if Q(r) > 0, and clockwise if Q(r) < 0. The transverse energy flow near 
the optical axis, for instance, at n = 0 (Q(r) > 0,  kr  1), is rotated counterclock-
wise, similarly to the rotation of the polarization vector of the initial field (2.37). It is 
interesting that both at n = −1 and at n = −2, near the optical axis, Q(r) < 0 and the 
transverse energy flow is rotated in the opposite direction (clockwise), whereas at n 
= −1 and at n = −2 the energy near the optical axis flows in different directions: 

Pz,−1 = I2 0,1 − I2 2,1 =
(
I0,1 − I2,1

)
︸ ︷︷ ︸

>0

(
I0,1 + I2,1

)
︸ ︷︷ ︸

>0 

> 0, 

Pz,−2 = I2 0,2 − I2 2,0 < 0, kr << 1. (2.44) 

The reverse energy flow in the focus was studied earlier in [18, 64]. Further, we 
obtain the components of the spin angular momentum (SAM) in the focus of the 
initial field (2.37). The SAM vector is given by [58, 59, 72] 

S = 1 

8πω  
Im

(
E∗ × E

)
(2.45) 

with Im denoting the imaginary part of a complex number and ω being the angular 
frequency of light. Below we omit the constant 1/(8πω). Then the expressions for 
the components of the SAM vector (2.45) in the focus of the initial field (2.37) are
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quite the similar to the components of the Poynting vector (2.43): 

Sr = 0, 
Sϕ = Q(r), 
Sz = I2 0,n − I2 2,n+2. (2.46) 

According to Eq. (2.46), the transverse SAM vector is rotated in the focus coun-
terclockwise or clockwise in the same cases as does the transverse energy flow. It 
is interesting that at n = −2, when there is the reverse energy flow (Pz < 0) in the  
focus on the optical axis, then the longitudinal component of the SAM vector (2.46) 
is also negative Sz,−2 = I2 0,2 − I2 2,0 < 0. This means that near the optical axis in the 
focus, the polarization vector rotates clockwise (left circular polarization), although 
circular polarization in the initial plane (2.37) is right-handed. Such change of the 
direction of polarization rotation in the focus can be an indicator used for detecting 
the reverse flow in the focus. Non-zero transverse SAM vector in the focus means 
that in the longitudinal planes (x, z) and (y, z) near the focal plane, there is right or 
left circular polarization, i.e., the polarization vectors rotate reminiscing the photonic 
wheels [61]. 

2.3.3 Angular Momentum and Orbital Angular Momentum 
at the Focus 

Further, we derive the longitudinal component of the angular momentum (AM) and 
of the orbital angular momentum (OAM) in the focus of the field (2.37). The AM 
vector is given by the following formula [65] 

J = 
1 

2c 
Re

(
r × (

E∗ × H
)) = 

2π 
c2 

(r × P) (2.47) 

where all designations are described above. Below we omit the constant 2π /c2. Then 
the longitudinal AM component in the focus of the field (2.37) is equal to 

Jz = rPϕ = rQ(r) (2.48) 

On the other hand, it is known that the AM vector is a sum of the SAM and OAM 
vectors [65]: 

J = S + L = 1 

8πω  
Im

(
E∗ × E

) + 1 

8πω

∑
p=x,y,z 

Im
(
E∗ 
p (r × ∇)Ep

)
(2.49) 

We note that the first work on the angular momentum of light [65] contains the 
expression (2.49) without the derivation from the expression (2.47).
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From now on, we omit the constant 1/(8πω) in Eq.  (2.49) for brevity. The first 
term in Eq. (2.49) in the focus we already derived Eq. (2.46), and now we will obtain 
the second term in Eq. (2.49). Thus, we get the longitudinal component of the OAM 
vector in the focus of the field (2.37): 

Lz = Im
(
E∗ 
x 

∂ 
∂ϕ 

Ex + E∗ 
y 

∂ 
∂ϕ 

Ey + E∗ 
z 

∂ 
∂ϕ 

Ez

)
= nI2 0,n + (n + 2)I2 2,n+2 + 2(n + 1)I2 1,n+1. (2.50) 

As seen from Eq. (2.46), the light field (2.37) in the focus has a non-zero longi-
tudinal OAM component at an arbitrary value n. It is interesting that if n ≥ 0 then 
the OAM is positive (Lz > 0), and if n ≤ −2 then the OAM is negative (Lz < 0).  If  n 
= −1, the OAM can be both negative and positive. Even when n = 0, when there is 
no the optical vortex and only circular polarization (2.37) remains, the longitudinal 
OAM component is non-zero and equals 

Lz,0 = 2I2 2,2 + 2I2 1,1 ≥ 0. (2.51) 

According to Eq. (2.51), due to spin-orbital conversion, circular polarization of 
a vortex-free field (2.37) generates in the focus non-negative longitudinal compo-
nent of the OAM vector. This component is equal to zero only on the optical 
axis. Equation (2.51) shows that in the focus, the transverse energy flow is rotated 
counterclockwise. 

Using Eq. (2.46), we can derive an expression for the longitudinal component of 
the AM vector in the focus of the field (2.37): 

Jz = Sz + Lz = (n + 1)
(
I2 0,n + I2 2,n+2 + 2I2 1,n+1

) = (n + 1)I . (2.52) 

Equation (2.52) indicates that the longitudinal AM component in the focus is 
equal to the light intensity in the focus, multiplied by the sum of the topological 
charge n and of the «spin» of the initial field equal to 1. Equation (2.52) shows that, 
in contrast to the OAM (2.50), the longitudinal AM component in the focus is not 
always non-zero. If n = −1, the angular momentum (2.52) in the focus is zero. This 
means that the optical vortex with the topological charge n = −1 compensates the 
influence of right circular polarization: 

Jz,−1 = 0 = Sz,−1 + Lz,−1, (2.53) 

that is the longitudinal SAM component is equal by magnitude to the longitudinal 
OAM component and directed oppositely: Sz,−1 = −Lz,−1 = I2 0,1 − I2 2,1. It can be 
shown that the longitudinal AM component for an optical vortex with left circular 
polarization, in difference with Eq. (2.52), is given by 

Jz = (n − 1)
(
I2 0,n + I2 2,n−2 + 2I2 1,n−1

) = (n − 1)I . (2.54)
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Comparison of Eqs. (2.52) and (2.54) indicates that the longitudinal AM compo-
nent in the focus is proportional to the algebraic sum of the normalized OAM of the 
initial field n and of the spin σ = ±1. 

2.3.4 Is the AM a Sum of the SAM and OAM? 

In this subsection, we consider some contradiction, which we failed to resolve 
completely, and for which we have not found an explanation in the literature [51, 
59, 60, 69, 70]. The point is that Eq. (2.49) cannot be derived from Eq. (2.47). For 
the initial light field (2.37), Eq. (2.52) indicates that the AM in the focus is equal to 
zero at n = −1. However, according to Eq. (2.48), the AM in the focus of the same 
field (2.37) at  n = −1 is non-zero: Jz,−1 = rI1,0

(−I0,1 + I2,1
) �= 0. Indeed, since the 

Poynting vector P in Eq. (2.47) can be represented as a sum of two flows [62]: the 
orbital flow Po and the spin flow Ps (P = Po + Ps), then instead of Eq. (2.47), we 
get (the constant is omitted): 

J = (r × P) = (r × Po) + (r × Ps) = L + S (2.55) 

In Eq. (2.55), the orbital flow and the spin equal to flow are [71] 

P0 = 
1 

2ω 
Im

(
E∗ · (∇)E

)
, 

Ps = 
1 

4ω 
∇ ×  Im

(
E∗ × E

)
, (2.56) 

with ω being the angular frequency of monochromatic light. Omitting the constant 
1/(2ω), it can be shown that 

L = r × P0 = Im
(
E∗ · (r × ∇)E

) =
∑

p=x,y,z 

Im
(
E∗ 
p (r × ∇)Ep

)
, (2.57) 

but we failed to show that 

S = (r × Ps) = 
1 

2

(
r × ∇  ×  Im

(
E∗ × E

)) = Im
(
E∗ × E

)
(2.58) 

The physical reason is that despite the spin flow Ps presents in the expression 
for the Poynting vector, it does not carry energy. Since the divergence of the curl is 
zero, the spin flow Ps does not contribute to the differential conservation law of light 
energy (without currents and charges): ∂W /∂t = div P, where W is the light energy 
density, t is time. However, the spin flow Ps generates the SAM S, which is included 
into the expression for the angular momentum (2.52) and can be physically observed 
in the rotation of a small absorbing particle around its center of mass. We found the
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only work in the internet [63], where the above stated problem is formally solved. It 
is shown in [63] that the following integral identity is fulfilled:

∫
Re

(
r × (

E∗ × H
))
dv =

∫
Im

(
E∗ × E

)
dv 

+
∫ ∑

p=x,y,z 

Im
(
E∗ 
p (r × ∇)Ep

)
dv. (2.59) 

The integrals in Eq. (2.59) are evaluated over the whole three-dimensional space, 
since the derivation of Eq. (2.59) supposes that the amplitude of the light field E 
tends to zero at the infinity. Indeed, if we replace in Eq. (2.59) the magnetic field by 
the curl of the electric field, we get

�

J = Im 
˚ (

r × (
E∗ × rotE

))
d3 r (2.60) 

For decomposing the summary AM into the SAM and the OAM, we use the following 
vectorial identity 

A × rotB = ∇B(A · B) − (A · ∇)B (2.61) 

where ∇B is the Feynman subscript notation, which considers only the variation due 
to the vector field B [66]. Then we get

�

J = Im 
˚ [ ∑

p=x,y,z 

E∗ 
p (r × ∇)Ep −

(
E∗ · ∇)

(r × E) + (
E∗ × E

)]
d3 r (2.62) 

The first and the third terms in this expression are exactly the summary OAM
�

L 
and the summary SAM

�

S. The second term can be transformed by integrating by 
parts:

�

J = �

L + Im 
˚ [(∇ ·  E∗)(r × E)

]
d3 r + �

S (2.63) 

where

�

L = 
˚ 

Ld3 r,
�

S = 
˚ 

Sd3 r (2.64) 

The second term in the integrand in Eq. (2.63) for the summary AM is proportional 
to the divergence of the electric field and is thus equal to zero. Then, the total AM 
is equal to the sum of the total SAM and OAM, i.e., equal to the expression (2.59). 
Thus, the second equation in Eq. (2.55) for the AM density is not valid. Instead, 
only the integral identity (2.59) is valid. The correct expression for the AM density
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follows from Eq. (2.62) and reads as 

J = Im

{ ∑
p=x,y,z 

E∗ 
p (r × ∇)Ep −

(
E∗ · ∇)

(r × E) + (
E∗ × E

)}

= L − Im
{(
E∗ · ∇)

(r × E)
} + S. (2.65) 

The second term in Eq. (2.65) does not have a physical meaning since it vanishes 
in the integration (2.62). 

2.3.5 Light Field in the Focus, Obtained by the Richards-Wolf 
Theory, is a Solution of the Maxwell’s Equations 

In this subsection, we obtain expressions for the magnetic components of the 
field (2.38) from the expressions for the electric field components by using the 
Maxwell’s equations for a monochromatic light. The magnetic field strength vector 
of a monochromatic light is related with the electric field strength vector by the 
well-known expression: 

H = 
1 

iωμ0μ 
rotE (2.66) 

where μ0 and μ are respectively the magnetic permeability of free space and of the 
material. For the longitudinal component of the magnetic field, we get: 

Hz = 1 

iωμ0μ 
(rotE)z = 

1 

iωμ0μ

[
1 

r 
Eϕ + 

∂Eϕ 

∂r 
− 

1 

r 

∂Er 

∂ϕ

]

= k 

ωμ0μ

[√
2in+1 ei(n+1)ϕ I1,n+1

]
. (2.67) 

In derivation, we used the following auxiliary expressions: 

∂ 
∂r

(
I0,n − I2,n+2

) = 
n 

r 
I0,n + 

n + 2 
r 

I2,n+2 − 2kI1,n+1, 

∂Eϕ 

∂r 
= 

in √
2 
ei(n+1)ϕ

(
n 

r 
I0,n + 

n + 2 
r 

I2,n+2 − 2kI1,n+1

)
. (2.68) 

Similarly, we derive expressions for the transverse components of the magnetic 
vector in the polar and then in the Cartesian coordinates: 

Hr = 1 

iωμ0μ 
(rotE)r = 1 

iωμ0μ

(
1 

r 

∂Ez 

∂ϕ 
− 

∂Eϕ 

∂z

)
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= 1 

iωμ0μ 
−k √
2 
in+1 ei(n+1)ϕ

(
I0,n + I2,n+2

)
, 

Hϕ = 1 

iωμ0μ 
(rotE)ϕ = 1 

iωμ0μ

(
∂Er 

∂z 
− 

∂Ez 

∂r

)

= 1 

iωμ0μ 
k √
2 
in ei(n+1)ϕ

(
I0,n − I2,n+2

)
, 

Hx = Hr cos ϕ − Hϕ sin ϕ = k 

ωμ0μ 
−in √
2 
einϕ

(
I0,n + e2iϕ I2,n+2

)
, 

Hy = Hϕ cos ϕ + Hr sin ϕ = k 

ωμ0μ 
in−1 

√
2 
einϕ

(
I0,n − e2iϕ I2,n+2

)
. (2.69) 

If the constant multiplier k/(ωμ0μ) is omitted, then the last two expressions in 
Eq. (2.69) and the expression (2.67) coincide with the Cartesian components of the 
magnetic field in Eq. (2.38). For deriving the expressions (2.69), we used auxiliary 
expressions, similar to Eq. (2.38): 

∂ 
∂z

(
I0,n − I2,n+2

) = ikI0,n + ikI2,n+2 − 2i 
n + 1 
r 

I1,n+1. (2.70) 

∂ 
∂z

(
I0,n + I2,n+2

) = ikI0,n − ikI2,n+2 − 2i 
∂ 
∂r 

I1,n+1. (2.71) 

Since the components of the light field near the focus (2.38), derived by the 
Richards-Wolf theory, are exact solutions of the Maxwell’s equations, then this theory 
exactly describes the light field in the tight focus in free space. 

2.3.6 Explaining Some Experiments on Microparticles 
Rotation 

It is interesting that the above developed theory explains the experiment described 
in [27]. In this work, an absorbing microparticle is rotated along a light ring in the 
tight focus of an optical vortex with the topological charge n = 1 and with right 
circular polarization. When right circular polarization was changed to left circular 
polarization, the particle continued rotation in the same direction (counterclockwise), 
but with a lower speed. This phenomenon can be explained the following way. For 
comparison, the transverse energy flow in the focus of an optical vortex with right 
(2.43) and left circular polarization is given by 

Pϕ,R = I1,n+1
(
I0,n + I2,n+2

)
, 

Pϕ,L = I1,n−1
(
I0,n + I2,n−2

)
. (2.72) 

For the topological charge n = 1, instead of Eq. (2.72), we get
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Pϕ,R,1 = I1,2
(
I0,1 + I2,3

)
> 0, 

Pϕ,L,1 = I1,0
(
I0,1 − I2,1

)
> 0, kr << 1. (2.73) 

According to Eq. (2.73), the transverse energy flow for a vortex with left and 
with right circular polarization does not change sign, i.e., the light energy in the 
focal plane is rotated along a ring counterclockwise, but has a different magnitude. 
For left circular polarization, the energy flow is lower than that for right circular 
polarization. Besides, the longitudinal SAM component for right and left circularly 
polarized vortices 

Sz,R = I2 0,n − I2 2,n+2, 
Sz,L = −(I2 0,n − I2 2,n−2), (2.74) 

has different signs at n = 1: the SAM is positive for right circular polarization and 
negative for left circular polarization: 

Sz,R,1 = I2 0,1 − I2 2,3 > 0, 
Sz,L,1 = −(I2 0,1 − I2 2,1) <  0. (2.75) 

Thus, for left circular polarization, the OAM and the SAM rotate a particle in 
different directions. However, in the experiment, the particle is rotated by the left 
circularly polarized light still counterclockwise. This means that the OAM of light 
more affects the particle, than the SAM. It is this that explains why the particle is 
rotated in the same direction both for left and right circular polarization, but with a 
speed, lower for left circular polarization. We note that there are no such detailed 
explanations of the experiment results in [27]. 

The above obtained expressions also explain another experiment described in [67]. 
In this work, in the focus of a circularly polarized light beam, an aspherical dielectric 
microparticle was rotated around the optical axis. When the polarization handedness 
was changed (from left-handed to right-handed), the particle also changed its rota-
tion direction (from clockwise rotation to counterclockwise rotation). This can be 
explained by the transverse energy flow in the focus of a Gaussian beam with left and 
right polarizations, which is directed in different sides and has equal by magnitude 
value: 

Pϕ,R = I1,1
(
I0,0 + I2,2

)
, 

Pϕ,L = −I1,1
(
I0,0 + I2,2

)
. (2.76) 

The longitudinal SAM component is also of different sign for left and right circular 
polarization: 

Sz,R = I2 0,0 − I2 2,2, 
Sz,L = −(I2 0,0 − I2 2,2). (2.77)
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Therefore, a particle in the focus is rotated with the same velocity, but in different 
directions for the light with left and right circular polarization. 

2.3.7 Simulation 

Numerical simulation was conducted by computing the Debye integrals within the 
framework of the Richards-Wolf formalism. Figure 2.10 illustrates the intensity 
distributions I (2.40), as well as distributions of the longitudinal components of 
the SAM Sz (2.46), OAM Lz (2.50), second term in Eq. (2.55), and full AM Jz (2.48) 
in the tight focus of a vortex field with right circular polarization and with homo-
geneous unit initial amplitude A(θ) = 1 (2.1) for  n = 0, − 1, − 2 at the following 
parameters: wavelength λ = 532 nm, focal length of the focusing lens f = 10 μm, 
numerical aperture NA = sin θ0 = 0.95, computation domain 2 × 2 μm. 

As seen from Fig. 2.10f–j, at n = −1, the SAM (2.46) and the OAM (2.50) indeed 
compensate each other, their sum is zero, and the total AM (2.48) consists only one 
component equal to the second term in Eq. (2.65). At n = −2 (Fig. 2.10k–o), the 
SAM (2.46) and the OAM (2.50) are similar by shape, but no longer compensate 
each other, the OAM is greater by magnitude, and thus contributes to the total AM

Fig. 2.10 Intensity distributions (a, f, k), as well as distributions of the SAM (2.46) (b, g, l), OAM 
(2.50) (c, h, m), second term in Eq. (2.65) (d, i, n), and full AM (2.48) (e, j, o) in the tight focus of 
a plane vortex  field  (A(θ) = 1) with right circular polarization (2.37) for  n = 0 (a-e), n = −1 (f–j), 
n = −2 (k–o) at the following parameters: wavelength λ = 532 nm, focal length of the focusing 
lens f = 10 μm, numerical aperture sin θ0 = 0.95, computation domain 2 × 2 μm. Red and blue 
colors mean respectively positive and negative values. Scale mark in all figures denotes 1 μm 
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along with the component defined by the second term in Eq. (2.65). This component 
includes an inner light ring with a negative AM density and an outer ring with a 
positive AM density. Due to the summation with the OAM, the outer ring in the total 
AM is weaker than the inner one. At n = 0 (Fig. 2.10a–e), the SAM has a shape 
of a spot, while the OAM has a shape of a ring, and both they are positive. The 
component, defined by the second term in Eq. (2.65), contains a central spot with a 
negative AM and a ring with a positive AM. The central spot compensates the SAM, 
whereas the ring with the positive AM is summated with the positive OAM, thus 
generating a ring-shaped distribution of the total positive AM. Therefore, Fig. 2.10 
indicates that the summary longitudinal AM component (integrated over the beam 
cross-section) is positive at n = 0 (Fig. 2.10e) and will rotate a nearly 1-μm-size 
particle with a center on the optical axis counterclockwise. The summary longitudinal 
AM component at n = −2 is negative (Fig. 2.10o) and will rotate a small particle 
clockwise. We note that initial polarization of the field (2.37) is right-handed and the 
polarization vector rotates counterclockwise. Nevertheless, the particle in the focus 
should be rotated clockwise. Summary longitudinal AM component at n = −1 is  
almost zero (Fig. 2.10j), and therefore a small particle with the center on the optical 
axis, placed into the focus, will not be rotated. 

In this section, based on the Richards-Wolf formalism, simple analytical expres-
sions have been derived for the longitudinal component of the AM density vector 
(2.48) of light in the focus of an optical vortex with a topological charge n and with 
right circular polarization [50]. In addition, expressions have been obtained for the 
SAM (2.46) and for the longitudinal OAM component (2.50). We have demonstrated 
that the sum of the SAM and OAM densities is not equal to the AM density. It has 
been shown earlier that the sum of only the total (integrated over the whole space) 
SAM and OAM is equal to the total AM of the light beam (2.59). We have also 
shown in a general form that the AM density is equal to the sum of three terms 
(2.65): SAM, OAM, and a certain third term, that does not contribute into the total 
AM (2.59). It is also shown in this work that the expressions (2.38) for the strength 
vectors of the electric and magnetic fields near the tight focus, derived by using the 
RW formalism, are exact solutions of the Maxwell’s Eqs. (2.67)–(2.69). Thus, the 
RW theory exactly describes the behavior of light near the tight focus in free space. 
The simulation results (Fig. 2.10) agree with the theoretical outcomes. 
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Chapter 3 
Focusing of Cylindrical Vector Beams 
and Their Modifications 

3.1 Tightly Focusing Vector Beams Containing V-Point 
Polarization Singularities 

In recent years, high-order vector light fields, whose linear polarization vector varies 
across the beam cross section, have been at the focus of research [1–6]. Such beams 
can be produced with a variety of techniques, including components with optical 
metasurfaces [7]. The vector beams feature a robust intensity profile on propaga-
tion through turbulence [8] and polarization singularity points [9–11] that, in many 
respects, are similar to phase singularity points of vortex fields [12]. Polarization 
singularity points (V-points) are intensity nulls in a vector field where the linear 
polarization vector is indefinite. The V-points are characterized [10] by a Poincare-
Hopf index denoted by η, which equals the number of integer phase steps by 2π when 
making a full circle around the V-point. The phase is understood as the argument of a 
complex field composed of transverse E-field components, Ex + iEy. This definition 
is similar to a relationship utilized in Ref. [12] to calculate the topological charge 
(TC) of a scalar vortex field with complex amplitude E(x, y). V-points can also be 
characterized using a Stokes index σ, which is defined through the Poincare-Hopf 
index η as σ = 2η and also equals the number of integer phase steps by 2 π of a 
complex Stokes field when making a full circle around the V-point. With the unit 
Stokes vector S = (S1, S2, S3) [13] having three components, the complex Stokes 
field is composed of the first two components: Sc = S1 + iS2. The phase of the 
complex Stokes field is the argument of a complex number Sc. 

In this section, we derive the Poincare-Hopf and Stokes indices η and σ for nth-
order cylindrical vector beams. We show that in the source plane of the beams (where 
the on-axis field component is zero), fields of linear polarization vectors are formed 
centered at the V-points, which look like a ‘flower’ or a ‘web’, with the number of 
petals depending on the vector field order n. Using Richards-Wolf formulae, we derive 
expressions for E-vector components at the tight focus for three types of vector fields, 
namely, for nth-order radial polarization (n is positive), –nth-order radial polarization
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(–n is negative), and nth-order azimuthal polarization. Relying on the expressions 
derived for the complex E-field amplitudes, we deduce expressions for transverse 
intensity profiles of the fields of interest. Based on the expressions derived, we obtain 
a major finding of this work, showing that the number of petals of the ‘polarization 
flower’ of the initial vector field equals the number of local intensity maxima at the 
focal plane. We also show that a V-point of an nth-order vector field is ‘disintegrated’ 
at the tight focus into several first-order points with no petals around them. 

3.1.1 Vector Field Polarization Index in the Source Plane 

Let us analyze an nth-order azimuthally polarized source field whose Jones vector 
takes the form [14, 15]: 

En(ϕ) =
(

− sin nϕ 
cos nϕ

)
(3.1) 

where (r, ϕ) are the polar coordinates at the source plane. At the field center (at r 
= 0), there is a singular V-point, where the linear polarization vector is indefinite. 
According to Ref. [10], field (3.1) can be characterized by a singularity index similar 
to the TC of scalar optical vortices. V-points are described using a Poincare-Hopf 
index η, which can be calculated for field (3.1) similar to the TC of a complex field 

Ec,n(ϕ) = Ex + iEy = −  sin nϕ + i cos nϕ = i exp(inϕ) (3.2s) 

The index of field (3.1) and a V-point equal TC of field (3.2): η = n. On the other 
hand, vector field (3.1) can be characterized using Stokes parameters S = (S1, S2, S3) 
[13], where 

S1 = 
|Ex|2 −

∣∣Ey

∣∣2 
|Ex|2 +

∣∣Ey

∣∣2 , S2 = 
2Re

(
E∗
x Ey
)

|Ex|2 +
∣∣Ey

∣∣2 , S3 = 
2Im

(
E∗
x Ey
)

|Ex|2 +
∣∣Ey

∣∣2 , (3.3) 

with Re and Im stand for the real and imaginary parts of a number. From (3.3), the 
Stokes vector is seen to be of unit length: S2 

1 + S2 
2 + S2 

3 = 1. For the field (1), the 
Stokes parameters from (3.3) are  given by  

S1 = −  cos(2nϕ), S2 = − sin(2nϕ), S3 = 0. (3.4) 

Since S3 = 0 in Eq.  (3.4), we can infer that the field (3.1) is linearly polarized 
at any point, excepting the V-point, where polarization is indefinite. The complex 
Stokes field for the vector (3.4) takes the form:



3.1 Tightly Focusing Vector Beams Containing V-Point Polarization … 79

Sc = S1 + iS2 = −  cos(2nϕ) − i sin(2nϕ) = − exp(i2nϕ) (3.5) 

The Stokes index for the field (3.1) equals TC of the field (3.5): σ = 2η = 2n. 
Thus, the Stokes index is twice as large as the Poincare-Hopf index. For a radially 
polarized nth-order field with the Jones vector 

E1,n(ϕ) =
(
cos nϕ 
sin nϕ

)
(3.6) 

the Poincare-Hopf index of the central V-point (r = 0) also equals η = n. The V-point 
singularity index has the opposite sign (η = –n) for a vector field 

E2,n(ϕ) =
(
cos nϕ 
− sin nϕ

)
(3.7) 

3.1.2 Number of Local Intensity Maxima at the Focus 
of a Vector Field 

Interestingly, vector field (3.6) produces a ‘flower’-shaped pattern of linear polariza-
tion vectors composed of 2(n – 1) petals. Actually, a petal is inscribed between the 
vector found at an angle ϕ = 0 and the vector rotated by an angle ϕ = π + ϕ0. 
From the first to the second angle, the phase of the field (3.6) changes by n ϕ 0 rad. 
Equating π + ϕ0 = n ϕ0, we find the angle for a single petal to be ϕ0 = π /(n – 1).  
In total, there are N petals: 2 π = N ϕ0. Hence, we find that N = 2(n – 1). A similar 
reasoning suggests that a polarization ‘web’ composed of linear polarization vectors 
around the V-point of field (3.7) has N = 2(n + 1) cells. 

Next, we demonstrate that a ‘flower’ of linear polarization vectors composed 
of 2(n – 1) petals formed by the field (3.6) in the source plane is transformed at 
the tight focus into a ‘flower’-shaped intensity pattern with 2(n – 1) local maxima. 
Actually, using Richards-Wolf formulae [17], which describe the electromagnetic 
field components in the tight focus neighborhood, the E-field components can be 
derived in the form: 

Ex = −in+1
(
I0,n cos nϕ + I2,n−2 cos(n − 2)ϕ

)
, 

Ey = −in+1
(
I0,n sin nϕ − I2,n−2 sin(n − 2)ϕ

)
, 

Ez = 2in I1,n−1 sin(n − 1)ϕ, (3.8) 

where
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Iν,μ =
(
4π f 

λ

) θ0∫
0 

sinν+1

(
θ 
2

)
cos3−ν

(
θ 
2

)
cos1/2 (θ )A(θ )eikz cos θ Jμ(x)dθ, (3.9) 

where λ is the wavelength of light, f is the focal length of an aplanatic optical system, 
x = krsinθ, Jμ(x) is the first-kind Bessel function, and NA = sin θ 0 is the numerical 
aperture. The initial amplitude function A(θ ) (herein assumed to be real) may be 
either constant (a plane wave) or in the form of a Gaussian beam 

A(θ ) = exp
(−γ 2 sin2 θ 

sin2 θ0

)
(3.10) 

where γ is constant. The transverse intensity (without regard for the longitudinal 
component of the field (3.8)) is given by 

It = |Ex|2 +
∣∣Ey

∣∣2 = I2 0,n + I2 2,n−2 + 2I0,nI2,n−2 cos(2(n − 1)ϕ). (3.11) 

From (3.11), the transverse intensity profile is seen to have 2(n – 1) local intensity 
maxima centered on the optical axis, each being located on a ray ϕ = 2 π p/(2n – 2),  
p = 1, 2, 3, …, 2(n – 1). Now we will determine an index of the V-point at the focus of 
the vector field (3.8). For this purpose, an equivalent complex field and its amplitude 
can be expressed as 

Ec,n =
(
I0,n cos nϕ + I2,n−2 cos(n − 2)ϕ

)
+ i
(
I0,n sin nϕ − I2,n−2 sin(n − 2)ϕ

)
= I0,n exp(inϕ) + I2,n−2 exp(−i(n − 2)ϕ). (3.12) 

In the general case, the index of the field (3.8) is undefined, because while at 
certain radii r coefficients in one exponential function can be larger than those in 
another one, the situation may be opposite at other radii. In the complex field of 
Eq. (3.12), TC depends on asymptotic properties of integrals (3.9). For instance, 
putting A(θ ) = δ(θ − θ0), the integrals in (3.9) are replaced by Bessel functions, so 
that (3.12) is rearranged to 

Ec,n = AJn(αr) exp(inϕ) + BJn−2(αr) exp(−i(n − 2)ϕ), (3.13) 

with α = kr sin θ 0 and 

A =
(
4π f 

λ

)
sin

(
θ0 

2

)
cos3

(
θ0 

2

)
cos1/2 θ0, 

B =
(
4π f 

λ

)
sin3

(
θ0 

2

)
cos

(
θ0 

2

)
cos1/2 θ0.
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While from (3.13), the index is still seen to be undefined, near the optical axis 
the amplitude of a lower-order Bessel function is larger than that of a higher-order 
Bessel function, which means that, similar to the TC of a superposition of two optical 
vortices [16], the near-axis index equals η = –(n – 2). In a particular case of n = 1 
(conventional radial polarization) Eq. (3.12) suggests that 

Ec,1 = (I0,1 − I2,1) exp(iϕ). (3.14) 

In this case, the V-point index is unit (η = 1) and, considering that n = 1, the 
source field index remains the same at the focus. This clearly follows from the fact 
that a singular point with unit index is unable to disintegrate into a number of V-points 
with smaller indices. In a similar way, a scalar optical vortex with TC = 1 remains 
robust following stochastic amplitude and phase distortions. 

For an nth-order azimuthally polarized vector source field of Eq. (3.1), 2(n – 1)  
local intensity maxima will also occur at the focus, though being located on other 
rays. Hence, a focal ‘flower’ composed of local intensity maxima will be rotated by 
an angle of π /(2n – 2). Using the angle magnitude, it becomes possible to distinguish 
nth-order radial polarization from nth-order azimuthal one. Meanwhile, the number 
of ‘flower’s petals’ enables a cylindrical polarization order to be determined. Actually, 
for a source field (3.1), E-vector components in the focal plane take a form similar 
to Eq. (3.8): 

Ex = in+1
(
I0,n sin nϕ + I2,n−2 sin(n − 2)ϕ

)
, 

Ey = in+1
(−I0,n cos nϕ + I2,n−2 cos(n − 2)ϕ

)
, 

Ez = −2in I1,n−1 sin(n − 1)ϕ. (3.15) 

For the source field (3.1), the transverse intensity distribution in the focus is 

It = |Ex|2 +
∣∣Ey

∣∣2 = I2 0,n + I2 2,n−2 − 2I0,nI2,n−2 cos(2(n − 1)ϕ). (3.16) 

From (3.16), 2(n – 1) local maxima are seen to reside on a circle centered at the 
optical axis and on the rays outgoing from the center at angles ϕ = ( π + 2 π p)/ 
(2n – 2),  p = 0, 1, 2, …, 2(n – 2). To find indices of V-points at the focal spot of the 
vector field (3.1), we can express an equivalent complex field with the amplitude: 

Ec,n =
(
I0,n sin nϕ + I2,n−2 sin(n − 2)ϕ

)
+ i
(−I0,n cos nϕ + I2,n−2 cos(n − 2)ϕ

)
= −iI0,n exp(inϕ) + iI2,n−2 exp(−i(n − 2)ϕ). (3.17) 

In the general case, the index of the field (3.17) is undefined, because while at 
certain radii r coefficients in one exponential function can be larger than those in 
another one, the situation may be opposite at other radii. However, at n = 1 (ordinary 
azimuthal polarization), from Eq. (3.17) it follows that
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Ec,1 = −i(I2,1 + I0,1) exp(iϕ). (3.18) 

In this case, the V-point index is unit (η = 1), meaning that the index of initial 
field (3.1) remains unchanged at the focus. 

A vector ‘web’ of source field (3.7) with 2(n + 1) cells, centered on the V-point 
polarization singularity is transformed at the focus into an intensity pattern with 2(n 
+ 1) local maxima. Actually, for the source field in (3.7), projections of the E-vector 
are given by (n > 0)  

Ex = in−1
(
I0,n sin nϕ + I2,n+2 sin(n + 2)ϕ

)
, 

Ey = in−1
(
I0,n cos nϕ − I2,n+2 cos(n + 2)ϕ

)
, 

Ez = −2in I1,n+1 sin(n + 1)ϕ. (3.19) 

For the field (3.19), the transverse intensity distribution at the focus is given by 

It = |Ex|2 +
∣∣Ey

∣∣2 = I2 0,n + I2 2,n+2 − 2I0,nI2,n+2 cos(2(n + 1)ϕ). (3.20) 

From (3.20), the intensity distribution is seen to have 2(n + 1) local intensity 
maxima at the focus on an axis-centered circle of a certain radius. Hence, the vector 
‘web’ in the source field of Eq. (3.7) can be identified based on the number of petals 
of an nth-order vector ‘flower’. 

Putting n = –1 in Eq. (3.7) for the source field, we may infer from (3.14) that 
the V-point index changes sign at the focus, because based on Eq. (3.19) for  the  
E-vectors at the focus, we find that 

Ec,1 = −i(I2,1 + I0,1) exp(iϕ). (3.21) 

Aiming to determine the V-point index at the focus of the vector field (3.7) and 
using Eq. (3.19), we form an equivalent complex field with the amplitude: 

Ec,n =
(
I0,n sin nϕ + I2,n+2 sin(n + 2)ϕ

)
+ i
(
I0,n cos nϕ − I2,n+2 cos(n + 2)ϕ

)
= iI0,n exp(−inϕ) − iI2,n+2 exp(i(n + 2)ϕ). (3.22) 

Just like in Eq. (3.17), the index of field (3.19) is undefined, but like in Eq. (3.13), 
it can be asserted that at the focus the near-axis V-point index is equal to a lesser 
number of the Bessel function, i.e., η = –n. That is, given the source field of Eq. (3.7), 
the near-axis V-point index at the focus is the same as in the source plane.
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3.1.3 Polarization Singularity Index for a Generalized Vector 
Field 

Obviously, the above reasoning cannot be automatically applied to a generalized 
vector field as it has different orders on the different axes. For such a field, the Jones 
vector is [10] 

E2,n(ϕ) =
(
cos nϕ 
sin mϕ

)
(3.23) 

Although the field (3.23) may also be said to have a central V-point, its index can 
be defined analytically only in some cases. Actually, the complex field equivalent to 
the field (3.23) is given by 

Ec,n(ϕ) = Ex + iEy = cos nϕ + i sin mϕ (3.24) 

In the topic-related work [10], it was not specified in which way the index of such 
a field could be determined if n �= m. In this work, we propose that the V-point index 
of the vector field (3.23) should be calculated in a similar way to calculating the TC 
of scalar optical vortices using the Berry’s formula [12]: 

TC = 
1 

2π 
lim 
r→∞ 

Im 

2π∫
0 

d ϕ 
∂E(r, ϕ)/∂ϕ 

E(r, ϕ) 
. (3.25) 

Then, according to (3.25), the Poincare-Hopf index for vector field (3.24) is given  
by 

η = 
1 

2π 
lim 
r→∞ 

Im 

2π∫
0 

d ϕ 
−n sin nϕ + im cos mϕ 

cos nϕ + i sin mϕ
= 

1 

2π 

2π∫
0 

d ϕ 
n sin nϕ sin mϕ + m cos mϕ cos nϕ 

cos2 nϕ + sin2 mϕ 
. (3.26) 

From (3.26), it follows that at m = n, η = n, whereas at m = –n, η = –n. However, 
at n �= ±  m, the integral in Eq. (3.26) is not reduced to reference integrals. In 
separate cases, Eq. (3.26) can be calculated analytically, but in other cases it needs 
to be calculated numerically. Below, we deduce some properties of polarization 
singularity index (3.26), including properties of parity, symmetry, reciprocity, and 
multiplicity. The parity property is expressed in the fact that for different-parity m 
and n (i.e., m + n is odd), polarization singularity index (3.26) equals zero. Actually, 
the first integral in (3.26) can be broken down in two (with the range of integration
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in the second integral shifted from [π, 2  π ] to [0,  π ]): 

ηn,m = 
1 

2π 
Im 

⎧⎨ 

⎩ 

π∫
0 

−n sin nϕ + im cos mϕ 
cos nϕ + i sin mϕ 

d ϕ 

+ 
π∫

0 

−n(−1)n sin nϕ + im(−1)m cos mϕ 
(−1)n cos nϕ + i(−1)m sin mϕ 

dϕ 

⎫⎬ 

⎭. 

(3.27) 

Multiplying the numerator and denominator of the first integral by (–1)n and 
taking into account that (–1)m+n = –1, we get a sum of two complex conjugated 
numbers whose imaginary part equals zero. Thus, we obtain a symmetry property of 
the Poincare-Hopf index for vector field (3.23). In this way, it stands to reason that 
when n changes sign, the first integral in (3.26) does not change: 

η−n,m = 
1 

2π 
Im 

2π∫
0 

d ϕ 
−(−n) sin(−nϕ) + im cos mϕ 

cos(−nϕ) + i sin mϕ
= ηn,m (3.28) 

On the contrary, when m changes sign, the integrand becomes complex conjugated 
and, hence, the imaginary part changes sign: 

ηn,−m = −ηn,m (3.29) 

Shifting the range of integration by π /2, we get the following relationships 
between the indices: 

ηn,m = 

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨ 

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩ 

1 

2π 
Im 

2π∫
0 

d ϕ 
−n(−1) 

n 
2 sin nϕ + im(−1) 

m 
2 cos mϕ 

(−1) 
n 
2 cos nϕ + i(−1) 

m 
2 sin mϕ 

, 

if n, m are even, 

1 

2π 
Im 

2π∫
0 

d ϕ 
−n(−1) 

n−1 
2 cos nϕ + im(−1) 

m+1 
2 sin mϕ 

(−1) 
n+1 
2 sin nϕ + i(−1) 

m−1 
2 cos mϕ 

, 

if n, m are odd, 

=
{

(−1)(m−n)/2 ηn,m, if n, m are even, 
(−1)(m−n)/2 ηm,n, if n, m are odd. 

(3.30) 

This can be termed as a reciprocity property because it enables the indices to be 
swapped if they are odd. From (3.30), it also follows that if n and m are even, but 
(m – n)/2 is odd, then η = 0.
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If the orders m and n have a common divisor, i.e., m = pμ and n = pν, then, 
performing a change of variables ϕ = θ /p in (3.26), we obtain a multiplicity property: 

ηpν,pμ = p 
1 

2π 
Im 

2πp∫
0 

−ν sin νθ + iμ cos μθ 
cos νθ + i sin μθ 

dθ 
p 

= pην,μ (3.31) 

For instance, at m = 2n, polarization singularity index equals zero thanks to the 
multiplicity and parity properties: ηn,2n = nη1,2 = 0. In a simple case, we determine 
the index η1,2p+1 analytically through the use of residues. If we denote ζ = cos ϕ + 
i (2p + 1) sin ϕ, the integral (3.26) can be written as (at n = 1) 

η = 
1 

2π 
Im
∮


d ζ 
ζ 

(3.32) 

where  is the oriented closed contour in the complex plane drawn by the variable 
ζ , when 0 ≤ ϕ ≤ 2 π. Figure 3.1 illustrates this contour for p = 0, 1, 2. 

If p = 0, this contour is a simple unit-radius circle. Otherwise,  has self-
intersections and the integral over  can be replaced by a sum of the integrals 
over several simple contours without the self-intersections [red dashed contours in 
Fig. 3.1b, c]. The only pole of the integrand in (3.32) is  ζ = 0. If p = 0, this pole 
is within the unit-radius circle and, according to the residues theorem, applied to 
the integral (3.32), η11 = 1. For p > 0, only one simple contour contains the pole 
(Fig. 3.1b, c). Thus, integration over the other simple contours yields 0. If p = 1 (and 
at other odd p), the pole is bypassed clockwise and, therefore, the integration yields 
η13 = –1. Similarly, if p = 2 (and at other even p), the pole is bypassed counter-
clockwise and, therefore, the integration yields η15 = +  1. Thus, we can write a 
general rule for the Poincare-Hopf index ηnm at n = 1 and odd m:

Fig. 3.1 Calculation of the Poincare-Hopf index. Contours  (blue solid curves) in the complex 
plane defined as ζ = cos ϕ + i (2p + 1) sin ϕ (0 ≤ ϕ ≤ 2 π ) for  p = 0 (a), p = 1 (b), p = 2 (c) Red  
dashed ellipses show the simple contours without self-intersections, into which the contour  can 
be split. The cross in the center denotes ζ = 0, the only pole of the integrand in (3.32) 
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Table 3.1 Poincare-Hopf index η of vector field (3.23): n shown on the horizontal lines and m—on 
the vertical 

m N 

0 1 2 3 4 5 6 7 8 9 10 

0 0 0 0 0 0 0 0 0 0 0 0 

1 0 1 0 1 0 1 0 1 0 1 0 

2 0 0 2 0 0 0 2 0 0 0 2 

3 0 –1 0 3 0 –1 0 –1 0 3 0 

4 0 0 0 0 4 0 0 0 0 0 0 

5 0 1 0 1 0 5 0 1 0 1 0 

6 0 0 –2 0 0 0 6 0 0 0 –2 

7 0 –1 0 –1 0 –1 0 7 0 –1 0 

8 0 0 0 0 0 0 0 0 8 0 0 

9 0 1 0 –3 0 1 0 1 0 9 0 

10 0 0 2 0 0 0 2 0 0 0 10 

η1m = (−1)(m−1)/ 2 (3.33) 

or, using the reciprocity property: 

ηn,1 = 1 (3.34) 

All the properties of index (3.26) for field (3.23) derived herein can be verified 
using the Table 3.1. 

Table 3.1 below gives values of η, which were calculated using Eq. (3.26) for  
vector field (3.23), with the orders m and n being varied from 0 to + 10 (for negative 
m and n, symmetry rules can be used: η–n,m = ηn,m and ηn,–m = –ηn,m). From Table. 
3.1, polarization singularity index can be only integer. It is also interesting that at n 
= 1, –1 and any m, the  η index is equal to either 1, or 0, or –1. Also, at n = 8, –8 and 
any m, the  η index equals either 8, or 0, or –8. The same holds for n = 4 and n = 2. 

3.1.4 Numerical Modeling 

Shown in Fig. 3.2 are source vector fields with polarization singularity (V-point) 
at the center for the nth-order vector field (3.6): (a) 3, (b) 4, (c) –3, and (d) –4. In 
compliance with the theoretical predictions, the vector fields in Fig. 3.2a, b are shaped 
as ‘flowers’ with the number of petals equal to (a) 2(n – 1)  = 4 and (b) 2(n – 1)  = 
6. Whereas two other vector fields in Fig. 3.2c, d produce ‘lattice’ patterns with the 
number of cells equal to (c) 2(n + 1) = 8 and (d) 2(n + 1) = 10.
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Fig. 3.2 Vector field (3.6) (arrows mark linear polarization vectors at particular points), whose 
order n coincides with the index of the V-point polarization singularity (Poincare-Hopf index η) at  
the field center and equals: a 3, b 4, c –3, and d –4 

Source vector fields of type (3.6) in Fig.  3.2 are transformed at the focal plane 
into vector fields (3.8), (3.15), and (3.19), which have several points of polarization 
singularities. Shown in Fig. 3.3 are the total intensity (Fig. 3.3a) and the transverse 
intensity (Fig. 3.3b) for a source vector field with the index n = 3 of Fig.  3.2a. The 
numerical modeling of focusing vector fields was conducted using Richards-Wolf 
formulae [17] for wavelength 532 nm and numerical aperture NA = 0.95.

In accordance with theoretical predictions [Eq. (3.11)], there occur 2(n – 1)  = 4 
local maxima of the total and transverse intensities at the focus. Due to the longi-
tudinal intensity components, the coordinates of four local maxima in Fig. 3.3a are  
different from those of the transverse intensity in Fig. 3.3b.
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Fig. 3.3 Patterns of the a total intensity Ix + Iy + Iz and b transverse intensity components Ix + 
Iy from the source vector field of Fig. 3.2a at  n = 3

Shown in Fig. 3.4 is a distribution of linear polarization vectors at the focus from 
the source vector field in Fig. 3.2a (n = 3). 

From Fig. 3.4, four polarization singularity centers are seen to be located at the 
corners of the dark cross of Fig. 3.3, with an on-axis V-point with the index η = –1 
located at the center. The indices of the four V-points at the corners of the dark cross 
(Fig. 3.3) are the same in magnitude but of different sign, with two vertical V-points 
having η = +  1, and two horizontal V-points η = –1. Hence, the total near-axis index 
of the vector field of Fig. 3.4 equals that of the central V-point, i.e., η = –1. This 
conclusion agrees well with Eqs. (3.12) and (3.13): η = –(n – 2)  = –1.

Fig. 3.4 Pattern of linear 
polarization vectors at the 
focal plane from the source 
vector field in Fig. 3.2a (n = 
3) 
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Figure 3.5 depicts numerically simulated patterns for the (a) total intensity and 
(b) transverse intensity from the source vector field with n = 4 (Fig. 3.2b). From 
Fig. 3.5, the theoretical relation (3.11) is again seen to be corroborated, with 2(n – 1)  
= 6 local maxima in the intensity pattern found symmetrically to the optical axis 
being observed. 

Figure 3.6 shows a pattern of linear polarization vectors at the focus from a source 
vector field with n = 4 (Fig. 3.2b). From Fig. 3.6, a set of V-points with indices η 
= +  1, –1 are seen to form at the ‘vertices of a dark six-point star’ of Fig. 3.5. 
Equation (3.12) suggests that an on-axis V-point with η = –2 is found at the center. 

Fig. 3.5 Patterns of the a total intensity Ix + Iy + Iz and b transverse intensity Ix + Iy component 
at the focal plane (NA = 0.95) from the source vector field with the index n = 4 (Fig.  3.2b) 

Fig. 3.6 Pattern of linear 
polarization vectors for the 
source vector field of 
Fig. 3.2b with the index n = 
4
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Figure 3.7 depicts patterns for the total (Fig. 3.7a) and transverse (Fig. 3.7b) 
component of the intensity at the focal plane (NA = 0.95) from the source vector 
field with n = –3 of Fig. 3.2c. Figure 3.7 shows that in compliance with theoretical 
predictions, there are 2(n+ 1) = 8 local intensity maxima in the intensity distribution. 

Shown in Fig. 3.8 is a pattern of linear polarization vectors at the focus from the 
source vector field of Fig. 3.2c at  n = –3. From Fig. 3.8, eight V-points are seen to 
be located on a circle (at the vertices of a ‘dark eight-point star’), with four of them 
having the index η = +  1 and four having the index η = –1. Equation (3.22) suggests 
that at the center of the focal spot there is a V-point with η = 3. 

Fig. 3.7 Patterns of the a total intensity Ix + Iy + Iz and b transverse intensity Ix + Iy component 
at the focal plane (NA = 0.95) for the source vector field with the index n = –3 of Fig. 3.2c 

Fig. 3.8 Pattern of linear 
polarization vectors at the 
focus from the source field 
with the index n = –3 of 
Fig. 3.2c
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Figure 3.9 presents patterns of linear polarization vectors for the source field of 
Eq. (3.23) at different values of (n, m): (a) (2,1), (b) (3, –7), (c) (9, –3), and (d) (6,2). 
Using the Table 3.1 above, the Poincare-Hopf indices η for the said vector fields 
can be found to be (a) 0, (b) 1, (c) –3, and (d) 2. By looking at Fig. 3.9, indices 
of the V-points of such complex vector fields would be difficult to determine. The 
pattern for linear polarization vectors at the focus would be even more complicated 
(not presented here). Shown in Fig. 3.10 is an intensity pattern at the focus of an 
aplanatic objective with NA = 0.95 when focusing vector beams with n = 2, m = 1 
(Fig. 3.10a) and n = 3, m = –7 (Fig. 3.10b). 

Figure 3.10 suggests that a source field with η = 0 (Fig. 3.9a) produces neither 
an intensity null nor a V-point at the center of the focal spot (Fig. 3.10a), whereas a 
source vector field with η = 1 (Fig. 3.10b) produces at the center an intensity null 
and a V-point.

Fig. 3.9 Source vector fields (3.23) at different n and m
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Fig. 3.10 Intensity patterns at the focus of vector beams with a n= 2, m = 1 (a ‘butterfly’) and b n= 
3, m = –7 (a ‘dragon mouth’)

Summing up, we have shown both theoretically and numerically that an nth-order 
source vector field has a central V-point with the Poincare-Hopf index η = n and the 
Stokes index 2n. Such a vector field is ‘flower’-shaped with 2(n – 1) petals. When 
tightly focused, this field produces at the focus an intensity pattern with 2(n – 1)  
local maxima located on a circle of certain radius, centered on the optical axis. Near 
those intensity maxima, 2(n – 1) local minima are found (intensity nulls, polarization 
singularity points), where V-point singularities with alternating indices + 1 and – 
1 (the total index being zero) are located. An intensity null, or a V-point with the 
index –(n – 2), has also been shown to occur at the center of the focus. It has also 
been shown that an –nth-order source vector field has at the center a V-point with 
the index –n. Such a vector field is in the form of a ‘web’ with 2(n + 1) cells. At 
the tight focus, this field produces an intensity pattern with 2(n + 1) local maxima 
located on a circle of certain radius centered on the optical axis. Near those intensity 
maxima, 2(n + 1) local minima are found (intensity nulls, polarization singularity 
points), where V-points with alternating indices + 1 and –1 (the total index being 
zero) are located. An intensity null, or a V-point with the index –n, has also been 
shown to occur at the center of the focus. For an (n, m)-order vector field, indices of 
V-points (see the Table) have been numerically calculated for the numbers varying 
from –10 to + 10. For a number of cases, indices of a generalized vector field have 
been derived analytically. 

Such vector fields with V-point singularities can be generated experimentally by 
using either q-plates, i.e., specially transversely patterned liquid crystal cells inducing 
an integer or semi-integer topological charge [18, 19], or, for higher Poincare-Hopf 
indices, by spatial light modulators: either by one, with double modulation technique 
[20], or by two [21]. 

Application areas of such light fields with polarization singularities are laser 
information technologies [22], laser material processing [23], microscopy [24], and 
particle manipulation or optical trapping [25]. Vector laser beams with V-points are 
considered in [26].
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3.2 Spin Hall Effect Before and After the Focus 
of a High-Order Cylindrical Vector Beam 

In optics, cylindrical vector beams (CVB) are well known [14, 27], including the 
high-order beams. When the order is n = 1, these beams have specific names— 
radially polarized beam [28] and azimuthally polarized beam [29]. In addition, a lot 
of works studied sharp focusing of the CVBs of the first order [30, 33], of the high 
order [4, 31], of the fractional order [32], as well as focusing of the vortex beams 
with high-order azimuthal polarization [34]. 

It is known that both in the initial plane and in the focus of a CVB of an arbitrary 
order, polarization is inhomogeneous and linear in every point of the beams cross 
section. The beam order n is equal to the number of full rotations of the polarization 
vector when passing along a closed contour around the optical axis. On the optical axis 
in the initial plane, such beams have a point of a polarization singularity (V-point), 
where the direction of linear polarization vector [26] is undefined. The polarization 
index of this V-point is equal to the beam order n. It is also known, that in the sharp 
focus of the nth-order CVB, the intensity distribution has 2(n – 1) local maxima [26]. 
The third component of the Stokes vector is zero: S3 = 2Im(E∗

x Ey) = 0, i.e., the 
spin angular momentum (SAM) of a CVB in the initial plane is zero. Equal to zero 
is also the orbital angular momentum (OAM) of the CVB in the initial plane and in 
the focus. 

In this section, using the Debye integrals and a numerical simulation, we show that 
near the sharp focus (before the focus and beyond the focus), local subwavelength 
areas are generated with elliptic and circular polarization of different sign. 

3.2.1 Spin Angular Momentum Before and Beyond the Focus 

If the initial light field is an nth-order cylindrical vector beam, the Jones vectors of 
the electric and magnetic fields are given by 

En(ϕ) =
(
cos nϕ 
sin nϕ

)
, Hn(ϕ) =

(
− sin nϕ 
cos nϕ

)
, (3.35) 

with (r, ϕ) being the polar coordinates in the transverse initial plane of the beam. 
Adopting the Debye integrals [17], we derive all the Cartesian components of the 
strength vectors of the electric and magnetic fields in the sharp focus of the light field 
with polarization (3.35): 

Ex(r, ϕ)  = in−1[cos(nϕ)I0,n + cos((n − 2)ϕ)I2,n−2
]
, 

Ey(r, ϕ)  = in−1
[
sin(nϕ)I0,n − sin((n − 2)ϕ)I2,n−2

]
, 

Ez(r, ϕ)  = 2in cos((n − 1)ϕ)I1,n−1,



94 3 Focusing of Cylindrical Vector Beams and Their Modifications

Hx(r, ϕ)  = −in−1
[
sin(nϕ)I0,n + sin((n − 2)ϕ)I2,n−2

]
, 

Hy(r, ϕ)  = −in−1[− cos(nϕ)I0,n + cos((n − 2)ϕ)I2,n−2
]
, 

Hz(r, ϕ)  = −2in sin((n − 1)ϕ)I1,n−1. (3.36) 

In Eq. (3.36), the functions Iν,μ depend only on the radial and longitudinal 
coordinates r and z and equal to: 

Iν,μ =
(
4π f 
λ

) θ0∫
0 

sinν+1

(
θ 
2

)
cos3−ν

(
θ 
2

)
cos1/2 (θ )A(θ )eikz cos θ Jμ(x)d θ (3.37) 

where k = 2 π /λ stands for the wavenumber of monochromatic light with the 
wavelength λ, f is the focal distance of an aberration-free spherical lens that focuses 
the beam, z is the propagation axis (z = 0 is the focal plane), x = kr sin θ is a 
dimensionless argument of the μth-order Bessel function of the first kind Jμ(x), 
NA = sin θ 0 is the numerical aperture of an aplanatic focusing system, whereas an 
arbitrary real-valued function A(θ ) describes the amplitude of an input field with a 
cylindrical symmetry (plane wave, Gaussian beam, Bessel-Gaussian beam). In the 
functions Iν,μ in Eq. (3.37), the first index ν = 0,1,2 describes the first part of the 
integrand, whereas the second index μ = 0,1,2,…,n defines the order of the Bessel 
function. 

To derive the focal distribution of the spin density or the spin angular momentum 
(SAM) for the beam with polarization (3.35), we use the general expression for the 
spin angular momentum vector given in [35]: 

S = 1 

16πω  
Im
(
E∗ × E

)
, (3.38) 

where ω is the angular frequency of light. From now on, the constant factor 1/(16 
π ω) will be omitted. It is seen in Eq. (3.38) that the longitudinal SAM component 
(without the constant factor) is coinciding with the non-normalized third Stokes 
parameter S3: 

S3 = Sz = 2Im
(
E∗ 
x Ey
)
. (3.39) 

It is known that the third Stokes component indicates circular or elliptic polariza-
tion of a light field [36]. If S3 = 0, then the field has only linear polarization. If we 
substitute the electric field components from Eq. (3.36) into Eq. (3.39) and take into 
account that the integrals (3.37) are complex-valued near the focus (but not in the 
focus itself), we get the longitudinal component of the SAM vector: 

Sz = Im
[
I0,nI

∗ 
2,n−2 sin(nϕ) cos((n − 2)ϕ) − I∗ 

0,nI2,n−2 sin((n − 2)ϕ) cos((n − 2)ϕ)
]
, 

(3.40)
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where the asterisks “*” mean the complex conjugation. Separating the real and imagi-
nary parts in the integrals (3.37), and using the linear approximation exp(ikz cos θ)  ≈ 
1 + ikz cos θ near the focus (kz << 1), instead of Eq. (3.40) we get: 

Sz � 2kz sin(2(n − 1)ϕ)(I0R2 − I2R0), (3.41) 

where we use the following designations: 

R0 = I0,n(z = 0), I0 = I0,n, 
R2 = I2,n−2(z = 0), I2 = I2,n−2, 

I ν,μ =
(
4π f 

λ

) θ0∫
0 

sinν+1

(
θ 
2

)
cos3−ν

(
θ 
2

)
cos3/2 (θ )A(θ )Jμ(x)dθ. (3.42) 

As seen from Eq. (3.41), in the focus itself (z = 0), S3 = 0, and, therefore, in each 
point of the focal plane, polarization is linear. However, at small defocusing (kz << 
1), S3 �= 0, and areas with elliptic and circular polarization appear, if n �= 1. In the 
areas where before the focus (z < 0) the SAM was negative (S3 < 0), after the focus 
(z > 0) it becomes positive (S3 > 0), and vice versa. According to Eq. (3.41), near 
the focal plane, on a certain radius circumference with the center on the propagation 
axis, centers of 4(n – 1) local subwavelength areas reside, with elliptic and circular 
polarization. In such neighboring areas, polarization vector is rotating in opposite 
directions (clockwise or counter-clockwise). A similar result was obtained in [37], 
but for n = 0. Since, at n �= 1, near the focus of the light field (1), areas with left 
and right circular polarization (areas with a different “spin”) are spatially separated, 
we can conclude that near the focus (before and after it), the spin Hall effect occurs, 
although in the focal plane itself, this effect vanishes. 

3.2.2 Transverse Energy Flow Before and Beyond the Focus 

Further we derive the transverse components of the energy flow vector. The Poynting 
vector reads as [17] 

P = 
c 

4π 
Re
(
E∗ × H

)
. (3.43) 

In Eq. (3.43), vectors E and H stand respectively for the electric and magnetic 
fields, the asterisk * means the complex conjugation, × is the cross product, c is the 
free-space speed of light. From now on, the constant factor c/(4 π ) will be omitted. 
Substituting the expressions (3.36) for the electromagnetic field components in the 
focus into Eq. (3.43), we obtain the transverse components of the Poynting vector 
near the focus:
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Px = 2Im
{
−I∗0,nI1,n−1 sin(nϕ) sin((n − 1)ϕ) + I∗2,n−2I1,n−1 sin((n − 2)ϕ) sin((n − 1)ϕ) 

+ I∗1,n−1I0,n cos(nϕ) cos((n − 1)ϕ) − I∗1,n−1I2,n−2 cos((n − 2)ϕ) cos((n − 1)ϕ)
}
, 

Py = 2Im
{
I∗1,n−1I0,n sin(nϕ) cos((n − 1)ϕ) + I∗1,n−1I2,n−2 sin((n − 2)ϕ) cos((n − 1)ϕ) 

+ I∗0,nI1,n−1 cos(nϕ) sin((n − 1)ϕ) + I∗2,n−2I1,n−1 cos((n − 2)ϕ) sin((n − 1)ϕ)
}
. 
(3.44) 

Separating the real part and the imaginary part in the integrals (3.37), and using 
the approximation exp(ikz cos θ)  ≈ 1 + ikz cos θ near the focus (kz < < 1), instead 
of Eq. (3.44) we get: 

Px = 2kz cos ϕ[R1(I0 − I2) + I1(R2 − R0)], 
Py = 2kz sin ϕ[R1(I0 − I2) + I1(R2 − R0)]. (3.45) 

In Eq. (3.45), the following designations are introduced for the real and imaginary 
parts of the integrals (3.37): 

R0 = I0,n(z = 0), I0 = I0,n, R1 = I1,n−1(z = 0), 
I1 = I1,n−1, R2 = I2,n−2(z = 0), I2 = I2,n−2, 

I ν,μ =
(
4π f 
λ

) θ0∫
0 

sinν+1

(
θ 
2

)
cos3−ν

(
θ 
2

)
cos3/2 (θ )A(θ )Jμ(x)dθ. (3.46) 

For demonstrative purpose, we now move to the polar coordinates. Then, instead of 
Eq. (3.45), we derive the radial and azimuthal components of the transverse Poynting 
vector near the focus: 

Pr = 2kzQ(r), 
Pϕ = 0, 

Q(r) = R1
(
I0 − I2

)+ I1(R2 − R0). (3.47) 

The radial and azimuthal components of the transverse Poynting vector describe 
respectively the convergence/divergence of the light field and its transverse rotation. 
Expression (3.47) illustrates that, regardless of the beam order n, the energy flow 
near the focus of the beam (1) is diverging or converging from the optical axis along 
the radial paths. At z = 0 (in the focus), the energy flow is parallel to the optical 
axis. Before the focus (z < 0), transverse energy flow is converging along the radii 
to the optical axis, whereas after the focus (z > 0) it is diverging. Since the sign of 
the function Q(r) in Eq.  (3.47) can change at some distances from the optical axis, 
then at certain circles centered on the propagation axis, transverse energy flow is 
diverging before the focus and converging after the focus.
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Now we show for the field with polarization (3.35) that its longitudinal component 
of the angular momentum vector is equal to zero near the focus, as in the initial plane. 
Indeed, the angular momentum vector of light is given by [38]: 

J = 
1 

2c 
Re
(
r × (

E∗ × H
)) = 

2π 
c2 

(r × P), (3.48) 

whereas its longitudinal component (without the insignificant constant factor) is 

Jz = rPϕ = 0. (3.49) 

The expression (3.49) follows from Eq. (3.47) since P ϕ = 0. The angular 
momentum (3.48) can be represented [39] as a sum of the spin angular momentum 
S and of the orbital angular momentum L: 

J = S + L = 1 

8πω  
Im
(
E∗ × E

)+ 1 

8πω

∑
p=x,y,z 

Im
(
E∗ 
p (r × ∇)Ep

)
(3.50) 

Without the constant factor 1/(8 π ω), the longitudinal SAM component, as 
follows from Eq. (3.41), is equal to Sz � 2kz sin(2(n − 1)ϕ)(I0R2 − I2R0). The 
longitudinal OAM component from Eq. (3.50) is given by 

Lz = Im
[
E∗ 
x 

∂ 
∂ϕ 

Ex + E∗ 
y 

∂ 
∂ϕ 

Ey + E∗ 
z 

∂ 
∂ϕ 

Ez

]
(3.51) 

Substituting the expressions (3.36) for the electric field components into 
Eq. (3.51), we get that near the focus 

Lz � −2kz sin(2(n − 1)ϕ)(I0R2 − I2R0). (3.52) 

Summation of Eqs. (3.52) and (3.41) proves the validity of the expression (3.49). 
Thus, near the focus, longitudinal SAM and OAM components are equal by magni-
tude and directed oppositely (Sz = –Lz), and, therefore, the longitudinal component of 
the angular momentum is equal to zero. It is interesting that, when passing through the 
focus, the longitudinal OAM component (3.52) changes sign, as does the longitudinal 
SAM component (3.41). 

Thus, since the transverse energy flow near the focus is not rotating (P ϕ = 0), 
the longitudinal component of the angular momentum equals zero, but it does not 
mean that, near the focus of the field (3.35), the longitudinal OAM component is 
also equal to zero. The field with polarization (3.35) in the focus has a longitudinal 
OAM component, equal by the absolute value to the longitudinal SAM component, 
but with the opposite sign. We also note that the full (averaged along the whole 
beam cross section) SAM and OAM are the quantities that conserve separately on 
free-space propagation of light [40], so that near the focus of the beam (3.35), the 
following two integrals should be equal to zero:
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∞∫
0 

rdr 

2π∫
0 

dϕSz(r, ϕ,  z) = 0, 
∞∫
0 

rdr 

2π∫
0 

dϕLz(r, ϕ,  z) = 0. (3.53) 

This means that local rotation of the polarization vector near the focus (3.41) 
should change sign in different areas of the beam transverse section so that to compen-
sate this rotation and so that the full SAM and OAM of the beam (3.35) would be 
equal to zero (3.53). 

3.2.3 Numerical Simulation 

To confirm the theoretic findings, we performed a numerical simulation. For this 
purpose, we computed the electric and magnetic field near the sharp focus by using 
the expressions (3.36) and verified them by computing the field directly with using 
the Debye double integrals. 

Figure 3.11 illustrates the distributions of intensity (column 1), radial component 
of the Poynting vector (column 2), longitudinal components of the SAM (column 3) 
and OAM (column 4) vectors of a sharply focused Gaussian beam with 3rd-order (n 
= 3) cylindrical polarization (3.35) in two transverse planes, one before the focus 
(row 1) and one beyond the focus (row 2). For computation, we used the following 
parameters: wavelength λ = 532 nm, focal length f = 10 μm, numerical aperture θ 0 
= 0.49 π (NA = 0.999), calculation area is 4 × 4 μm, the longitudinal coordinate 
(relative to the focal plane) is z = –λ (row 1) and z = +  λ (row 2). To describe the 
Gaussian shape of the input field, radial distribution of the complex amplitude was 
equal to A(θ ) = exp[–(sin θ /sin α0)2] with α0 = π /3. Figure 3.12 depicts the same 
distributions and for the same parameters as in Fig. 3.11, but for another polarization 
order n = 4.

Despite the visual similarity of SAM and OAM distributions (columns 3 and 4 
in Figs. 3.11 and 3.12), they were computed quite differently: SAM distributions 
were computed by Eq. (3.39), whereas the OAM distributions were computed by 
Eq. (3.51) with numerical differentiation by the angular coordinate ϕ. Nevertheless, 
the obtained patterns confirm that the OAM Lz and the SAM Sz compensate each 
other, and that after passing the focal plane, the rotation of the polarization vector 
changes its direction (i.e., longitudinal SAM component changes its sign). 

Figures 3.11 and 3.12 also confirm that near the focus there are 4(n – 1) areas with 
different rotation direction of the polarization vector. Figure 3.11 contains 4(n – 1)  = 
8 local subwavelength areas with elliptic polarization (column 3), including 4 dark 
areas with left elliptic polarization and 4 light areas with right elliptic polarization. 
In Fig. 3.12, there are 4(n – 1)  = 12 such subwavelength areas. Thus, the simulation 
confirms that the areas with a different “spin” are spatially separated near the focus, 
that is the Hall effect occurs. 

It is known that in the cross section of a high-order cylindrical vector beam 
(CVB), polarization is locally linear. The number of full rotations of the locally
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Fig. 3.11 Distributions of intensity (column 1), radial component of the Poynting vector 
(column 2), normalized-to-maximum longitudinal component of the SAM vector (column 3), 
and normalized-to-maximum longitudinal component of the OAM vector (column 4) of a sharply 
focused Gaussian beam with 3rd-order cylindrical polarization before the focus (row 1) and beyond 
the focus (row 2). In all the figures light and black colors mean respectively maximum and minimum. 
Scale marks (in the left bottom corner) denote 1 μm 

Fig. 3.12 Distributions of intensity (column 1), radial component of the Poynting vector 
(column 2), normalized-to-maximum longitudinal component of the SAM vector (column 3), 
and normalized-to-maximum longitudinal component of the OAM vector (column 4) of a sharply 
focused Gaussian beam with 4th-order cylindrical polarization before the focus (row 1) and beyond 
the focus (row 2). In all the figures light and black colors mean respectively maximum and minimum. 
Scale marks (in the left bottom corner) denote 1 μm

linear polarization vector, when passing along a closed contour around the optical 
axis, is equal to the CVB order, for instance, n. It is also known that both in the initial 
plane and in the focus, the CVB has neither the spin angular momentum (SAM) 
nor the orbital angular momentum (OAM). In this section, we demonstrated that 
near the focal plane of the CVB, for instance, at a distance of wavelength before 
and beyond the focus, 4(n – 1) local subwavelength areas are generated, where the 
polarization vector is rotating in each point. The centers of these local areas reside on 
a certain radius circle with the center on the optical axis. More of it, in the neighboring
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areas, the polarization vector is rotating in different directions so that the longitudinal 
component of the SAM vector in the neighboring areas has opposite signs. The full 
SAM, obtained by averaging the SAM density over the whole transverse section 
of the beam, is equal to zero. Such space separation of the left and right rotation 
of the polarization vectors manifests that the optical spin Hall effect takes place. 
Such a phenomenon can be used in optical sensorics for determining the CVB order. 
For example, metasurface-based optical sensors are known [41–44], that detect left-
handed and right-handed circular polarizations by separating them in space. In our 
case, the CVB order n is determined by counting the local areas with left and right 
circular polarization near the sharp focus [45]. 

3.3 Spin Angular Momentum at the Tight Focus 
of a Cylindrical Vector Beam with an Imbedded 
Optical Vortex 

Ever since the seminal work by Poynting [46], in which an angular momentum 
(AM) was ascribed to the circularly polarized light, optical spin angular momentum 
(SAM) has actively been studied [47], in particular, at the tight focus. Techniques 
for measuring Stokes parameters of light fields at different polarization states on 
the high-order Poincare sphere were discussed in [48]. Measurements of the photon 
SAM by measuring the optical torque in waveguide integrated photonic devices 
were described in [49]. The spin angular momentum of a guided light propagating in 
planar and cylindrical waveguides was studied in [50]. Considering that amplitudes 
of modes propagating in these waveguides are described by familiar relationships, 
these can be used to describe all projections of the SAM vector. Measuring the 
transverse spin density and investigation of a polarization effect using a fluorescent 
microbead was reported in [51, 52]. Theory of spin-to-orbital angular momentum 
conversion was proposed in [35, 53], including focusing systems. The study of the 
transverse spin density in [54] found ‘photonic wheels’ to occur in the beam. In 
[55], the spin vector was experimentally shown to form a Möbius strip in the 3D 
space. The transverse spin angular momentum of tightly focused Poincare beams 
was discussed in [56]. The optical helicity of electromagnetic waves associated with 
their polarization states was studied in [57], with the maximum helicity shown to 
occur for circularly polarized light. Spin angular momentum at the focus of light 
fields with hybrid polarization states was studied in [60, 61]. Characterization of the 
SAM of a tightly focused cylindrical vortex beam of the first order was reported in 
[58]. The study of optical spin properties at the tight focus is of high interest because 
the SAM vector is partially transferred to the angular momentum of an absorbing 
microparticle trapped at the beam focus, setting it into rotation around its center of 
mass [59, 62]. Tight focusing characteristics including SAM were also investigated 
for specific types of beams, such as Airy beams [63–66] and Pearcey beams [67, 68].
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In this section, we analyze the SAM of cylindrical vector beams of an arbitrary 
integer order. We study the behavior of the SAM, since the non-zero longitudinal 
SAM is an indicator of elliptical or circular polarization. And we want to know does 
the focus contain regions with circular and elliptical polarization, if the initial light 
field has only linear polarization? Using Richards-Wolf theory, we derive an exact 
expression for the density of the longitudinal SAM vector component at the focus 
of such beams, revealing that there occur 4(n-1) local subwavelength regions at the 
focus, with the longitudinal SAM vector component changing sign in the adjacent 
regions. The total longitudinal component of the SAM vector, i.e., the average value of 
SAM over the beam cross section, is shown to conserve and equal zero upon focusing. 
The presence of spatially separated regions with alternating spin sign shows that an 
optical spin Hall effect occurs at the focus. 

3.3.1 Electric and Magnetic Components at the Focus 
of Light Fields with Phase and Polarization 
Singularities 

Sharp focusing of cylindrical vector beams with an embedded optical vortex was 
analyzed in [34]. Such beams notably possess both phase and polarization singulari-
ties. By simultaneously changing the value of phase singularity (topological charge) 
and polarization singularity index (Poincare-Hopf index), all characteristics of a laser 
beam at the sharp focus can be controlled, including the intensity, the energy flow, 
spin and orbital angular momentums. In this paper, briefly recalling significant rela-
tionships from [34] for the readers’ convenience, we focus major attention on an 
analysis of the spin density and the total spin at the focus. We note that the spin 
angular momentum (SAM) at the focus of the said beams was beyond the scope 
of Ref. [34]. Below, we demonstrate that the total (averaged over the cross section) 
longitudinal component of the SAM vector for a cylindrical vector beam of arbitrary 
integer order with an embedded arbitrary-integer-order optical vortex conserves upon 
free-space propagation and equals zero. Because of this, an even number of local 
regions with longitudinal SAM components of alternating sign forms at the focus. 
In these local regions of alternating spin sign, the elliptic polarization vector rotates 
clock- or anticlockwise, which is a manifestation of an optical spin Hall effect. 

In the original plane, a cylindrical vector beam with an embedded optical vortex 
is described by the Jones vector: 

Em,n(θ, ϕ) = A(θ ) exp(imϕ)

(
cos nϕ 
sin nϕ

)
, (3.54) 

where θ is the polar angle or the angle the optical axis makes with a line drawn from 
the focal spot center to a point on the spherical wavefront in the original plane, ϕ 
is the azimuthal angle at the beam cross section, m is an integer-valued topological
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charge of the optical vortex, and n is an integer number equal to the Poincare-Hopf 
polarization singularity index (V-point index), or the order of the cylindrical vector 
beam. In [34], using Richards-Wolf formalism, we derived relationships for the E- and 
H-field components at the focus from the original field (3.54). For the convenience of 
readers, we briefly repeat here the derivation of equations from [34]. The Richards-
Wolf equation for calculating the components of the electric and magnetic fields at 
the focus of a high numerical aperture system is [17]: 

U(ρ,  ψ,  z) = −  
if 

λ 

α∫
0 

2π∫
0 

B(θ,  ϕ)T (θ )P(θ,  ϕ) 

× exp{ik[ρ sin θ cos(ϕ − ψ) + z cos θ ]} sin θ dθdϕ (3.55) 

where U(ρ, ψ, z) is the electric or magnetic field, B(θ, ϕ) is the electric or magnetic 
field at the input of the high numerical aperture system (θ is the polar angle, ϕ is 
the azimuthal angle), T (θ ) is the lens apodization function (in our case, an aplanatic 
objective was used T (θ )= cos1/2θ ), f is the focal length, k = 2 π /λ is the wavenumber, 
λ is the wavelength, α is the maximum polar angle determined by the numerical 
aperture of the lens (NA = sinα), P(θ, ϕ) is the polarization vector, which has the 
form [69]: 

P(θ,  ϕ) = 

⎡ 

⎣ 
1 + cos2 ϕ(cos θ − 1) 
sin ϕ cos ϕ(cos θ − 1) 

− sin θ cos ϕ 

⎤ 

⎦a(θ,  ϕ) + 

⎡ 

⎢⎣ 
sin ϕ cos ϕ(cos θ − 1) 
1 + sin2 ϕ(cos θ − 1) 
− sin θ sin ϕ 

⎤ 

⎥⎦b(θ,  ϕ) 

(3.56) 

where a(θ, φ), b(θ, φ) are the polarization functions for the x- and y-components 
of the incident field, i.e., x- and y- components of the Jones vector of the original 
field (3.54). Field (3.54) can be represented as the sum of two optical vortices with 
circular polarization: 

Em,n(θ, ϕ) = A(θ )eimϕ

(
cos nϕ 
sin nϕ

)
= 

A(θ ) 
2 

ei(m+n)ϕ|L〉 + 
A(θ ) 
2 

ei(m−n)ϕ|R〉, (3.57) 

where |L〉 =
(
1 

−i

)
; |R〉 =

(
1 

i

)
. By substituting Eq. (3.57) into (3.55), we can 

integrate over the azimuthal angle ϕ and obtain equations for all components of the 
electric and magnetic fields in the form [34]: 

Ex = 
im+n−1 

2 
ei(m+n)ϕ

(
I0,m+n + e−2iϕ I2,m+n−2

)
+ 

im−n−1 

2 
ei(m−n)ϕ

(
I0,m−n + e2iϕ I2,m−n+2

)
, 

Ey = 
im+n 

2 
ei(m+n)ϕ

(
−I0,m+n + e−2iϕ I2,m+n−2

)
+ 

im−n 

2 
ei(m−n)ϕ

(
I0,m−n − e2iϕ I2,m−n+2

)
,
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Ez = im+nei(m+n−1)ϕ I1,m+n−1 − im−nei(m−n+1)ϕ I1,m−n+1, 

Hx = 
im+n 

2 
ei(m+n)ϕ

(
I0,m+n + e−2iϕ I2,m+n−2

)
− 

im−n 

2 
ei(m−n)ϕ

(
I0,m−n + e2iϕ I2,m−n+2

)
, 

Hy = 
im+n−1 

2 
ei(m+n)ϕ

(
I0,m+n − e−2iϕ I2,m+n−2

)
+ 

im−n−1 

2 
ei(m−n)ϕ

(
I0,m−n − e2iϕ I2,m−n+2

)
, 

Hz = im+n+1ei(m+n−1)ϕ I1,m+n−1 + im−n+1ei(m−n+1)ϕ I1,m−n+1, (3.58) 

where the functions Iν,μ = Iν,μ(r) take the form: 

Iν,μ = 2kf 
α∫

0 

sinν+1

(
θ 
2

)
cos3−ν

(
θ 
2

)
cos1/2 (θ )A(θ )eikz cos θ Jμ(kr sin θ )d θ,  (3.59) 

where Jμ(ξ ) is the Bessel function of the first kind and μ-th order, A(θ ) is a real  
function that defines radially symmetric initial field amplitude, and ξ = krsinθ. The  
first index in (3.59) indicates the function type, ν = 0,1,2, with the second index 
indicating the number of the Bessel function, μ = 0, ±1, ±2, ... 

3.3.2 Distributions of the Intensity, Poynting Vector, 
and Longitudinal Projection of the SAM 

Using Eqs. (3.58), the intensity distribution at the focus of beam (3.54) is found in 
the form: 

I = 
1 

2

(
I2 0,m+n + I2 0,m−n + I2 2,m+n−2 + I2 0,m−n+2

)+ I2 1,m+n−1 + I2 0,m−n+1+ 

(−1)n+1 cos(2(n − 1)ϕ)
(
I0,m+nI2,m−n+2 + I0,m−nI2,m+n−2 − 2I1,m+n−1I1,m−n+1

)
. 

(3.60) 

The intensity in (3.60) is defined as the magnitude I = |Ex |2 + |Ey|2 + |Ez |2. From  
(3.60), the intensity pattern is seen to be devoid of circular symmetry, while being 
symmetric with respect to the Cartesian origin at the focus because the replacement 
of the angle ϕ by ϕ + π does not lead to a change in the intensity. 

Using projections of the E and H vectors in (3.58), it is also possible to derive 
projections of the Poynting vector, P = c 

2π Re(E
∗ × H), at the focus of field (3.54) 

(with the constant c/(2 π ) being dropped below, с is the speed of light): 

Px = −Q(r) sin ϕ, 
Py = Q(r) cos ϕ, 

Pz = 
1 

2

(
I2 0,m+n + I2 0,m−n − I2 2,m+n−2 − I2 2,m−n+2

)
, 

Q(r) = I1,m+n−1
(
I0,m+n + I2,m+n−2

)+ I1,m−n+1
(
I0,m−n + I2,m−n+2

)
. (3.61)
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From (3.61), the longitudinal energy flow is seen to be circularly symmetric, 
taking both positive (Pz > 0) and negative (Pz < 0) values. It is also seen from (3.61) 
and (3.59) that at m = n, the longitudinal projection of Poynting vector has a term I2 0,0, 
which is non-zero on the optical axis at r = 0, since the term I2 0,0 includes the Bessel 
function, which is equal to one at zero. Accordingly, for m = n, the distribution of 
longitudinal component of Poynting vector in the focal region has the shape of a 
single spot, while for m �= n, the focus has the shape of a ring. 

The transverse energy flow at the focal plane rotates anticlockwise at Q(r) > 0  
or clockwise at Q(r) < 0. Considering that near the optical axis, all the magnitudes 
entering Q(r) are positive, the transverse energy flow rotates anticlockwise (m > 
0). The expression for Q(r) in (3.61) can be shown to change sign following the 
replacement of m > 0 by  m < 0.  

We note that if the topological charge equals zero (m =0, the beam is non-vertical), 
the transverse flow does not rotate: 

Qm=0(r) = I1,n−1
(
I0,n + I2,n−2

)− I1,n−1
(
I0,n + I2,n−2

) = 0 (3.62) 

Next, using (8), we can derive the longitudinal component of the SAM vector 
[70]: 

S = 1 

8πω  
Im
(
E∗ × E

)
(3.63) 

where ω- the angular frequency of light. Below, the constant 1/(8 π ω) is dropped. 
The density of the longitudinal SAM component at the focus takes the form: 

Sz = 
1 

2

[
I2 0,m−n − I2 0,m+n + I2 2,m+n−2 − I2 2,m−n+2+ 

+2(−1)n cos(2(n − 1)ϕ)
(
I0,m−nI2,m+n−2 − I0,m+nI2,m−n+2

)]
. 

(3.64) 

As is the case with intensity (3.60), the pattern of distribution of the longitudinal 
SAM component from (3.64) is seen to be axially symmetric, i.e., symmetric with 
respect to the focal spot center, because after replacing ϕ by ϕ + π in (3.64), the 
value of the SAM remains unchanged. At m = 0 (a non-vertical beam), the SAM in 
(3.64) equals zero at each focal point, as one would expect because at m = 0, the 
cylindrical vector field in (3.54) is linearly polarized everywhere in the focal plane 
[71]. From (3.64) it is also seen that at n = 1 (radial initial polarization) the cosine 
function equals 1 and the SAM pattern becomes radially symmetric: 

Sz(n = 1) = 
1 

2

[
(I0,m−1 − I2,m−1)

2 − (I0,m+1 − I2,m+1)
2
]
. (3.65) 

With the terms in the round brackets in (3.65) being subtracted, at definite values 
of radius r, the SAM can change sign at the focus. Hence, we infer that at the 
focus a radial optical spin Hall effect occurs when elliptic polarization vectors rotate
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oppositely at different radii from the optical axis, as they have the opposite sign spins. 
Note that the optical Hall effect for radially polarized light was analyzed in [72]. 

For other values of n, the cosine function in (3.64) is dependent on the value of 
the azimuthal angle. For example, at n = 0 (linear polarization), instead of (3.64), 
we obtain: 

Sz(n = 0) = 
1 

2

[
I2 2,m−2 − I2 2,m+2+ 

+2 cos(2ϕ)
(
I0,mI2,m−2 − I0,mI2,m+2

)]
. (3.66) 

Expression (3.66) is identical to a similar expression derived in [71] for a linearly 
polarized optical vortex. In our case, four subwavelength regions form in the focal 
spot at a definite distance from the optical axis, with their centers lying on the 
Cartesian axes and the elliptic polarization vectors alternatively rotating clockwise 
and anticlockwise. Thus, an optical spin Hall effect occurs at the focus. At n > 1, we  
find that 4(n -1) subwavelength regions occur at the focus, with half of them having 
negative spin and the other half-positive spin. It is worth noting that at the center of 
the focal spot, the value of SAM (3.64) takes a positive value of Sz,m=n(r = 0) = 
I2 0,0/2 > 0 at m = n or a negative value of Sz,m=−n(r = 0) = −I2 0,0/2 < 0 at m =
-n. In a similar way, at m = 2-n, the SAM at the focus center is positive, but smaller 
in value, being equal to Sz,m=2−n(r = 0) = I2 2,0/2 > 0. If  m = n-2, the SAM at the 
focus center is negative, Sz,m=n−2(r = 0) = −I2 2,0/2 < 0. Hence, by varying the 
topological charge m �= 0 it is possible to control the speed and direction of rotation 
about the optical axis of an absorbing microparticle trapped at the focus center. At 
m = 0, SAM (3.64) equals zero, so the microparticle will not rotate. We note that in 
the original plane, the longitudinal SAM component equals zero. 

3.3.3 Longitudinal Projections of the Poynting Vector 
and Spin Angular Momentum Averaged Over the Beam 
Cross Section 

In this section, we show that the total longitudinal component of SAM equals zero 
at the focus. In [73], the energy of each vortex harmonic of field (3.64) was shown  
to be expressed as 

Wν,μ = 2π 
∞∫
0

∣∣Ivμ(r)
∣∣2 rdr = 

= 4π f 2 
α∫

0 

sin2ν+1

(
θ 
2

)
cos5−2v

(
θ 
2

)
|A(θ )|2 d θ = Wν . (3.67)
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Making use of (3.67), we find that SAM (3.64) averaged over the entire focal spot 
is given by 

Ŝz = 
∞∫
0 

2π∫
0 

Szrdrd ϕ = 
1 

2 

∞∫
0 

2π∫
0 

rdrd ϕ
(
I2 0,m−n − I2 0,m+n + I2 2,m+n−2 − I2 2,m−n+2+

)+ 

2(−1)n 
∞∫
0 

2π∫
0 

rdrd ϕ cos(2(n − 1)ϕ)
(
I0,m−nI2,m+n−2 − I0,m+nI2,m−n+2

) = 

1 

2 
(W0 − W0 + W2 − W2) = 0. (3.68) 

The resulting zero in (3.68) is based on Eq. (3.67), leading to the integrals taken 
of the first two terms being equal to each other. The same is true of the integrals 
taken of the third and fourth terms, with the integral taken of the cos ϕ function over 
its entire period in the last term being also equal to zero. Thus, the total longitudinal 
projection of SAM turns out to be zero both in the original plane and at the focus, 
conserving upon focusing, which means that an even number of local regions, 4(n-1) 
of alternating spin sign is generated at the focus. 

Similar to (3.68), we can derive the total energy of the beam at the focus. Averaging 
the intensity distribution (3.60) over the beam cross section yields: 

W = 
∞∫
0 

2π∫
0 

Irdrd ϕ = 
1 

2 

∞∫
0 

2π∫
0

(
I2 0,m+n + I2 0,m−n + I2 2,m+n−2 + I2 0,m−n+2

)
rdrd ϕ 

+ 
∞∫
0 

2π∫
0

(
I2 1,m+n−1 + I2 1,m−n+1

)
rdrd ϕ 

+ (−1)n+1 

∞∫
0 

2π∫
0 

cos(2(n − 1)ϕ)

(
I0,m+nI2,m−n+2 + I0,m−nI2,m+n−2 − 2I1,m+n−1I1,m−n+1

)
rdrd ϕ 

= 
1 

2 
(W0 + W0 + W2 + W2) + (W1 + W1) = W0 + W2 + 2W1. (3.69) 

In (3.69), the first two integrals are calculated based on Eq. (3.67), with the last 
integral of the cosine function being taken over the entire period and equal to zero. 
It is worth noting that by averaging the longitudinal projection of the energy flow 
vector in (3.61) we find that not the entire energy of the beam passes the focal plane 
in the positive z-axis direction. Actually, in view of Eqs. (3.61) and (3.67) and similar 
to (3.69), we obtain:
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P̂z = 
∞∫
0 

2π∫
0 

Pzrdrd ϕ = 
1 

2 

∞∫
0 

2π∫
0 

rdrd ϕ
(
I2 0,m+n + I2 0,m−n − I2 2,m+n−2 − I2 2,m−n+2

)

= 
1 

2 
(W0 + W0 − W2 − W2) = W0 − W2 = W − 2W2 − 2W1. 

(3.70) 

From (3.70), the energy flow traversing the focal plane is smaller than the full 
energy of the incident beam. The fact is that some energy partially propagates along 
the focal plane, without crossing it. This portion of energy is transferred by the 
longitudinal field component at the focus: Iz = |Ez |2. A certain portion of energy 
is also ‘bounced’ backwards, in the reverse direction, and referred to as a reverse 
energy flow [74]. 

Based on the expression for the transverse energy flow at the focus in (8), we can 
derive an angular momentum density at the focus from field (3.54). The transverse 
projection of the energy flow (3.61) can be written in the polar coordinates: 

Pr = 0, 
Pϕ = Q(r). 

(3.71) 

Then, the longitudinal component of the angular momentum (AM) vector [38] 

J = r × P (3.72) 

is given by 

Jz = rQ(r) = r
[
I1,m+n−1

(
I0,m+n + I2,m+n−2

)+ I1,m−n+1
(
I0,m−n + I2,m−n+2

)]
. 

(3.73) 

From (3.73), the longitudinal component of the AM is seen to equal zero on the 
optical axis, thanks to the ‘moment arm’ being equal to zero. With the AM being 
positive near the optical axis, a dielectric microparticle trapped at the beam focus 
will be drawn into an anticlockwise rotation on a small-radius circle. 

3.3.4 Numerical Modeling 

Using Richards-Wolf formulae, we numerically simulated sharp focusing of optical 
vortices with high-order radial polarization, Eq. (3.54), in an aplanatic optical system 
with NA = 0.95. The wavelength of the focused light was 633 nm and the A(θ ) 
function was taken to be unit. Figure 3.13a depicts an intensity pattern at the focus 
from beam (3.54) at  n = m = 1. Figure 3.13b depicts a distribution pattern of the 
longitudinal component of the SAM vector. At n = 1, Eqs. (3.60) and (3.64) suggest
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Fig. 3.13 Patterns of a intensity I = Ix + Iy + Iz and b longitudinal SAM component Sz. Order 
of phase and polarization singularity: m = 1, n = 1 

that at the focus the intensity distribution and longitudinal component of SAM vector 
are radially symmetric and independent of the azimuthal angle ϕ. Besides, both the 
intensity and SAM component take maximum positive values on the optical axis at 
the focus center. Field (3.54) has local linear polarization (longitudinal SAM is equal 
to zero), however under tight focusing conditions it acquires right-handed elliptical 
polarization at the focus center, with the polarization vector rotating anticlockwise. 
On a circle of definite radius (located within a dark annulus in Fig. 3.13b) the spin 
changes sign and the polarization vector is rotating oppositely (clockwise). That 
is, Fig. 3.13b demonstrates an optical radial spin Hall effect at the focus of field 
(3.54), when left and right elliptical polarizations alternate on circles of different 
radii centered on the optical axis. 

Figure 3.14 depicts three Cartesian projections of the Poynting vector. The on-axis 
projection of the energy flow is seen to have a radially symmetric shape and maximum 
on the optical axis (Fig. 3.14c). The transverse projections indicate that the energy 
flow experiences anticlockwise rotation around the axis at the focus (Fig. 3.14a, b), 
in accordance with the theoretical prediction in (3.61).

Figure 3.15 depicts (a) the intensity and (b) the longitudinal SAM component at 
the focus of field (3.54) at  n = 2, m = 1. The intensity pattern is seen no more to be 
circular-shaped, as was the case in Fig. 3.13а, taking the shape of a vertical ‘dumb-
bell’ (Fig. 3.15a) with the longitudinal SAM projection losing its circular symmetry, 
although four local regions of alternating SAM sign can still be distinguished in 
Fig. 3.15b.

Figure 3.16 depicts all projections of the Poynting vector at the focus of field (3.54) 
at m = 1 and n = 2. The transverse energy flow is seen to rotate around the optical 
axis within two concentric rings (Fig. 3.16а, b), with the rotation being clockwise in 
the smaller ring and anticlockwise in the larger ring. Presence of oppositely rotating 
energy flows at the focus is the manifestation of the radial orbital Hall effect, with 
the on-axis projection being ring-shaped (Fig. 3.16c). Figure 3.17 depicts (a) the 
intensity and (b) the longitudinal SAM projection at the focus of field (1) at n = 
m = 2. From Fig. 3.17а, it is seen that although the initial field has a topological
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Fig. 3.14 Distribution patterns of the transverse Poynting vector components: a Px and b Py, and 
c the longitudinal Poynting vector component Pz. Order of phase and polarization singularities: 
m = 1, n = 1

Fig. 3.15 Patterns of a intensity I = Ix + Iy + Iz and b longitudinal SAM component. Order of 
phase and polarization singularity: m = 1, n = 2
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charge (m = 2), the focal spot is circular and has an intensity maximum on the 
optical axis. This directly follows from Eq. (3.60), for at m = n, the on-axis intensity 
is I (r = 0) = I2 0,0/2 > 0. That is, due to the phase and polarization singularities 
compensating for each other, no on-axis singular point is found at the focus. From 
Fig. 3.17b, four local regions with alternating sign SAM projections are seen to be 
present at the focus, with two dark vertical lines spaced apart on the x-axis (SAM ˂ 
0) and two bright horizontal lines spaced apart on the y-axis (SAM > 0). Near the 
optical axis, a bright spot is observed which is larger than the focal spot in area and 
has right-handed elliptical polarization (the central bright spot in Fig. 3.17b). The 
existence of this spot directly follows from Eq. (3.64) at  m = n. It should be noted 
that in the initial plane the light is linearly polarized. This effect is an illustration of 
the orbital-to-spin conversion at the tight focus. 

Figure 3.18 shows projections of the Poynting vector of field (3.54) at  n = m = 2. 
Similar to the case of n = m = 1 (Fig. 3.14а, b), a transverse energy flow is seen to 
rotate anticlockwise around the optical axis (Fig. 3.18а, b). It would be interesting 
to note that by changing the sign of the vortex topological charge (m = -2), the 
handedness of the rotating elliptic polarization vector is changed. In Fig. 3.19b, at 
the center of the focal spot, there is a dark elliptic spot where light has left-handed

Fig. 3.16 Distribution patterns of the transverse components of the Poynting vector: a Px and 
Py and b the longitudinal component Pz of the Poynting vector. Order of phase and polarization 
singularity: m = 1, n = 2
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Fig. 3.17 Patterns of a intensity I = Ix + Iy + Iz and b distribution of the longitudinal SAM 
component. Order of phase and polarization singularity: n = 2, m = 2

elliptic polarization. This effect is the direct consequence of Eq. (3.64) at  n = −  
m. Thus, by changing sign of polarization singularity of field (3.54) it is possible to 
change the handedness of the rotating elliptic polarization vector at the focus near 
the optical axis. 

Fig. 3.18 Patterns of distributions of transverse Poynting vector components a Px and b Py and 
c longitudinal Poynting vector component Pz
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Fig. 3.19 Patterns of a intensity I = Ix + Iy + Iz and b distribution of the longitudinal SAM 
component. Order of phase and polarization singularity: m = −  2, n = 2 

Figure 3.20 depicts projections of the Poynting vector at the focus of field (3.54) 
at n = 2, m = -2. From Fig. 3.20а, b, the transverse energy flow at the focus is seen 
to rotate clockwise, unlike Fig. 3.18а, b, which depicts the anticlockwise rotation of 
the transverse energy flow. Thus, changing the sign of topological charge of vortex 
field (3.54) enables both spin orientation at the focus center (Figs. 3.17b and 3.19b) 
and handedness of energy flow rotation (Fig. 3.18a, b and Fig. 3.20a, b) to be altered 
simultaneously.

Figure 3.21 depicts intensity patterns of the longitudinal SAM component at n 
= m: (a) 3 and (b) 4. In Fig. 3.21a, 4(n-1) = 4(3–1) = 8 regions with alternating 
sign SAM components (marked black and red) are seen to be arranged on a circle 
‘squeezed’ into the square frame. And in Fig. 3.21b, there are 4(n-1) = 4(4–1) = 
12 regions with alternating SAM sign (marked as black and bright) arranged on a 
similar-radius circle ‘squeezed’ into the square frame. These are regions of spatially 
separated photons of opposite spin. However, it is worth noting that on the circle of 
alternating SAM sign the intensity of light is low, meaning that in this case the Hall 
effect is weakly pronounced.

Thus, the following results have been obtained. Based on the Richards-Wolf 
formalism, analytical relationship (3.61) for the longitudinal component of SAM 
at the focus of a light beam possessing double singularity has been derived. In the 
original plane, the beam of interest (3.54) has an integer topological charge m and 
cylindrical polarization of order n, meaning that the beam is linearly polarized at 
each point of the original plane. However, thanks to orbital-to-spin conversion, at 
the beam focus and near the optical axis, a circular region is generated in which the 
elliptic polarization vector rotates anticlockwise if m > 0 (Fig.  3.17b) or clockwise if 
m < 0 (Fig.  3.19b). At m = n, one finds at the focus 4(n−1) subwavelength regions in 
which the longitudinal SAM component has alternating sign (Fig. 3.17b). This effect 
is a variant of the Hall effect occurring at the focus. In addition, the transverse energy 
flow at the focus has been revealed to rotate about the optical axis anticlockwise at m 
> 0 (Fig.  3.14а, b and Fig. 3.18а, b) or clockwise at m < 0 (Fig.  3.20а, b). Remarkably, 
at n = 2 and m = 1, the transverse energy flow at the focus has been found to rotate
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Fig. 3.20 Patterns of distributions of projections of the Poyntings a Px and b Py and c longitudinal 
component of the Poynting vector Pz order of phase and polarization singularity: m = −  2, n = 2

Fig. 3.21 The longitudinal SAM component at a m = n = 3 and  b m = n = 4

on two optical-axis-centered rings, with the flow rotating clockwise on the smaller 
ring and anticlockwise on the larger one (Fig. 3.16a, b). This effect is a variant of 
the radial orbital Hall effect at the focus [75].
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Chapter 4 
Cylindrical Fractional-Order 
and Double-Index Vector Laser Beams 

4.1 Tight Focusing Cylindrical Vector Beams 
with Fractional Order 

Cylindrical vector beams (CVBs) [1] are now widely used because of the unique 
properties they exhibit in tight focusing. In particular, using cylindrical vector beams, 
it is possible to obtain focal spots with sizes smaller than the scalar diffraction 
limit [2–4], optical needles [5, 6], light tunnels [7, 8], chains of focal spots [9–11], 
focus shaping [12], surface plasmon-polaritons nanofocus [13], and pure longitudinal 
magnetization [14]. The polarization at each point of the CVB is linear, but its 
direction changes continuously, making one or several rotations when the azimuthal 
angle changes from 0 to 2π. Most of the works (for example, previously noted 
[1–14]) are devoted to the study of CVBs, in which the polarization makes only 
one rotation; these are radially polarized beams, in which the polarization is directed 
along the radius, or azimuthally polarized beams, in which the polarization is directed 
perpendicular to the radius. However, there are works that investigate the behavior 
of high-order CVBs, i.e., beams in which the direction of polarization makes several 
rotations [15–20]. Earlier, we showed [21–23] that for high-order CVBs in the focal 
region there are regions in which the projection of the Poynting vector onto the 
optical axis becomes negative, and if the beam order is two, then such a region is 
located on the optical axis. One of the ways to obtain cylindrical vector beams is 
to obtain sector CVBs using half-wave plates [3, 24–26], nonlinear optical crystals 
[27], polarizers [28], subwavelength gratings [29–31], dielectric metasurfaces [32], 
and spatial light modulator (SLM) [33, 34]. Earlier, we studied the effect of the 
number of sectors on the focusing results [35] and showed that even with the number 
of sectors equal to six, the differences with the focusing of the beam, in which the 
polarization changes continuously, become small. However, the question of what the 
focusing results will be if the direction of polarization in various sectors differs from 
the planned (radial or azimuthal) polarization—the polarization will be “twisted” or
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“under-twisted” to a whole number of rotations, for example, due to technological 
errors in the manufacture of a sector element. 

In this section, using the Richards-Wolf equations, the focusing of a cylindrical 
vector beam with a wavelength of 532 nm and fractional order was simulated by a 
flat diffractive lens with a numerical aperture NA = 0.95. Two series of simulations 
were carried out: in the first, beams with fractional orders from zero to one were 
investigated. The transition from linear to azimuthal polarization was carried out. In 
the second simulation, the influence of the deviation of the beam order from m = 
2 (i.e., the case when the backflow is observed at the center of the focal spot) was 
investigated. It was shown that for integer values of the beam order, the transverse 
components of the Poynting vector are equal to zero, but for fractional values, they 
are not. At fractional values of the order of the beam, varying from zero to one, two 
pronounced centers with coordinates x = 0 and y = ±  0.1 μm are observed, around 
which the transverse flow in the focal region is twisted. The flow rotates clockwise 
around the upper center, and anticlockwise around the lower center. With an increase 
in the order of the beam, more than one, such pronounced centers of rotation of the 
transverse flow become larger. It was also shown that the reverse flow remains in 
the center of the spot with a significant deviation of the order of the beam from m 
= 2—it appears on the axis already at m = 1.55. Experimentally cylindrical vector 
beams of fractional order could be generated using the same optical arrangement that 
used for generation of cylindrical vector beams of integer order [32–34]. However, 
in this case, an optical vortex phase exp{imϕ} with a fractional topological charge 
m should be formed on the spatial light modulator. 

4.1.1 The Richards-Wolf Formulas 

In this section, the studies were carried out using the Richards-Wolf formulas [36] 

U(ρ,  ψ,  z) = −  
if 

λ 

αmax∫

0 

2π∫

0 

B(θ,  ϕ)T (θ )P(θ,  ϕ) 

× exp{ik[ρ sin θ cos(ϕ − ψ) + z cos θ ]} sin θd θ d ϕ , (4.1) 

where U (ρ, ψ, z) is the strength of the electric or magnetic field, B(θ, φ) is the electric 
or magnetic field at the input of the wide-aperture system in coordinates of the exit 
pupil (θ is the polar angle, ϕ is the azimuthal angle), T (θ ) is the lens apodization 
function, f is the focal length, k = 2 π / λ is the wavenumber, λ is the wavelength 
(in the simulation it was considered equal to 532 nm), αmax is the maximum polar 
angle determined by the numerical aperture of the lens (NA = sinαmax), P(θ, φ) is  
the polarization vector, for the strength of the electric and magnetic fields having the 
form:
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P(θ,  ϕ) = 

⎡ 

⎣ 
1 + cos2 ϕ(cos θ − 1) 
sin ϕ cos ϕ(cos θ − 1) 

− sin θ cos ϕ 

⎤ 

⎦a(θ,  ϕ) 

+ 

⎡ 

⎢⎣ 
sin ϕ cos ϕ(cos θ − 1) 
1 + sin2 ϕ(cos θ − 1) 
− sin θ sin ϕ 

⎤ 

⎥⎦b(θ,  ϕ), (4.2) 

where a (θ, φ) and b (θ, φ) are functions describing the state of polarization of the 
x- and y-components of the intensities of the focused beam. 

For a light field with cylindrical polarization of the m-th order, the Jones vectors 
will have the form: 

E(θ,  φ) =
(
a(θ,  φ) 
b(θ,  φ)

)
=

(
− sin(mφ) 
cos(mφ)

)
(4.3) 

for the electric field strength and 

H(θ,  φ) =
(
a(θ,  φ) 
b(θ,  φ)

)
=

(
− cos(mφ) 
− sin(mφ)

)
(4.4) 

for the magnetic field strength. If we put in formulas (4.3), (4.4) m = 1, then they 
will describe ordinary azimuthally polarized light, and for m = 0 - linearly polarized 
light directed along the y-axis. 

4.1.2 Focusing Cylindrical Vector Beams with an Order 
from Zero to One 

Consider focusing beams have fractional order varying from zero (linearly polarized 
light) to one (azimuthal polarization) with increment 
m = 0.25. Figure 4.1 shows 
the direction of polarization for fractional values of m is equal to 0.25, 0.5 and 
0.75. Figure 4.2 shows the change in the total intensity and individual intensity 
components for this case, and in Fig. 4.3, similarly, the component of the Poynting 
vector, calculated as S = Re(E × H∗).

Figures 4.2 and 4.3 show that when the beam of order m changes from zero to 
unity, the intensity distribution changes from elliptical to annular, while intermediate 
states have the form of inclined ellipses. In this case, the inclination and broadening 
of the spot in one of the directions at beam of orders m close to zero is provided 
by the longitudinal component of the intensity, and at m close to unity, by the trans-
verse components. For the longitudinal component Sz, the shape of the distribution 
changes from circular to annular (for m = 3/4, the distribution already looks like an 
asymmetric ring), but the intermediate ellipses are not inclined, but oriented along
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Fig. 4.1 Direction of polarization in the fractional order CVB: m = 0.25 (a), m = 0.5 (b), m = 
0.75 (c) 

Fig. 4.2 Distribution of the total intensity I and intensity components Iz , Ix, and Iy when focusing 
the CVB of various orders: m = 0 (linear polarization), m = 0.25, m = 0.5, m = 0.75, and m = 1 
(azimuthal polarization)
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Py 

Fig. 4.3 Distribution of components of the Poynting vector Py, Sx , and  Sy when focusing the CVB 
of various orders: m = 0 (linear polarization), m = 0.25, m = 0.5, m = 0.75, and m = 1 (azimuthal 
polarization)

the y-axis (polarization directions at m = 0). For integer values of the beam order, 
the transverse components of the Poynting vector are equal to zero, but for fractional 
values they are not. Two centers with coordinates x = 0 and y = ±  0.1 μm are  
observed, around which the transverse flow is rotated in the focal region (Fig. 4.4). 
Around the upper center, the flow rotates clockwise, and around the lower center, 
anticlockwise. We can say that the trajectory of the transverse energy flow has a 
shape of the figure "eight". To analyze the polarization state at the focal spot, we also 
calculate spin angular momentum (SAM) in the focal spot: SAM = Im(E∗ × E)[37]. 
Figure 4.5 shows the longitudinal projection of SAM for CVB of different fractional 
orders: m = 0.25, m = 0.5, and m = 0.75.

Figure 4.5 shows that CVB of fractional order form areas with elliptical polariza-
tion and different directions of rotation. Moreover, the axial projection of the SAM 
vector is positive in areas with the energy flow rotating counterclockwise (lower part
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Fig. 4.4 Intensity pattern I 
and directions of the 
Poynting vector Sxx + 
Syy in the focal plane (z = 0, 
m = 0.5) 

Fig. 4.5 The longitudinal projection of spin angular momentum at the focus (z = 0) when focusing 
the CVB of various orders: m = 0.25 (a), m = 0.5 (b), and m = 0.75 (c)

of Fig. 4.4). In contrast the axial projection of the SAM vector is negative in areas 
with the transverse energy flow rotating clockwise (upper part of Fig. 4.4). 

It is also interesting that there is a change in shape: for linear polarization, the 
intensity is elliptical, and the longitudinal energy flux is round, while for a beam with 
order m = 0.5, on the contrary, the intensity is almost round, and the longitudinal flux 
is elliptical. Note that when focusing an optical vortex with azimuthal polarization 
(beam order m = 1, topological vortex charge n = 1), a round spot is also observed. 
The focal spot sizes for these three beams are shown in Table 4.1.

Comparison of the intensity values in Table 1 shows that the smallest focal 
spot is observed when focusing an azimuthally polarized optical vortex. But when 
comparing the values of the longitudinal projection Sz, it should be noted that the 
smallest value is observed for a focused linearly polarized beam. 

Experimentally focusing of cylindrical vector beams of fractional order could be 
investigated using the same optical arrangement that used for generation of cylin-
drical vector beams of integer order [32–34]. Another way is a generation of a 
converging vector beam using metalens, which was previously used, for example, in
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Table 4.1 Sizes of the focal spot by the full width at half maximum of the intensity and the 
longitudinal projection of the Poynting vector when focusing the CVB of various orders 

The order of 
the CVB, m 

Optical 
vortex order, 
n 

Full width at half 
maximum I = Ix + Iy + 
Iz, a.u  

Spot width at half of the 
longitudinal projection 
of the Poynting vector 
Sz, a.u  

FWHMx, λ FWHMy, λ FWHMx, λ FWHMy, λ 
Azimuthally 
polarized 
optical 
vortex 

1 1 0.460 0.460 0.475 0.475 

CVB of 
order m = 
0.5 

0.5 0 0.517 0.484 0.517 0.936 

Linearly 
polarized 
light 

0 0 0.421 0.751 0.456 0.456

[38]. In particular, to generate a beam with an order of 0.5, it could be used a subwave-
length grating metalens, shown in Fig. 4.6 The metalens combines subwavelength 
grating based polarizer and Fresnel zone plate with focal length f = λ = 633 nm, 
it converts linearly polarized plane wave to CVB of order m = 0.5 and focuses it. 
The lens consists of 16 radial sectors, each of which rotates the polarization of the 
incident light to produce the CVB. The index of refraction of the metalens was n = 
4.352 + 0.486i (amorphous silicon). Figure 4.7 shows the distribution of Poynting 
components when focusing by this metalens (Fig. 4.6) calculated by FDTD method 
implemented in FullWave software (the simulation mesh step was λ/30 along all 
three axes). 

Fig. 4.6 Subwavelength 
grating based metalens, 
which generates CVB of 
order m = 0.5 and focuses it
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Fig. 4.7 Distribution of components of the Poynting vector Sx (a), Sy (b), and Sz (c) when focusing 
by the proposed metalens (Fig. 4.6) 

Figure 4.7 shows that the results of numerical simulation of the metalens are in 
agreement with the results obtained using the Richards-Wolf formulas (Fig. 4.3 for 
m = 0.5). 

4.1.3 Focusing Cylindrical Vector Beams with an Order 
from One to Two 

Figure 4.8 shows the distribution of the longitudinal projection of the Poynting vector 
when the beam order changes from 1.5 to 1.9 (i.e., the polarization is “under-twisted” 
up to two full turns of its direction in the beam cross section). 

Figure 4.8 shows that a decrease in the order of distribution m, the longitu-
dinal component of the Poynting vector Sz becomes asymmetric view – the ring 
is compressed and the negative flux vanishes in the center. Figure 4.8 also shows 
that small deviations of the order of the beam from m = 2 do not immediately lead 
to the disappearance of the reverse energy flux on the axis. Negative values of the 
longitudinal component in the center of the focal spot are observed already at m = 
1.55. Figure 4.9 shows the change in Sz at the center of the focal spot.

When the beam order m deviates from an integer value, the transverse components 
of the Poynting vector Sx and Sy also become nonzero, although they were absent at

Fig. 4.8 Distribution of the longitudinal component of the Poynting vector when focusing the CVB 
with orders varying from 1.9 to 1.5 
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Fig. 4.9 The value of the 
longitudinal projection of the 
Poynting vector Sz(0,0) at 
the center of the focal spot 
when the order of the 
focused beam m is changed

m = 1 and m = 2. The energy flow in the focal plane turns from laminar to turbulent. 
Unlike the fractional expressed centers of rotation, the cross-flow becomes larger 
(Fig. 4.10).

Using the Richards-Wolf formulas, the focusing of a cylindrical vector beam 
with a wavelength of 532 nm and a fractional topological charge was simulated by 
a flat diffractive lens with a numerical aperture NA = 0.95 [39, 40]. Two series 
of simulations were performed: the influence of the deviation of the order of the 
beam from m = 2 (i.e., the case when the backflow is observed in the center of the 
focal spot) was investigated and beams with fractional orders less than one were 
investigated: m = 1/4, m = 1/2 and m = 3/4. It has been shown that: when the 
order of the beam changes from zero to one, the intensity distribution changes from 
elliptical to annular, while the intermediate states have the form of inclined ellipses. 
For the longitudinal component of the Poynting vector, the shape of the distribution 
changes from round to circular, but the intermediate ellipses are not inclined. For 
integer values of the beam order, the transverse components of the Poynting vector 
are equal to zero, with deviations of the beam order from an integer value, the energy 
flux becomes turbulent. For the order of the beam from zero to unity, two centers with 
coordinates x = 0 and y = ±  0.1 μm are observed, around which the transverse flow 
is rotated in the focal region. With an increase in the order of the beam above unity, 
such centers of rotation become larger. Small deviations of the order of the beam 
from m = 2 do not lead to the disappearance of the backflow of energy on the axis. 
Negative values on the axis start at m = 1.5. The transverse energy flows at the focus 
for CVB of orders m = 0.5 (Fig. 4.4) and m = 1.9 (Fig. 4.10) are connected with the 
spin angular momentum (SAM). Moreover, the axial projection of the SAM vector 
is positive in the areas with the energy flow rotating counterclockwise. In contrast 
the axial projection of the SAM vector is negative in the areas with the transverse 
energy flow rotating clockwise. In other words the flow rotates counterclockwise in 
the area where the polarization vector rotates counterclockwise, and the energy flow
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Fig. 4.10 Components of the Poynting vector Sx (a) and  Sy (b) and intensity pattern I with direc-
tions of the Poynting vector Sxx + Syy (c) in the focal region when focusing the beam with the 
order of polarization m = 1.9

rotates clockwise in the area where the polarization vector rotates clockwise. This 
spatial separation at the focus of regions with left and right circular polarization is a 
demonstration of the optical Hall effect [41]. 

4.2 Spin Hall Effect of Double-Index Cylindrical Vector 
Beams in a Tight Focus 

In micromachines, elements can be driven by light [42, 43]. This requires designing 
optical tweezers appropriate for driven elements, depending on their shape, material, 
and motion trajectory. The work [44] discusses how to control the mechanical motions 
of various particles in optical tweezers under complicated actuation of optical forces 
and torques by tightly focused laser beams. Typically, a light beam comes out from 
a laser with a Gaussian shape. Then, for certain applications, not only for optical 
trapping, but also for optical data transmission, laser welding, the beam should be
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converted to attain an on-demand shape. For this purpose, a huge branch of modern 
optics, laser beam shaping, is developed [45]. The beam shaping techniques are devel-
oped both within a resonator and outside it [46], by using refractional or diffractional 
optical elements. External beam shaping can be done to shape a beam that maintains 
this shape on propagation [47], or in some specific area, for instance, in the focal 
plane [48]. However, in optical trapping, there can also be a need not only to trap a 
particle in a certain point, but also to make her do some movements. For instance, 
the particle can be forced to travel along some trajectory, or rotate around its own 
center. Such a rotation occurs, when the light possesses the spin angular momentum 
(SAM) [49], or nonlinear polarization. Thus, in addition to the task of shaping the 
beam intensity distribution, there can be a task of shaping the SAM distribution. In 
addition to the optical trapping, the SAM can be used as information in optical data 
transmission [50]. 

In paraxial approximation, the intensity shaping can be done for a single trans-
verse field component of a homogeneously polarized light. However, for shaping the 
SAM, both transverse components should be tailored with a controlled phase delay 
between them. The problem becomes more difficult at tight focusing conditions. 
Recently, it has been observed that when a linearly polarized light beam is tightly 
focused, then, near the focus, areas occur with elliptic polarization [51]. Since the 
areas with negative and positive SAM are spatially separated, this phenomenon is 
a manifestation of the optical spin Hall effect. Later, the same effect was discov-
ered for tightly focused high-order cylindrical vector beam [51]. In [52], the SAM 
is distributed mostly on a ring and consists of alternating areas with positive and 
negative values. The cylindrical vector beams have the Jones vector J = [cos m ϕ, 
sin m ϕ] with ϕ being the angular polar coordinate and m being the polarization order 
(for m = 1, radial polarization). A further generalization is a two-index polarization 
singularity with the Jones vector J = [cos m ϕ, sin  n ϕ], where m �= n [53], i.e., 
such a generalized vector field has different orders on the different axes. Recently, 
we studied such fields with V-points and for many values m and n we obtained the 
Poincare-Hopf index analytically [54]. 

In this section, based on the Richards-Wolf approximation [55], we study what 
happens with the SAM of a light field with the double-index polarization singularity 
in the tight focus. We obtain an expression for the complex amplitude near the focus. 
Then, based on this expression, we derive the formula for the SAM and found that 
it can be nonzero only for the orders m and n of different parity. For analytical 
prediction of the SAM distribution, we decomposed the in-focus light field into the 
orbital angular momentum (OAM) spectrum and estimated the contribution of each 
angular harmonic. It turns out that if a light field being focused is not of ring shape and 
has a homogeneous or decaying Gaussian shape, than the OAM spectrum consists 
mainly of mth and nth angular harmonics which exceed the other harmonics by an 
order of magnitude. It allows to estimate the polar angles with zero SAM and thus 
to predict the SAM distribution. As an example, we obtained SAM distributions on 
a ring where the areas with positive and negative SAM occur in pairs.
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4.2.1 A Light Field with a Double-Index Polarization 
Singularity Near the Tight Focus 

In [54], we investigated a generalization of cylindrical vector beams, when the polar-
ization indices of the Ex and Ey field components were different. The amplitude of 
the electric vector of such a field is given by. 

E(θ,  ϕ) = A(θ )

(
cos mϕ 
sin nϕ

)
(4.5) 

where E is the strength vector of the electric field, ϕ is the azimuthal angle in the 
source plane, (m, n) is the two-index polarization order, θ is the polar angle, describing 
the tilt of the light rays to the optical axis, A(θ ) is the amplitude of the source field 
as a function of the axis tilt angle. Directions of the electric vectors are illustrated in 
Fig. 4.11 

In work [36], we have obtained expressions for the Cartesian components of a 
linearly polarized optical vortex, focused by an aplanatic system. If an optical vortex 
with a topological charge m is linearly polarized along the axis x, then, in the input 
plane, the electric field is given by the following: 

E(θ,  ϕ) = A(θ ) exp(imϕ)

(
1 
0

)
(4.6) 

whereas near the tight focus, the complex amplitude reads as

Fig. 4.11 Conventional radial polarization (m = n = 1) (a), third-order radial polarization (m = 
n = 3) (b), double-index polarization singularity (m = 1, n = 3) (c). For radial polarization (a), there 
are two angles (0 and π ) with horizontal electric vector and two angles (π /2 and 3 π /2) with vertical 
electric vector. For 3rd-order radial polarization (b), there are six angles with horizontal electric 
vector and six angles with vertical electric vector. For the field with double-index polarization 
singularity of the order (1, 3), there are six angles with horizontal electric vector and two angles 
with vertical electric vector 
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⎧⎪⎪⎪⎪⎨ 

⎪⎪⎪⎪⎩ 

Ex(ρ,  ψ,  z) = −  
1 

2 
im+1 eimψ

(
2I0,m + e2iψ I2,m+2 + e−2iψ I2,m−2

)
, 

Ey(ρ,  ψ,  z) = 
1 

2 
im eimψ

(
e−2iψ I2,m−2 − e2iψ I2,m+2

)
, 

Ez(ρ,  ψ,  z) = im eimψ
(
e−iψ I1,m−1 − eiψ I1,m+1

)
, 

(4.7) 

where (ρ, ψ, z) are the cylindrical coordinates with the origin in the focus. In Eq. (4.7), 
the functions Iν,μ are defined as follows: 

Iν,μ = 2kf 
α∫

0 

sinν+1

(
θ 
2

)
cos3−ν

(
θ 
2

)
cos1/2 (θ )A(θ )eikz cos θ Jμ(kr sin θ )d θ,  (4.8) 

where k = 2/λ is the wavenumber of monochromatic light with the wavelength λ, 
f is the focal length of the focusing lens, α is the maximal tilt angle of rays to the 
optical axis, defining the numerical aperture of the aplanatic lens NA = sin(α), Jν() 
is the νth-order Bessel function of the first kind. 

The same way, if such an input field is linearly polarized along the axis y, the field 
components near the tight focus are equal to 

⎧⎪⎪⎪⎪⎨ 

⎪⎪⎪⎪⎩ 

Ex(ρ,  ψ,  z) = −1 

2 
im eimψ

(
e2iψ I2,m+2 − e−2iψ I2,m−2

)
, 

Ey(ρ,  ψ,  z) = −  
1 

2 
im+1 eimψ

(
2I0,m − e2iψ I2,m+2 − e−2iψ I2,m−2

)
, 

Ez(ρ,  ψ,  z) = im+1 eimψ
(
eiψ I1,m+1 + e−iψ I1,m−1

)
. 

(4.9) 

The field with circularly symmetric amplitude distribution A(θ ) and with polariza-
tion (4.5) can be decomposed into a superposition of four linearly polarized optical 
vortices: 

E = A(θ )

(
cos mϕ 
sin nϕ

)
= 

1 

2 
A(θ )eimϕ

(
1 
0

)
+ 

1 

2 
A(θ )e−imϕ

(
1 
0

)

+−i 

2 
A(θ )einϕ

(
0 
1

)
+ 

i 

2 
A(θ )e−inϕ

(
0 
1

)
. 

(4.10) 

Using this decomposition, we get the field components of the field with 
polarization (4.5) near the tight focus:
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⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨ 

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩ 

Ex(ρ,  ψ,  z) = −  
1 

2 
im+1{2I0,m cos mψ + I2,m+2 cos[(m + 2)ψ] + I2,m−2 cos[(m − 2)ψ]

}

+ 
1 

2 
in+1{I2,n+2 cos[(n + 2)ψ] − I2,n−2 cos[(n − 2)ψ]

}
, 

Ey(ρ,  ψ,  z) = −  
1 

2 
in+1{2I0,n sin nψ − I2,n+2 sin[(n + 2)ψ] − I2,n−2 sin[(n − 2)ψ]

}

+ 
1 

2 
im+1{I2,m−2 sin[(m − 2)ψ] − I2,m+2 sin[(m + 2)ψ]

}
, 

Ez(ρ,  ψ,  z) = im
{
I1,m−1 cos[(m − 1)ψ] − I1,m+1 cos[(m + 1)ψ]

}
+in

{
I1,n+1 cos[(n + 1)ψ] + I1,n−1 cos[(n − 1)ψ]

}
. 

(4.11) 

The longitudinal component of the spin angular momentum is defined as [56]: 

Sz = 2Im
{
E∗ 
x Ey

}
(4.12) 

For simplicity, we suppose that the functions A(θ ) are real valued. Thus, all the 
integrals Iν,μ are also real valued in the focal plane (z = 0). Then, substituting the 
transverse field components from Eq. (4.11), we get the following expression: 

Sz = 
1 

2 
Im

{
in−m

}{
2I0,m cos mψ + I2,m+2 cos[(m + 2)ψ] + I2,m−2 cos[(m − 2)ψ]

}
×{

2I0,n sin nψ − I2,n+2 sin[(n + 2)ψ] − I2,n−2 sin[(n − 2)ψ]
}

+ 
1 

2 
Im

(
im−n

){
I2,n+2 cos[(n + 2)ψ] − I2,n−2 cos[(n − 2)ψ]

}
×{

I2,m−2 sin[(m − 2)ψ] − I2,m+2 sin[(m + 2)ψ]
}
. 

(4.13) 

This expression is cumbersome, but it reveals that the SAM is zero unless the 
polarization orders n and m are of different parity. When the parity is the same for 
both orders, then polarization is linear in the focus, since, according to Eq. (4.11), 
both Ex and Ey are proportional to im+1 (or in+1), multiplied by some real-valued 
function. Near the center (r << λ), if n > m ≥ 2, the transverse components Ex and 
Ey are approximately proportional to the vector J = [cos (m – 2)  ϕ, –sin (m – 2)  ϕ]. 
If m > n ≥ 2, they are proportional to the vector J = [cos (n – 2)  ϕ, –sin (n – 2)  ϕ]. 
Thus, a saddle-type polarization singularity is generated in the center [57]. 

For n and m of different parity, simplifications yield 

Sz = 
1 

2 
Im

{
in−m

}

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨ 

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩ 

4I0,mI0,n cos mψ sin nψ 
−2I0,mI2,n+2 cos mψ sin[(n + 2)ψ] 

−2I0,mI2,n−2 cos mψ sin[(n − 2)ψ] 

+2I0,nI2,m+2 sin nψ cos[(m + 2)ψ] 

+2I0,nI2,m−2 sin nψ cos[(m − 2)ψ] 

+(
I2,n+2I2,m+2 + I2,n−2I2,m−2

)
sin[(m − n)ψ] 

−(
I2,m+2I2,n−2 + I2,m−2I2,n+2

)
sin[(m + n)ψ] 

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬ 

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭ 

. (4.14)
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This equation is hard to analyze without knowing which terms contribute the 
most. Thus, we need to decompose the near-focus field into the angular harmonics 
and study its OAM spectrum. 

4.2.2 Balance of Light Field Energy Near the Tight Focus 

At first, we study the OAM spectrum of linearly polarized light after tight focusing. 
According to Eq. (4.7), if the input field is polarized along the axis x, then the x-
component of the electric vector near the focus consists of three angular harmonics, 
whose topological charges are m, m – 2,  m + 2. The y-component consists of only 
two angular harmonics with the topological charges are m – 2 and m + 2, whereas the 
z-component also consists of two angular harmonics with the topological charges are 
m – 1 and m + 1. Each harmonic is proportional to the function Iν,μ from Eq. (4.8). 
Therefore, such a harmonic has the following energy W ν,μ: 

Wν,μ = 4π f 2 
α∫

0 

sin2ν+1

(
θ 
2

)
cos5−2v

(
θ 
2

)∣∣A∗(θ )
∣∣2 d θ (4.15) 

This expression indicates that the energy of the angular harmonic is independent 
of the distance z from the focal plane and of the topological charge of the optical 
vortex that determines the index μ. As seen from the above expressions for the field 
near the tight focus, each angular harmonic is proportional to the function Iν,μ from 
Eq. (4.8). Below we derive the energy W ν,μ of such a separate angular harmonic: 

Wν,μ = 
∞∫

0 

2π∫

0

∣∣Iν,μ(r, z)
∣∣2 rdrd ϕ = 2π 

∞∫

0

∣∣Iν,μ(r, z)
∣∣2 rdr (4.16) 

Substituting here the function Iν,μ from Eq. (4.8), we get 

Wν,μ = 8π k2f 2 
∞∫

0 

⎡ 

⎣ 
α∫

0 

sinν+1
(

θ 
2

)
cos3−ν

(
θ 
2

)
cos1/2(θ )A∗(θ )e−ikz cos θ Jμ(kr sin θ )d θ 

⎤ 

⎦ 

× 

⎡ 

⎣ 
α∫

0 

sinν+1
(

θ ′
2

)
cos3−ν

(
θ ′
2

)
cos1/2

(
θ ′)A(

θ ′)eikz cos θ ′
Jμ

(
kr sin θ ′)d θ ′

⎤ 

⎦rdr. 

(4.17) 

Changing the integration variables η = sin θ, η′ = sin θ ′ and changing the 
integration order, we obtain
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Wν,μ = 8πk2 f 2 
sin α∫

0

(
1 − √

1 − η2 

2

) ν+1 
2

(
1 + √

1 − η2 

2

) 3−ν 
2 

×(
1 − η2

)1/ 4 A∗(arcsin η) exp
(
−ikz 

√
1 − η2

) d η √
1 − η2 

× 
sin α∫

0

(
1 − √

1 − η′2 

2

) ν+1 
2

(
1 + 

√
1 − η′2 

2

) 3−ν 
2 

×(
1 − η′2)1/ 4 A(

arcsin η′) exp(ikz √1 − η′2
) d η′√

1 − η′2 

× 

⎡ 

⎣ 
∞∫

0 

Jμ(krη)Jμ

(
krη′)rdr 

⎤ 
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(4.18) 

Due to the orthogonality of the Bessel functions [58], the inner integral over r 
reduces to the Dirac delta function (if μ ≥ –1): 

∞∫

0 

Jμ(kηr)Jμ

(
kη′r

)
rdr = 

δ
(
kη − kη′)

kη
= 

1 

k2 
δ
(
η − η′)

η 
(4.19) 

Thus, Eq. (4.19) is simplified and only one integral remains: 

Wν,μ = 8π f 2 
sin α∫

0

(
1 − √

1 − η2 

2

)ν+1(
1 + √

1 − η2 

2

)3−ν∣∣A∗(arcsin η)
∣∣2 d η 

η
√
1 − η2 

(4.20) 

Now we return back to the trigonometric functions η = sin θ and get (4.15): 

Wν,μ = 8π f 2 
α∫

0

(
1 − cos θ 

2

)ν+1(1 + cos θ 
2

)3−ν∣∣A∗(θ )
∣∣2 d θ 
sin θ 

= 4π f 2 
α∫

0 

sin2ν+1

(
θ 
2

)
cos5−2v

(
θ 
2

)∣∣A∗(θ )
∣∣2 dθ.  

(4.21) 

The integrals (4.15) can be evaluated analytically only in simple cases, but, never-
theless, contribution of each angular harmonic can be estimated. For example, if the 
field being focused is a uniform field with a constant amplitude A(θ ) ≡ 1, then.
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W0,μ = 4π f 2 
α∫

0 

sin

(
θ 
2

)
cos5

(
θ 
2

)
dθ = 

4 

3 
π f 2

[
1 − cos6

(α 
2

)]
(4.22) 

W1,μ = 4π f 2 
α∫

0 

sin3
(

θ 
2

)
cos3

(
θ 
2

)
d θ = 

2 

3 
π f 2 sin4

(α 
2

)[
1 + 2 cos2

(α 
2

)]

(4.23) 

W2,μ = 4π f 2 
α∫

0 

sin5
(

θ 
2

)
cos

(
θ 
2

)
d θ = 

4 

3 
π f 2 sin6

(α 
2

)
(4.24) 

According to Eq. (4.7), the x-component Ex consists of three angular harmonics 
with their amplitude being proportional to the functions I0,m, I2,m+2/2, I2,m–2/2. The 
component Ey is a superposition of harmonics described by the functions I2,m+2/2 and 
I2,m–2/2. And, finally, the component Ez is a superposition of harmonics described 
by the functions I1,m+1 and I1,m–1. Therefore, the total energy of the focal field is 

W =
(
W0,m + 

1 

4 
W2,m+2 + 

1 

4 
W2,m−2

)
+

(
1 

4 
W2,m+2 + 

1 

4 
W2,m−2

)
+ (

W1,m+1 + W1,m−1
)

(4.25) 

The brackets in Eq. (4.25) illustrate, respectively, the energies of angular 
harmonics in the Ex, Ey, and Ez field components. Since I2,m+2 = I2,m–2 and I1,m+1 = 
I1,m–1, we get 

W = W0,m + W2,m+2 + 2W1,m+1 (4.26) 

Substitution of Eqs. (4.22)–(4.24) into Eq. (4.26) yields 

W = 
4 

3 
π f 2

[
1 − cos6

(α 
2

)]
+ 

4 

3 
π f 2 sin6

(α 
2

)
+ 

+4 

3 
π f 2 sin4

(α 
2

)[
1 + 2 cos2

(α 
2

)] (4.27) 

After simplifications, we get. 

W = 2π f 2 (1 − cos α) (4.28) 

This expression is exactly the size of a part of a sphere bounded by the polar angle 
α. Thus, if a light field with unit amplitude is converging from a spherical surface 
with a numerical aperture sin(α), this field has exactly the energy given by Eq. (4.28). 
This means that we found the balance when the energy of the input field is equal to 
the sum of energies of all angular harmonics of all three Cartesian components of 
the electric field in the focus.
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In an extreme case, when the numerical aperture is close to unit, i.e., α ≈ π /2, we 
get W0,μ = (7

/
6)π f 2, W1,μ = (1

/
3)π f 2, W2,μ = (1

/
6)π f 2. The whole energy 

is coinciding with the square of a hemisphere: W = W0,m + W2,m+2 + 2W1,m+1 = 
2π f 2. Thus, the total energy W of the input field is distributed in the focal field in the 
proportions shown in Fig. 4.12 One third W /3 goes into the longitudinal component 
Ez, and 2W /3 goes into the transverse components Ex (5W /8) and Ey (W /24). The 
energy of the component Ex is distributed into the mth-order angular harmonic (7W / 
12) and into the harmonics of the orders m – 2 and m + 2, each of the energy W /48. 
The energy of the component Ey is distributed equally in the angular harmonics of 
the orders m – 2 and m + 2, each of the energy W /48. The energy of the component 
Ez is distributed equally in the angular harmonics of the orders m – 1 and m + 1, 
each of the energy W /6. 

Obviously, if the input field is linearly polarized along the axis y, the energy 
distribution is the same, but the main portion (7W /12, or 58%) goes into the mth-order 
of the angular harmonic of the y-component Ey. 

The above energy proportions can change if the field intensity is not homogeneous, 
i.e., if A(θ ) �= 1. However, if the amplitude function A(θ ) decays from the center to 
the periphery, then the contribution of the mth-order angular harmonic becomes even 
greater. Indeed, for instance, if the aperture is bounded by an angle α, then the energy 
of the side angular harmonics of the orders m + 2 and m – 2 relative to the energy 
of the central mth-order harmonic is. 

W2,m 

W0,m 
= sin6

(
α
/
2
)

1 − cos6
(
α
/
2
) = sin4

(
α
/
2
)

1 + cos2
(
α
/
2
) + cos4

(
α
/
2
) (4.29) 

When α decreases from π /2 to 0, the numerator also decreases, while the denom-
inator increases. Thus, this portion decays. For instance, if α = π /2, then W2,m/W0,m 

= 1/7 ≈ 0.143, but even if sin α = 0.95, then W2,m/W0,m ≈ 0.057, i.e., almost all 
energy goes into the central mth-order harmonic.

Fig. 4.12 Energy 
distribution of a tightly 
focused linearly polarized 
optical vortex by the field 
components and by the 
angular harmonics 
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Fig. 4.13 Energy 
distribution of a tightly 
focused light field with 
double-index polarization 
singularity by the field 
components and by the 
angular harmonics 

Now we apply the above introduced technique for obtaining the OAM spectrum 
of a light field with the double-index polarization singularity (4.5). Actually, the 
input field consists of four optical vortices of the orders m, –m, n, and –n. In the tight 
focus, each of these vortices splits into the several harmonics with the above derived 
energies. We suppose here for simplicity that α = π/2 and that these harmonics do 
not coincide with each other. Thus, we have the energy distribution (OAM-spectra 
of the components Ex, Ey, and Ez), illustrated in Fig. 4.13 

As seen in Fig. 4.13, side angular harmonics of the orders m ± 2 and n ± 2 have  
relative low energy (28 times lower than that of the orders m and n), and this energy 
becomes even lower when the aperture angle starts to decrease from α = π /2. 

4.2.3 Spin Angular Momentum of Double-Index Polarization 
Vortices in a Tight Focus 

Since it was found that almost all of the energy of the transverse field components goes 
into the mth-order and nth-order angular harmonics, we can suppose approximately 
that the SAM from Eq. (4.14) reduces simply to 

Sz ≈ 2Im
{
in−m

}
I0,mI0,n cos(mψ) sin(nψ) (4.30) 

Thus, it is seen that the SAM is equal to zero at the following polar angles:
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ψ1,p = 
πp 

n 
, p = 0, ..., 2n − 1, 

ψ2,q = 
π + 2πq 

2m 
, q = 0, ..., 2m − 1. 

(4.31) 

At certain conditions, these angles can coincide. For example, if n = 2m, we get. 

Sz ≈ 4Im
{
im

}
I0,mI0,2m sin(mψ) cos2 (mψ) (4.32) 

This indicates, that there are 4m lines with zero SAM, starting from the origin 
and tilted with the polar angles 

ψ = 
πp 

2m 
(4.33) 

with p = 0, 4m – 1.However, at odd  p, the cosine in Eq. (4.32) is zero, but it is squared. 
This means that the SAM does not change its sign at these angles. Instead, due to 
the square, there is a second-order edge dislocation. At even p, the edge dislocation 
has the first order and the SAM changes its sign. In comparison with the first-order 
dislocations, the dislocations of the second order look as wider dark areas between 
the maxima. Thus, the SAM distribution should look as a set of pairs of the spots 
with positive and negative SAM. 

Another case occurs when m = 1. For the SAM to be nonzero, n should be even. 
Thus, the angles α = ±  π /2 are again the lines of second-order edge dislocation, 
where the SAM does not changes sign. At other angles, the SAM changes the sign. 

If m and n are relatively large and close to each other, the roots of the sine and 
cosine do not coincide but are close to each other. Therefore, the SAM changes its 
sign at each such angle, but, due to the pairs of close zeros, the SAM between them 
is insignificant. 

4.2.4 Simulation 

Numerical simulation was done by the Richards-Wolf equations. At first, we studied 
the case when n = 2m. Figure 4.14 illustrates the intensity |Ex |2 + |Ey|2 + |Ez |2 

and the longitudinal SAM density of a tightly focused light field with double-index 
polarization singularity of three different orders (m, n): (1, 2) (Fig. 4.14a, d), (3, 6) 
(Fig. 4.14b, e), (7, 14) (Fig. 4.14c, f) at the following parameters: wavelength λ 
= 532 nm, focal length of the lens f = 10 μm, numerical aperture sin α = 0.95, 
amplitude apodization function is homogeneous, i.e., A(θ ) ≡ 1.

As seen in Fig. 4.14, indeed, the SAM distribution consists of alternating pairs of 
spots with positive or negative SAM. This is different from the patterns we obtained 
earlier near the focus, when the spots with positive and negative SAM were alternating 
in singles rather than in pairs [52].
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Fig. 4.14 Distributions of intensity |Ex |2 + |Ey |2 + |Ez |2 (a–c) and of longitudinal SAM density 
2Im{Ex 

*Ey} (d–f) of tightly focused light field with double-index polarization singularity of the 
orders (m, n) = (1, 2) (a, d), (m, n) = (3, 6) (b, e), (m, n) = (7, 14) (c, f) at the following parameters: 
wavelength λ = 532 nm, focal length of the lens f = 10 μm, numerical aperture sin α = 0.95, 
amplitude apodization function is homogeneous, i.e., A(θ) ≡ 1. All the figures have the size 4 × 4 
μm2 (scale mark shows 1 μm). Red and blue colors (d–e) mean, respectively, positive and negative 
SAM

Figure 4.15 illustrates the intensity and the longitudinal SAM density of tightly 
focused light field with double-index polarization singularity of two different orders 
(m, n): (6, 7) (Fig. 4.15a, c) and (16, 17) (Fig. 4.15b, d) at the following parameters: 
wavelength λ = 532 nm, focal length of the lens f = 10 μm, numerical aperture 
sin α = 0.95, amplitude apodization function is homogeneous, i.e., A(θ ) ≡ 1.

According to theoretical predictions, polar angles with zero SAM should occur 
by pairs of close angles. Figure 4.15 confirms it. It is seen that the positive SAM 
is mostly in the upper side while the negative SAM is mostly in the bottom side. 
Actually, the SAM is alternating, but between each spot with the positive or negative 
SAM, there is a weak spot of the opposite SAM, which is almost invisible in Fig. 4.15. 

The above theory predicts that the SAM is zero for the orders m and n of the 
same parity. Computation confirms this and polarization of the focal field is thus 
linear. Figure 4.16 depicts the intensity distributions and the polarization directions 
of tightly focused light fields with double-index polarization singularity of the orders 
(m, n) = (3, 7) (Fig. 4.16a) and (m, n) = (5, 3) (Fig. 4.16b) with the rest parameters 
being the same as in Figs. 4.14 and 4.15: wavelength λ = 532 nm, focal length of 
the lens f = 10 μm, numerical aperture sin α = 0.95, radial apodization function 
A(θ ) ≡ 1.
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Fig. 4.15 Distributions of intensity |Ex |2 + |Ey |2 + |Ez |2 (a–c) and of longitudinal SAM density 
2Im{Ex 

*Ey} (d–f) of tightly focused light field with double-index polarization singularity of the 
orders (m, n) = (6, 7) (a, c) and  (m, n) = (16, 17) (b, d) at the following parameters: wavelength λ = 
532 nm, focal length of the lens f = 10 μm, numerical aperture sin α = 0.95, amplitude apodization 
function is homogeneous, i.e., A(θ) ≡ 1. Figures have the size 4 × 4 μm2 (a, c) and  6  × 6 μm2 (b, 
d) (scale mark shows 1 μm). Red and blue colors (c, d) mean, respectively, positive and negative 
SAM

Fig. 4.16 Intensity distribution and polarization directions of a tightly focused light field with 
double-index polarization singularity of the orders (m, n) = (3, 7) (a) and  (m, n) = (5, 3) (b) at  
the following parameters: wavelength λ = 532 nm, focal length of the lens f = 10 μm, numerical 
aperture sin α = 0.95, radial apodization function is A(θ) ≡ 1. Scale mark shows 1 μm
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It is seen in Fig. 4.16 that Ey = 0 on the horizontal axis (ϕ = 0 and ϕ = π ) and 
Ex = 0 on the vertical axis (ϕ = ±  π /2), which is consistent with Eq. (4.11) for  the  
complex amplitudes of the light field. It is also seen that in both cases a saddle-type 
polarization [57] singularity is generated in the center. 

Based on the Richards-Wolf approximation, we have investigated here the spin 
angular momentum of double-index cylindrical vector beams in the tight focus. 
Such set of beams is a generalization of the conventional cylindrical vector beams 
since the polarization order is different for the different transverse field components. 
Thus, in the beam periphery, the number of areas with horizontal polarization is 
not equal to the number of areas with vertical polarization. It turns out that if the 
polarization orders are of different parity, then the spin Hall effect occurs in the 
tight focus that is there are alternating areas with positive and negative spin angular 
momentum, despite linear polarization of the initial light field. On the contrary, if the 
polarization orders are of same parity, then polarization in the tight focus remains 
linear (but inhomogeneous). For analytical description of the spin angular momentum 
distribution, we also analyzed the orbital angular momentum (OAM) spectrum of a 
linearly polarized mth-order vortex field in the tight focus. It turns out that if the initial 
light field is not of ring shape and has a homogeneous or decaying Gaussian shape, 
then the energy of the angular harmonics with the orders m ± 2 in the transverse 
field components are at least 28 times lower than the energy of the mth-order angular 
harmonic. 

This decomposition of the focused field into the OAM spectrum allowed us to 
predict the spin angular momentum distribution and, as an example, we demonstrated 
the ability to generate the focal distribution where the areas with the positive and 
negative spin angular momentum reside on a ring and are alternating in pairs, or 
separated in different semicircles. 

Application areas of the results obtained are designing micromachines for optical 
driving biological objects [59, 60] or microtools in a lab-on-a-chip [61]. Cylindrical 
vector laser beams with a double index were studied in [58]. 
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Chapter 5 
Sharp Focusing of Modified Cylindrical 
Vector Laser Beams 

5.1 Spin-Orbital Conversion of a Strongly Focused Light 
Wave with High-Order Cylindrical-Circular 
Polarization 

The rigorous description of a linearly polarized electromagnetic field in the strong 
focus was proposed in a classical work by Richards and Wolf [1]. Numerous follow-
up publications relied on the Richards-Wolf formalism to look into the behavior of 
more general electromagnetic fields with various polarization states. Topics studied 
included characteristics of a radially polarized electromagnetic field in the strong 
focus [2] and spin-orbital conversion in the strong focus of a circularly polarized 
wave [3, 4]. Tightly focusing an elliptically polarized optical vortex has been studied 
[5, 6] and a concept of cylindrical vector beams has been proposed [7], which include 
radially and azimuthally polarized beams. Focusing promising beams with hybrid 
polarization has also been studied [8–10]. For this type of polarization, the transposed 
Jones vector takes the form E = (exp(iδ), exp(−iδ)), where δ = αr + β, r is a 
real variable, α, β are constant, and E is the initial light field. This type of hybrid 
polarization is linear along some radii and circular on the others, however, being 
independent of the polar angle ϕ. A more general type of hybrid polarization was 
discussed in Ref. [11], where tightly focusing was analyzed for an incident field 
described by the polar angle dependent Jones vector, E = (cosϕcosγ − icos(2ψ − 
ϕ)sinγ , sinϕcosγ − isin(2ψ − ϕ)sinγ ), where ϕ is the polar angle and γ , ψ are 
constant. This field was found to be polarized either linearly or circularly, depending 
on the specific value of the polar angle. However, no analytical relations to describe 
the hybrid field and projections of the Poynting vector were proposed in Ref. [11]. 
A field with hybrid polarization described by E = (exp(iδ) sin ϕ, cos ϕ), where ϕ 
is a polar angle and δ is constant, has also been studied [12]. We note that in this 
work, we discuss a more general polarization of which the above-said polarization is 
a particular case (at m = 1). We also note that in Ref. [12], projections of the Poynting 
vector were not defined analytically. Beams with arbitrary polarization represented
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on a Poincare unit sphere have also been analyzed [13, 14]. In such beams, the pre-
focusing polarization vector can be represented as E = (exp(−ilϕ + iα) cos β + 
exp(ilϕ + iα) sin β, i exp(−ilϕ + iα) cos β + i exp(ilϕ + iα) sin β), where l is 
topological charge, ϕ is the polar angle, (α, β) are (constant) angles on the Poincare 
unit sphere. It is worth noting that Refs. [13, 14] studied these beams experimentally, 
not offering a theoretical substantiation and expressions for the field intensity and 
projections of the Poynting vector in the tight focus. Tightly focusing higher-order 
cylindrically polarized light was studied in Refs. [15, 16], with the incident field being 
represented as E = (cos(pϕ + α), sin(pϕ + α)), where p is the order of cylindrical 
polarization and α is constant. Vortex beams with arbitrary topological charge m 
and nth order cylindrical polarization were theoretically studied in Ref. [17]. The 
incident field was described by E = exp(imϕ)(cos(nϕ), sin(nϕ)). 

A distinctive feature of this work is that for the first time we analyze a new 
type of hybrid polarization of light never studied previously, with polarization of 
the incident field of interest being represented by E = (−i sin(mϕ), cos(mϕ)). In  
this case, with changing polar angle of the initial field, polarization changes from 
circular, to elliptical to linear, alternating in this manner m times per full circle of the 
polar angle. We also propose analytical relationships for projections of the electric 
and magnetic field strength in the strong focus, for intensity distributions, and for 
projections of the Poynting vector and spin angular momentum (SAM) vector. 

5.1.1 Intensity of Light with Hybrid Polarization in the Focus 

Let the amplitudes of the original magnetic and electric field vectors for mth-order 
hybrid polarization be given by 

E = A(θ )

(
−i sin mϕ 
cos mϕ

)
, H = A(θ )

(
− cos mϕ 
−i sin mϕ

)
, (5.1) 

where E and Н are the electric and magnetic field vectors, m is a positive integer 
number defining the order of cylindrical polarization, and A(θ ) is the amplitude of the 
original light field as a function of the field angle with the optical axis. Polarization 
of the field in Eq. (5.1) is called hybrid because it combines properties of mth-
order cylindrical polarization and circular polarization. At different polar angles ϕ, 
polarization of field (5.1) will be either circular (at ϕ = πn/(4m), n = 1, 3, 5..., 
elliptical, or linear (at ϕ = πn/(2m), n = 0, 1, 2...). From (5.1), it also follows 
that at m = 0, the field will be homogeneously linearly polarized. Relying on the 
Richards-Wolf formalism [1], we can derive projections of the electric field vector 
in the strong focus of an aplanatic optical system from the original field (5.1):
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Ex = 
−im 

2

[
I0,m sin(mϕ) + 

(1 + i) 
2 

I2,m+2 sin((m + 2)ϕ) 

+ 
(1 − i) 

2 
I2,m−2 sin((m − 2)ϕ)

]
, 

Ey = 
−im 

2

[
iI0,m cos(mϕ) − 

(1 + i) 
2 

I2,m+2 cos((m + 2)ϕ) 

+ 
(1 − i) 

2 
I2,m−2 cos((m − 2)ϕ)

]
, 

Ez = 
im 

2

[
(1 + i)I1,m+1 sin((m + 1)ϕ) 

+ (1 − i)I1,m−1 sin((m − 1)ϕ)
]

(5.2) 

and for the magnetic field vector: 

Hx = 
im 

2

[
iI0,m cos(mϕ) + 

(1 + i) 
2 

I2,m+2 cos((m + 2)ϕ) 

− 
(1 − i) 

2 
I2,m−2 cos((m − 2)ϕ)

]
, 

Hy = 
im 

2

[
−I0,m sin(mϕ) + 

(1 + i) 
2 

I2,m+2 sin((m + 2)ϕ) 

+ (1 − i) 
2 

I2,m−2 sin((m − 2)ϕ)

]
, 

Hz = 
im 

2

[
(1 − i)I1,m+1 cos((m + 1)ϕ) 

−(1 + i)I1,m−1 cos((m − 1)ϕ)
]
, (5.3) 

where 

Iν,μ =
(
4π f 
λ

) θ0∫
0 

sinν+1

(
θ 
2

)
cos3−ν

(
θ 
2

)
cos1/2 (θ ) 

× A(θ )eikz cos θ Jμ(x)dθ, (5.4) 

where λ is the incident wavelength, f is the focal length of the aplanatic system, 
x = krsinθ, Jμ(x) is the Bessel function of the first kind, and NA = sinθ 0 is the 
numerical aperture. The original amplitude function A(θ ) (here, assumed to be real) 
can be either constant (for a plane incident wave) or given by a Gaussian beam: 

A(θ ) = exp
(−γ 2 sin2 θ 

sin2 θ0

)
(5.5)
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where γ is constant. By way of checking Eqs. (5.2), let us reduce them to the familiar 
expressions [1, 4] for a linearly polarized light field (m = 0): 

Ex0 = 
−i 

2 
I2,2 sin(2ϕ), 

Ey0 = 
−i 

2

[
I0,0 − I2,2 cos(2ϕ)

]
, 

Ez0 = I1,1 sin(ϕ) 

(5.6) 

The only difference is that the linear polarization vector is directed along the 
y-axis in Eq. (5.1), being directed along the x-axis in Refs. [1, 4]. From (5.2), the 
intensity distribution of the electric field in the focal plane (z = 0) is found as: 

Im = 
1 

4

[
I2 0,m + I2 2,m+2 + I2 2,m−2 − I0,m

(
I2,m+2 + I2,m−2

)]
+ 

1 

2

(
I2 1,m+1 + I0,mI2,m+2

)
sin2 ((m + 1)ϕ) 

+ 
1 

2

(
I2 1,m−1 + I0,mI2,m−2

)
sin2 ((m − 1)ϕ). (5.7) 

At m = 0, from Eq. (5.7) follows a familiar relation for the intensity distribution 
in the tight focus from the incident linearly polarized light field [1, 18]: 

I0 = 
1 

4

(
I2 0,0 + 2I2 1,1 + 2I2 2,2

)− 
1 

4

(
I2 1,1 + I0,0I2,2

)
cos(2ϕ). (5.8) 

From Eq. (5.8), the intensity is seen to have two local maxima lying on the vertical 
axis (at ϕ = ±π/2) because the incident field is linearly polarized and directed along 
the y-axis. At m = 1, Eq. (5.7) suggests that the intensity in the focus of the first-order 
hybrid field (5.1) is given by 

I1 = 
1 

4

(
I2 0,1 + I2 1,2 + I2 2,1 + I2 2,3 + I0,1I2,1

)
− 

1 

4

(
I2 1,2 + I0,1I2,3

)
cos(4ϕ). (5.9) 

From (5.9), the intensity distribution in the focus for the first-order hybrid field 
(5.1), i.e., for azimuthal circular polarization, features four local maxima (at ϕ = 
±π/4, ±3π/4). In the general case of an arbitrary m, the intensity distribution in 
Eq. (5.7) has 2(m + 1) maxima lying on the rays formed by the polar angles ϕ = (π + 
2πn)/2(m+1), n = 0, 1, 2, ...2m+1. It follows from the fact that Eq. (5.7) contains 
the square of the sine, which have 2(m + 1) maxima when the angle ϕ changes from 
0 to 2π. Numerical simulation has confirmed the theoretical conclusions.
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5.1.2 Energy Flow in the Focus of Light with Hybrid 
Polarization 

We note that in the original field (5.1), only the longitudinal projection of the energy 
flow is present because the longitudinal components of the electric and magnetic 
field vectors are zero, as is the transverse projection of the Poynting vector. Instead, 
the longitudinal component of SAM vector is non-zero. Hence, due to the effect of 
spin-orbital conversion, a transverse energy flow may be expected to be generated in 
the strong focus. Below, we demonstrate that this is the case. Let us derive projections 
of the Poynting vector (the energy flow) 

P = Re
(
E∗ × H

)
(5.10) 

where Re is the real part of the number, × denotes a vector product of two vectors, 
E* denotes complex conjugation in the focal plane (z = 0) for the original field with 
hybrid polarization, Eq. (5.1). Substituting the projections of the electric field in 
Eq. (5.2) and the magnetic field in Eq. (5.3) into Eq. (5.10) yields: 

Px = 
1 

4

[
I0,m

(
I1,m+1 + I1,m−1

)
cos ϕ+ 

+ I1,m+1I2,m−2 cos((m + 1)ϕ) cos((m − 2)ϕ) 
+ I1,m−1I2,m+2 cos((m − 1)ϕ) cos((m + 2)ϕ) 
+ I1,m+1I2,m+2 sin((m + 1)ϕ) sin((m + 2)ϕ) 
+ I1,m−1I2,m−2 sin((m − 1)ϕ) sin((m − 2)ϕ)], 

Py = 
1 

4

[
I0,mI1,m+1 sin((2m + 1)ϕ)+ 

+ I0,mI1,m−1 sin((2m − 1)ϕ) 
+ I1,m+1I2,m−2 cos((m + 1)ϕ) sin((m − 2)ϕ) 
− I1,m−1I2,m+2 cos((m − 1)ϕ) sin((m + 2)ϕ) 
+ I1,m+1I2,m+2 sin((m + 1)ϕ) cos((m + 2)ϕ) 
− I1,m−1I2,m−2 sin((m − 1)ϕ) cos((m − 2)ϕ)], 

Pz = 
1 

4

(
I2 0,m − 

1 

2 
I2 2,m+2 − 

1 

2 
I2 2,m−2

)
. (5.11) 

Although the expressions for the projections of the Poynting vector in Eq. (5.11) 
are quite cumbersome, they allow us to make some significant general conclusions. 
From Eq. (5.11), the longitudinal energy flow is seen to be radially symmetric at 
any m, being ϕ-independent. The on-axis energy flow will be positive and non-zero 
only at m = 0 (linear polarization): Pz(r = z = 0) = I2 0,0/4. Besides, the on-axis 
projection of the Poynting vector in the focus in Eq. (5.11) will be non-zero and 
negative only at m = -2 or m = 2: Pz(r = z = 0) = −I2 2,0/4. Thus, we can infer that 
similar to conventional 2nd-order azimuthal polarization [18, 19], for hybrid incident
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polarization, a reverse energy flow also occurs at m = ±2. From (5.11) at  ϕ = 0, we 
can derive: 

Px(ϕ = 0) = 
1 

4

[
I0,m

(
I1,m+1 + I1,m−1

)+ I1,m+1I2,m−2 

+ I1,m−1I2,m+2
]

> 0 
(5.12) 

From (5.11), we also find that Py(y = 0) = 0, Px(ϕ = 0) = −Px(ϕ = π)  > 
0. Hence, at any m, on the horizontal axis x, the transverse energy flow is always 
directed along the x-axis in both directions from the center. It also follows from 
(5.11) that on the vertical axis y, the transverse energy flow is directed along the y-
axis because Px(ϕ = π/2) = Px(ϕ = 3π/2) = 0. Equation (5.11) also suggests that 
when passing through the y-axis zero point, the energy flow changes sign: Py(ϕ = 
π/2) = −Py(ϕ = 3π/2) �= 0. The sign of the transverse flow alternate moving 
along the y-axis. For instance, if at m = 1 the energy flow on the y-axis is directed 
toward the center, at m = 2, the flow will be directed from the center. Summing 
up, at m = 1, the transverse energy flow will be directed from the center on the 
x-axis and toward the center on the y-axis. This can occur if the transverse energy 
flow rotates anticlockwise in quadrants I and III, rotating clockwise in quadrants II 
and IV. Next, at m = 2 on the vertical axis, the transverse energy flow will change 
sign becoming directed from the center, while remaining being directed from the 
center on the horizontal x-axis. This can occur if in the four quadrants there will be 
four lines (at an angle of 45º) along which the energy flow is directed to the center. 
Thus, at m = 2, eight transverse energy vortices will be generated (by twos in each 
quadrant), characterized by alternating energy rotation handedness (clockwise and 
anticlockwise). Using a similar reasoning, it can further be shown that at an arbitrary 
m, in the focus there will be 4m energy flow vortices. The vortex handedness will 
change to the opposite in passing from one vortex to the other. 

For simplicity, below, we analyze particular cases of Eq. (5.11). From (5.11), it 
also follows that at m= 0 (linear polarization), the transverse energy flow components 
equal zero in the focus: Px = Py = 0. This can be checked by directly substituting m 
= 0 into (5.11) and taking into account properties of the integrals in Eq. (5.4): Ip,−q 

= (− 1)qIp,q. At  m > 0, there is a non-zero transverse energy flow of Eq. (5.11). Let 
us remind that for mth-order cylindrical polarization, the transverse energy flow in 
the focus is always zero [18]. At m = 1 (circular azimuthal polarization), we can 
derive from Eq. (5.11) the following expressions for projections of the energy flow: 

Px = 
1 

4

[
I0,1
(
I1,2 + I1,0

)
cos ϕ + I1,2I2,3 sin 2ϕ sin 3ϕ 

+ I1,0I2,3 cos 3ϕ − I1,2I2,1 cos 2ϕ cos ϕ
]
, 

Py = 
1 

4

[
I0,1
(
I1,2 sin 3ϕ − I1,0 sin ϕ

)
+ I1,2I2,3 cos 2ϕ cos 3ϕ − I1,0I2,3 sin 3ϕ 
+ I1,2I2,1 cos 2ϕ sin ϕ

]
,
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Pz = 
1 

4

(
I2 0,1 − 

1 

2 
I2 2,3 − 

1 

2 
I2 2,1

)
. (5.13) 

From (5.13), the longitudinal energy flow component is seen to be ring-shaped 
with the on-axis intensity null. The transverse energy flow components are non-zero 
and devoid of radial symmetry. From Eq. (5.13), the transverse components of the 
Poynting vector in the focus are seen to have the following structure: 

ϕ = 0 : Px = A + B > 0, Py = 0, 
ϕ = π/2 : Px = 0, Py = −A + B < 0, 
ϕ = π : Px = −(A + B) <  0, Py = 0, 
ϕ = 3π/2 : Px = 0, Py = A − B > 0, 
A = I0,1

(
I1,2 + I1,0

)
/4, B = I1,0I2,3 − I1,2I2,1. 

(5.14) 

From (5.14), the energy flow in the focal plane on the horizontal x-axis is seen to 
be directed along the x-axis from the center, being directed toward the center on the 
vertical y-axis. This effect occurs if the transverse energy flow rotates anticlockwise 
in quadrants I and III, rotating clockwise in quadrants II and IV. 

One more general conclusion can be made from Eq. (5.11) without the need to 
do numerical simulation. In the relationship for the projection of the Poynting vector 
in Eq. (5.11), the sine function Py with the maximal spatial frequency is given by 
sin(2m + 1)ϕ. Hence, at a given r, the integrals from (5.4) that enter Eq. (5.11) will 
take constant values, with the entire expression for Py being only dependent on the 
angle ϕ, so that after one full circle of radius r in the focal plane, the value of Py will 
change sign 2(2m + 1) times. 

5.1.3 SAM in the Strong Focus of a Field with Hybrid 
Polarization 

First, we remind that the longitudinal projection of the spin density vector or SAM 
vector equals zero for any mth-order cylindrical polarization of the initial field [18]. 
In this section, we will demonstrate that given hybrid polarization of Eq. (5.1), the 
longitudinal projection of the SAM vector in the focus will be non-zero. Actually, 
let us define the SAM vector in the form [4]: 

S = Im
(
E∗ × E

)
(5.15) 

where Im is the imaginary part of the number. Substituting the E-field projections 
from (5.2) into (5.15) yields the longitudinal component of SAM:
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Sz = 
1 

4

[
I0,m

(
I2,m+2 − I2,m−2

)
sin 2ϕ 

+(I2 0,m − I2,m−2I2,m+2
)
sin(2mϕ)

]
. 

(5.16) 

Equation (5.16) suggests that at m = 0 (linear polarization), Sz = 0. At m = 1, 
Eq. (5.16) is rearranged to 

Sz = 
1 

4

[
I0,1
(
I2,3 + I2,1

)+ (
I2 0,1 + I2,1I2,3

)]
sin 2ϕ. (5.17) 

From (5.16), the on-axis projection of the SAM vector in the focal plane changes 
its sign 4m times, because Eq. (5.16) contains the function sin(2mϕ). Hence, there 
will be 4m local vortices of the transverse flow and 4m local regions with the positive 
or negative longitudinal projections of the SAM vector. Notably, in the focal plane 
regions of anticlockwise handedness of the transverse energy flow, the polarization 
vector also rotates anticlockwise, meaning that the projection of the SAM vector is 
positive (Sz > 0). And vice versa, in the focal plane local regions of the clockwise 
handedness of the transverse energy flow, the polarization vector also rotates clock-
wise, meaning that the longitudinal projection of the SAM vector is negative (Sz < 0). 
Dielectric microparticles, which are slightly less in size than the local energy vortex 
region, placed in the focal plane will start rotating around their axis. It is interesting 
that particles in the adjacent regions will rotate in the opposite directions. 

5.1.4 Results of the Numerical Simulation of Focusing Light 
with Hybrid Polarization 

The numerical simulation based on the Richards-Wolf formulae [1] was conducted 
for focusing a 532-nm plane wave with hybrid polarization, Eq. (5.1) by means of 
an aplanatic objective lens with NA = 0.95. Figure 5.1 depicts (a) intensity patterns 
and Poynting vector components (b) Px, (c)  Py, and (d) Pz in the focal plane when 
focusing a plane wave with hybrid polarization of Eq. (5.1) at  m = 1. From Fig. 5.1a, 
the intensity is seen to have 2(m + 1) = 2(1 + 1) = 4 local maxima located at 
the corners of a square-shaped contour. At the focal spot center there occurs an 
intensity null. Shown in Fig. 5.1b, c are distributions of the transverse energy flow 
and transverse projections (b) Px, (c)  Py of the Poynting vector. From Fig. 5.1b, c, the 
energy flow is seen to change its sign 2(2m + 1) = 6 times per one full circle around 
center. Figure 5.1d shows the longitudinal projection Pz of the Poynting vector, which 
is ring-shaped and has a zero value at the center. The patterns in Fig. 5.1 confirm 
the conclusions made on the basis of the theoretically derived relationships for the 
intensity in Eq. (5.9) and the energy flow in Eq. (5.11).

Figure 5.2 depicts patterns of (a) intensity and (b, c, d) projections Px, Py, and Pz 

of the Poynting vector in the focal plane when focusing a plane wave with hybrid 
polarization of Eq. (5.1) at  m = 2. The numerically simulated patterns in Fig. 5.2
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Fig. 5.1 Patterns of a intensity and (b, c, d) Poynting vector components Px , Py, and Pz in the focal 
plane when focusing a plane wave with hybrid polarization of Eq. (5.1) at  m = 1

corroborate theoretical predictions that follow from Eqs. (5.9) and (5.11). Actually, 
the intensity distribution in Fig. 5.2a is seen to have 2(m + 1) = 6 local maxima 
lying on a closed curve around the center. Figure 5.2b, c depicts distributions of the 
transverse projections Px (b), Py (c) of the Poynting vector, from which the energy 
flow is seen to change its sign 2(2m + 1) = 10 times per full circle around the center. 
Figure 5.2d depicts the longitudinal projection Pz of the Poynting vector in the form 
of a ring. The central energy flow is negative and equal to Pz(r = z = 0) = −I2 2,0/4, 
as seen from (5.11).

Figure 5.3 depicts distributions of SAM components (a, b, c) Sx, Sy, and Sz when 
focusing a plane wave with hybrid polarization of Eq. (5.1) at  m = 1. From Fig. 5.3c, 
the longitudinal component of the SAM vector changes its sign 4m = 4 times, which 
is seen from (5.17).

Figure 5.4 shows distributions of SAM vector components (a, b, c) Sx, Sy, and Sz 
when focusing a plane wave with hybrid polarization of Eq. (5.1) at  m = 2. From 
Fig. 5.4c, the longitudinal projection of SAM vector is seen to be equal to 4m = 8, 
which follows from (5.17).

Figure 5.5 depicts intensity distributions when focusing a plane wave with hybrid 
polarization in Eq. (5.1) at (a)  m = 2 and (b) m = 3, with arrows marking the direction 
of the transverse Poynting vector component in the focal plane. From Fig. 5.5, the
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Fig. 5.2 Distributions of a intensity and components (b, c, d) Px, Py, and Pz of the Poynting vector 
in the focal plane when focusing a plane wave with hybrid polarization of Eq. (5.1) at  m = 2

Fig. 5.3 Distribution of SAM vector components Sx (а) Sy (б) и Sz (b) when focusing a plane wave 
with hybrid polarization of Eq. (5.1) at  m = 1

Fig. 5.4 Distribution of the SAM components (a, b, c) Sx , Sy, and  Sz when focusing a plane wave 
with hybrid polarization in Eq. (5.1) at  m = 2
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Fig. 5.5 Intensity distribution and the magnitude and direction of the Poynting vector (arrows) in 
the focal plane when focusing a plane wave with hybrid polarization of Eq. (5.1) for  a m = 2 and  
b m = 3 

number of the transverse flow vortices equals (a) 4m = 8 and (b) 4m = 12, which can 
be inferred from the expression (5.11) for transverse Poynting vector components. 
From Fig. 5.5, the centers of the transverse energy flows in the focus are also seen 
to not coincide with the local intensity maxima. The vortices are centered at points 
where the transverse energy flow is zero. From the comparison of Figs. 5.4c and 
5.5а, the number of regions with positive- and negative-valued longitudinal SAM 
projections (4m = 8) is the same as the number of the transverse energy vortices (4m 
= 8). The comparison of Figs. 5.4c and 5.5а also suggests that the longitudinal SAM 
component is positive (Sz > 0) in the regions of anticlockwise handedness of the 
transverse energy flow. And vice versa, the longitudinal SAM component is negative 
(Sz < 0) in the regions of clockwise handedness of the transverse energy vortex. Thus, 
the polarization vector in the focal plane rotates anticlockwise in the regions where 
the transverse energy flow also has anticlockwise handedness. And vice versa, the 
polarization vector rotates clockwise where the transverse energy flow has clockwise 
handedness. This is in good agreement with the spin-orbital conversion effect. This 
spatial separation at the focus of left and right circular polarization is a manifestation 
of the optical spin Hall effect [20]. 

5.1.5 Experiment 

Figure 5.6a shows an optical setup for generation of the beam (5.1) with m = 2. 
Figure 5.6b–d show images of obtained beam. Light from a laser Cobolt 06-MLD 
(λ = 633 nm, 200 mW) propagates through neutral density filter ND and Glan-
Taylor polarizer GT. The resulting linearly polarized light propagates through vortex 
half-wave plate (Thorlabs, WPV10-633), which transform linearly polarized light 
into cylindrical vector beam of the second order. And finally the beam propagates
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Fig. 5.6 a Optical setup for generation and registration of hybridly polarized beam Eq. (5.1) of the  
second order m = 2 

through a quarter-wave plate. The resulting beam was registered by a CCD camera 
(Ucmos 10000 KPA). 

ND is a neutral density filter, GT is a Glan-Taylor polarizer, CVB2 is a vortex half-
wave plate (Thorlabs, WPV10-633), λ/4 is a quarter-wave plate, CCD is a camera 
Ucmos 10000KPA. (b)–(d) Images of the beam: a linear polarizer-analyzer P was 
placed before CCD camera, it was rotated by an angle θ equals to 0 (b), 90 (c), 45 
(d). 

To be sure that the experimentally obtained beam corresponds to the desired 
hybrid polarization, we simulated insertion of a linear polarizer into the beam using 
the Jones calculus formalism. After a linear polarizer the polarization of the beam 
changes in accordance with the following equation:

(
Ex,out 

Ey,out

)
=
(

cos2 θ − sin θ cos θ 
− sin θ cos θ sin2 θ

)(
Ex,in 

Ey,in

)
(5.18) 

where Ex,in and Ey,in are electric field components before the polarizer (calculated 
by Richards-Wolf formula), Ex,out and Ey,out are electric field components after the 
polarizer-analyzer, θ is an angle between the x-axis and axis of the polarizer. 

Figure 5.7 shows the intensity distribution of hybridly polarized beam Eq. (5.1) 
m = 2 propagated through a linear polarizer-analyzer, which is rotated by angle 0 
(Fig. 5.7a), π /2 (Fig. 5.7b), π /4 (Fig. 5.7c). From Eq. (5.1) it follows that at the angle 

ϕ = π 
4 + π n 

2 (along diagonal lines) there is Ex component only E =
(

−i 

0

)
; however, 

at the angle ϕ = π n 
2 (along Cartesian axes) there is only Ey component E =

(
0 

1

)
.
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Fig. 5.7 Intensity distribution (simulation) of a hybrid beam Eq. (5.1) with  m = 2 propagated 
through a linear polarizer-analyzer rotated by an angle θ equals to 0 (a), π /2 (b), π /4 (c) 

From comparison of Figs. 5.6 and 5.7, it could be seen that the state of polarization 
coincides in the simulation and the experiment. 

In this section, tightly focusing laser light with mth-order circular azimuthal 
polarization has been analyzed. This is a new type of inhomogeneous polarization 
which combines properties of mth-order cylindrical and circular polarizations. Using 
the Richards-Wolf formalism, we have deduced analytical expressions to describe 
projections of the E- and H-vectors, the intensity distribution, and projections of the 
Poynting vector and SAM vector in the tight focus of light. It has been shown theo-
retically and numerically that the intensity pattern in the focal spot has 2(m + 1) local 
maxima located along a closed contour centered at the on-axis zero-intensity point. 
We have shown that in the focus there are 4m vortices of the transverse energy flows 
with their centers located between the local intensity maxima. It has also been shown 
that the transverse energy flow vortex changes its handedness 2(2m + 1) times per full 
circle around the optical axis. Interestingly, the longitudinal SAM component in the 
focus changes its sign 4m times. The longitudinal SAM component has been shown to 
be positive in regions of anticlock handedness of the transverse energy vortex, with the 
polarization vector rotating anticlockwise around the optical axis. And vice versa, the 
polarization vector rotates clockwise and the longitudinal SAM component is nega-
tive in the regions where the energy flow rotates clockwise. The obtained results of 
control of intensity maxima allows the transverse mode analysis in waveguide-based 
sensors [21, 22]. This kind CVBs can be used in phase-sensitive surface plasmon 
resonance biosensors with high resolution [23] or in graphene biosensors for real-
time subcellular imaging [24]. Other application include Raman spectroscopy [25] 
and vector magnetic field sensing [26]. Sharp focusing of modified cylindrical vector 
laser beams was studied in [27].
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5.2 Sharp Focusing of a Hybrid Vector Beam 
with a Polarization Singularity 

For the first time, vector singularities as a generalization of scalar singularities were 
proposed in 1983 by Nye [28], where lines of zero-valued transverse components of 
the E-field were called ‘disclinations’ (to distinguish them from scalar edge and screw 
dislocations [29]). However, both in Refs. [28, 29] and in Ref. [30] the polarization 
singularities were studied locally, i e., in a neighborhood of singular (critical) points. 
It would be of significant interest to globally investigate inhomogeneously polarized 
light fields characterized by different (linear, elliptical, or circular) polarization at 
different points of the beam cross section. That is, we aim to determine topological 
charges and singularity indices of the whole light field. Such studies become relevant 
due to a growing number of publications concerned with inhomogeneously polarized 
vector fields [7]. Inhomogeneously polarized beams can be generated by interferom-
etry [31], inside a cavity [32], as well as with q-plates [33], metasurfaces [34, 35], 
polarization prisms [36], and spatial light modulators [37]. Points of intensity nulls 
at which the linear polarization vector is not defined are called V-points [30]. In a 
similar way, points of a light field with inhomogeneous elliptical polarization where 
the direction of the major axis of the polarization ellipse is undefined are called 
‘C-points’, with the light being circularly polarized at such points. If the C-points 
are arranged on a line, the line is called a C-line [30]. Polarization singularities 
are described by singularity indices, which are calculated similar to the topological 
charges of scalar light fields [38]. The polarization singularity index of V-points is 
called a Poincare-Hopf index [30] and calculated using Stokes parameters [39–41]. 
Meanwhile the C-points are described by an index equal to the number of turns by 
π the major axis of the polarization ellipse makes around the С-point. The index of 
a С-point can take a fractional (half-integer) value if on a complete turn the polar-
ization ellipse makes an odd number of turns by π. When intersecting C-lines, the 
polarization ellipse axis makes a jump by π /2. 

In this section, we look into a hybrid nth order vector light field whose polariza-
tion varies from linear to elliptical, to circular depending on the polar angle. This 
field contains just C-lines with their number being equal to n. For this field, we 
find components of the Stokes vector and show the polarization index to be half-
integer, n/2. Using a Richards-Wolf formalism [1], we derive analytical expressions 
for projections of the E-vector at the tight focus for a source hybrid nth order vector 
field and analytical relations for the field intensity at the focus. We find that at an even 
number n, the intensity has nth order symmetry and C-points at the focus. Thus, we 
numerically demonstrate that C-lines in the source field ‘disintegrate’ into C-points 
at the focus, which are located on the same C-lines. We also derive analytical rela-
tionships for the projection of the Stokes vector at the focus, which suggest that for 
an odd number n, the field at the focus is purely vector, consists of vectors of linear 
polarization, has n V-points, and has no C-points.
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5.2.1 Source Hybrid Vector Field with Polarization 
Singularity Points 

Let us analyze a new hybrid nth order vector field defined in the original plane by 
two transverse projections of the E-vector and a Jones vector in the form: 

En(ϕ) = 
1 √
2

(
cos nϕ 
iα + sin nϕ

)
(5.19) 

where n is integer and 0 ≤ |α| ≤ 1. From (5.19) it follows that at n = 0, light field 
(5.19) is elliptically polarized, while at |α| = 1 it is circularly polarized. At α = 0, 
field (5.19) has inhomogeneous nth order vector polarization. 

Field (5.19) has points of linear, elliptical, and circular polarization. Points of 
circular polarization are called C-points of polarization singularity because the direc-
tion of the major axis of the ellipse polarization is undefined at such points [30]. 
Topology of the polarization ellipses around a C-point is described by an index Ic, 
which shows how many (integer) times the major axis of the polarization ellipse 
changes its direction by an angle of π while making a full circle around the C-point. 
To find the index Ic of field (5.19), let us find all projections of the Stokes vector [40] 
S = (S1, S2, S3), where 

S1 = 
|Ex|2 −

∣∣Ey

∣∣2 
|Ex|2 +

∣∣Ey

∣∣2 , S2 = 
2Re

(
E∗
x Ey
)

|Ex|2 +
∣∣Ey

∣∣2 , S3 = 
2Im

(
E∗
x Ey
)

|Ex|2 +
∣∣Ey

∣∣2 , (5.20) 

where Re and Im denote the real and imaginary parts of the number. From (5.20), 
the Stokes vector is seen to be of unit length: S2 

1 + S2 
2 + S2 

3 = 1. For field (5.19), the 
Stokes vector components in Eq. (5.20) take the form: 

S1 = 2 
cos 2nϕ − α2 

1 + α2 
, S2 = 

2 sin  2nϕ 
1 + α2 

, S3 = 
2α cos nϕ 
1 + α2 

. (5.21) 

From (5.21) it follows that polarization of light is linear on the rays outgoing 
from the center at angles defined by the equation S3 = cos nϕ = 0. At angles ϕ that 
satisfy the equation S3 = 1 or cos nϕ = ±1 and α = +1, −1 the light is circularly 
polarized. Elsewhere, the light is elliptically polarized. Thus, we can infer that field 
(5.19) has no isolated C-points but has C-lines, with the direction of the major axis 
of a polarization ellipse jumping by π /2 on crossing the line. A single C-point is 
equivalent to a screw dislocation and a C-line is equivalent to an edge dislocation. 
The number of С-lines in the source field (5.19) equals the field order n, with the 
lines found on 2n rays outgoing from the center at angles π m/n, m = 0, 1, 2, …, 
2n − 1. 

In Ref. [30], a local index of hybrid vector fields for polarization singularities (C-
points) was calculated and the hybrid vector field itself was locally defined near the
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singularity. Hereinafter, we shall calculate the topological index of the whole hybrid 
vector field (5.19) in a global way, in a similar way to calculating the topological 
charge of the whole scalar complex vortex field using Berry’s formula [38]. To these 
ends, let us form a complex Stokes field by the rule: 

Sc = S1 + iS2 (5.22) 

For the source vector field (5.19), the complex Stokes field is given by 

Sc = 2 
exp(2inϕ) − α2 

1 + α2 
(5.23) 

The Stokes index σ for field (5.23) can be calculated using Berry’s formula [38]: 

σ = 
1 

2π 
Im 

2π∫
0 

d ϕ 
∂Sc(ϕ)/∂ϕ 

Sc(ϕ) 
. (5.24) 

Substituting Stokes field (5.23) into (5.24) yields: 

σ = 
1 

2π 
Im 

2π∫
0 

d ϕ 
2in exp(2inϕ) 
exp(2inϕ) − α2 

= 
n 

π 

2π∫
0 

d ϕ

(
1 − α2 cos 2nϕ

)
(1 + α4) − 2α2 cos 2nϕ 

. (5.25) 

Putting in Eq. (5.25) α2 = 1, we find that σ = n and the index of the C-points and 
the whole field (5.19) equals Ic = σ /2 = n/2. The index Ic can be half-integer owing 
to the tilt of the major axis of the polarization ellipse varying from 0 to π, rather than 
to 2π. Putting in (5.25) α = 0, Eq. (5.19) will describe an inhomogeneous linearly 
polarized field (S3 = 0), containing just V-points (where the linear polarization vector 
is undefined), where the Stokes index of Eq. (5.25) equals σ = 2n, meanwhile the 
Poincare-Hopf index [30] of field (5.19) is half as large: η = n. At  0 < |α| < 1, the  
Stokes index in (5.25) can be calculated using a reference integral [42]: 

2π∫
0 

cos mx 

a + b cos x 
dx = 2π √

a2 − b2

(√
a2 − b2 − a 

b

)m 

(5.26) 

In view of (5.26) and at 0 < |α| < 1, the Stokes index of field (5.19) equals σ = 
2n, whereas the Poincare-Hopf index is η = σ /2 = n. In this case, there are no points 
where the light is circularly polarized.
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5.2.2 Vector Field with Polarization Singularity Points 
in the Plane of the Tight Focus 

In this subsection, using a Richards-Wolf formalism [1] we derive projections of the 
E-vector in the focal plane from source field (5.19). Thus, we obtain: 

Ex = −  
in+1 

√
2

(
I0,n cos nϕ + I2,n−2 cos(n − 2)ϕ

)+ 
α √
2 
I2,2 sin 2ϕ, 

Ey = −  
in+1 

√
2

(
I0,n sin nϕ − I2,n−2 sin(n − 2)ϕ

)+ 
α √
2

(
I0,0 − I2,2 cos 2ϕ

)
, 

Ez =
√
2in I1,n−1 cos(n − 1)ϕ − iα 

√
2I1,1 sin ϕ, 

(5.27) 

where the integrals in (5.27) take the form: 

Iν,μ =
(
4π f 

λ

) θ0∫
0 

sinν+1

(
θ 
2

)
cos3−ν

(
θ 
2

)

× cos1/2 (θ )A(θ )eikz cos θ Jμ(x)dθ, (5.28) 

where λ is the wavelength of light, f is the focal length of an aplanatic system, x = 
krsinθ, Jμ(x) is a Bessel function of the first kind, and NA = sinθ 0 is the numerical 
aperture. The original amplitude function A(θ ) (here, assumed to be real) may be 
constant (for a plane wave) or described by a Gaussian beam: 

A(θ ) = exp
(−γ 2 sin2 θ 

sin2 θ0

)

where γ is constant. At α = 0, the field at the focus described by Eq. (5.27) is identical 
(up to a constant 1/ 

√
2) to the field at the focus from an nth order radially polarized 

wave [17]: 

Ex = −  
in+1 

√
2

(
I0,n cos nϕ + I2,n−2 cos(n − 2)ϕ

)
, 

Ey = −  
in+1 

√
2

(
I0,n sin nϕ − I2,n−2 sin(n − 2)ϕ

)
, 

Ez =
√
2in I1,n−1 cos(n − 1)ϕ. 

(5.29) 

Field (5.29) contains just V-points of polarization singularity while having neither 
C-points nor C-lines. At n = 0 and α = 1, field (5.27) is fully identical to the field at 
the focus from an incident wave with right-handed circular polarization [43]:
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Ex = −  
i √
2

(
I0,0 + ei2ϕ I2,2

)
, 

Ey = 
1 √
2

(
I0,0 − ei2ϕ I2,2

)
, 

Ez = −  
√
2eiϕ I1,1. 

(5.30) 

Because of this, the source field (5.19) and the field in the focus in (5.27) can be 
called hybrid, as at some points they have linear, elliptical, or circular polarization. 
For field (5.27), the intensity at the focus is given by 

I = 
1 

2

{
I2 0,n + I2 2,n−2 + 2I0,nI2,n−2 cos 2(n − 1)ϕ 

+ α2 I2 0,0 + α2 I2 2,2 − 2αI0,0I2,2 cos 2ϕ 
+ 4I2 1,n−1cos

2 (n − 1)ϕ + 4α2 I2 1,1sin
2 ϕ 

− 2α cos
(
n + 1 
2

)
π
[
sin nϕ

(
I0,0I0,n + I2,2I2,n−2

)
− sin(n − 2)ϕ

(
I0,0I2,n−2 + I2,2I0,n

)
− sin ϕ sin(n − 1)ϕI1,1I1,n−1

]}
. (5.31) 

Equation (5.31) is rather cumbersome, but putting n = 2p (even) yields cos(n + 
1)π/2 = 0, leading to a simpler relationship of the intensity: 

In=2p = 
1 

2

{
I2 0,n + I2 2,n−2 + 2I0,nI2,n−2 cos 2(n − 1)ϕ 

+ α2 I2 0,0 + α2 I2 2,2 − 2αI0,0I2,2 cos 2ϕ 
+ 4I2 1,n−1 cos

2 (n − 1)ϕ + 4α2 I2 1,1 sin
2 ϕ
}
. (5.32) 

From (5.32), the intensity at the center of the focal plane is seen to be non-zero 
because the term α2I2 0,0 is non-zero. The intensity pattern has central symmetry as 
Eq. (5.32) contains cosines of the double angle 2ϕ, as well as squared cosine and 
sine functions, meaning that replacing ϕ with ϕ + π introduces no changes to the 
intensity pattern. From (5.32), the intensity pattern is also seen to have 2(n − 1) 
local intensity peaks (not considering central intensity maximum) because the term 
cos2(n − 1)ϕ changes sign 2(n − 1) times per full circle. At odd numbers n = 2p 
+ 1, we obtain cos(n + 1)π/2 = ±1, which means that the intensity in Eq. (5.31) 
has no central symmetry due to different intensity values at ϕ and ϕ + π, but has a 
central intensity peak, similar to the previous case. 

Let us derive formulae for projections of the Stokes vector at the focus. Since these 
formulae are rather cumbersome, below, we give only relationships for projections 
of symmetrical fields at the focus for an even number n = 2p. The Stokes vector can 
be defined in a different way using four projections, rather than three use in definition 
(5.20):
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s0 = |Ex|2 +
∣∣Ey

∣∣2 , s1 = |Ex|2 −
∣∣Ey

∣∣2 , 
s2 = 2Re

(
E∗ 
x Ey
)
, s3 = 2Im

(
E∗ 
x Ey
)
. 

(5.33) 

Based on (5.33), for field (5.27) (at  n = 2p) we obtain: 

s0 = 
1 

2

(
I2 0,n + I2 2,n−2 + 2I0,nI2,n−2 cos 2(n − 1)ϕ 

+ α2 I2 0,0 + α2 I2 2,2 − 2α2 I0,0I2,2 cos 2ϕ
)
, 

s1 = 
1 

2

(
I2 0,n cos 2nϕ + I2 2,n−2 cos 2(n − 2)ϕ 

+ 2I0,nI2,n−2 cos 2ϕ − α2 I2 0,0 − α2 I2 2,2 cos 4ϕ 
+ 2α2 I0,0I2,2 cos 2ϕ

)
, 

s2 = 
1 

2

(
I2 0,n sin 2nϕ + I2 2,n−2 sin 2(n − 2)ϕ 

+ 2I0,nI2,n−2 sin 2ϕ − α2 I2 2,2 cos 4ϕ 
+ 2α2 I0,0I2,2 cos 2ϕ

)
, 

s3 = α sin
(
n + 1 
2

)
π
[
cos nϕ

(
I0,0I0,n − I2,2I2,n−2

)
+ cos(n − 2)ϕ

(
I0,0I2,n−2 − I2,2I0,n

)]
. (5.34) 

In (5.34), the relations for s0, s1, s2 are given for even numbers n = 2p, except 
for s3 which holds at any n. The purpose is to demonstrate that at odd n = 2p + 1 
we have s3 = S3 = 0, hence we can infer that the field at the focus has no C-points, 
being purely vector and composed of linear polarization vectors. 

Using two components of the field from Eq. (5.34), the complex Stokes field can 
be expressed as 

S = s1 + is2 = 
1 

2

[
I2 0,ne

2inϕ + I2 2,n−2e
2i(n−2)ϕ 

−α2 I2 2,2e
4iϕ + 2e2iϕ

(
α2 I0,0I2,2 + I0,nI2,n−2

)− α2 I2 0,0
]
. (5.35) 

From (5.35), it follows that the topological charge of the vortex Stokes field is 
undefined, varying over the entire focal plane, for at large radii r, the amplitudes by 
the exponents vary in magnitudes, making it impossible to determine which term in 
the sum (5.35) is larger in the absolute value at each particular case. For instance, at 
some radii, the Stokes index of field (5.35) can be σ = 2n, being σ = 2(n − 2) at 
other radii and taking values of 4, 2 or 0 elsewhere. What may be said definitely is 
that near the optical axis only the last term in (5.35) remains non-zero, which has no 
vortex phase. Hence, at any n, the Stokes index at the center of the focus is zero (σ 
= 0). Conclusions arrived at in this section are validated by the numerical modeling.
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5.2.3 Numerical Modeling 

Figure 5.8 depicts a distribution of polarization ellipses in the source field (5.19) at  
different n: 3(a), 2(b), 1(c), and 4(d). Indices for C-lines of the fields in Fig. 5.8, 
derived from Eq. (5.25) using a complex Stokes field, equal Ic = σ /2 = n/2: 3/ 
2(a), 1(b), 1/2(c), and 2(d). From Fig. 5.8а, field (5.19) with n = 3 is seen to have 
three C-lines located at angles ϕ = πm/3, m = 0, 1, 2. The tilt of the major axis of 
the polarization ellipses changes by π /2 at each of six sectors between the adjacent 
C-lines. Thus, after a full circle, the tilt of the major axis changes by 6π /2 = 3π, 
meaning that the index of the field in Fig. 5.8a is  Ic = 3π /(2π ) = 3/2. In a similar 
way, in Fig. 5.8b, field (1) with n = 2 has two C-lines located on the Cartesian axes. 
With the angle ϕ in a sector between C-lines changing from 0 to π /2, the tilt of the 
major axis of the polarization ellipse is rotated by an angle of π /2, hence after a full 
circle around the center, the tilt of the major axis changed by 4π /2. Hence, the index 
of the field in Fig. 5.8b equals Ic = 2π /(2π ) = 1. In Fig. 5.8c, the C-line is found on 
the horizontal Cartesian axis. With the angle ϕ in one of the sectors between C-lines 
changing from 0 to π (in the upper semi-plane), the tilt of the polarization ellipse 
major axis is rotated by π /2, and in the bottom semi-plane the tilt of the major axis is 
also rotated by π /2. Hence, after a full circle, the polarization ellipse makes a turn by 
π and the singularity index equals Ic = π /(2π ) = 1/2. Finally, in Fig. 5.8d, a change 
in the tilt of the major axis of polarization ellipses can be analyzed in a similar way.

Shown in Fig. 5.9a is a total intensity at the focus of field (5.19) at  α = 1 and 
n = 2. The numerical modeling was conducted using a Richards-Wolf formalism 
[1] for a wavelength of λ = 532 nm and numerical aperture NA = 0.95. Shown in 
Fig. 5.9b, c are an amplitude and phase of the complex Stokes field Sc = s1 + is2, 
which was calculated with the aid of the Stokes vector components in Eq. (5.34). 
From Fig. 5.9a, it is seen that according to theoretical predictions in Eqs. (5.31) and 
(5.32), the intensity pattern at the focus remains unchanged after replacing ϕ by ϕ 
+ π, with an intensity peak located at the center. From Fig. 5.9c, it is seen that there 
is no singular point at the center of the phase pattern for the Stokes field (5.35), 
because there is no isolated intensity null. Two isolated intensity nulls (singularity 
points) in Fig. 5.9c, each having the topological charge 1, are seen on the vertical 
axis (1 and 2 points in Fig. 5.9d). In Fig. 5.9d, the arrows specify a pattern of the 
polarization ellipses at the focus. Figure 5.9e depicts C-points at the focus, which 
are all located on the Cartesian axes, it is where the C-lines are located in the source 
plane (Fig. 5.8b). Thus, the numerical modeling has shown that as a result of tightly 
focusing, C-lines ‘disintegrate’ into a number of C-points arranged on the same 
lines. This effect is analogous to an effect of astigmatic edge-to-screw dislocation 
conversion of a wavefront in scalar paraxial optics [44]. Indices of two symmetrical 
and closest to the center C-points on the horizontal Cartesian axis are Ic = ± 1/2 
(1 and 2 points in Fig. 5.9c), with the indices of the next two neighboring C-points 
located farther from the center on the horizontal axis being Ic = ∓ 1/2 (3 and 4 points 
in Fig. 5.9c).
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Fig. 5.8 Polarization patterns (shown in half-tones and with arrows) in the source field (5.19) at  α 
= 1 at different orders n: 3 (a), 2 (b), 1 (c), 4 (d). The arrows show the handedness of the E-vector; 
the origin of the ellipse is determined based on the phase of the field at this point

In a similar way, Fig. 5.10 depicts numerical simulation results at the focus for n 
= 3 (the rest parameters being the same as in Fig. 5.9). Figure 5.10а suggests that in 
agreement with the theoretical prediction in (5.31), the intensity pattern at the focus 
at odd n = 3 is asymmetric. As can be inferred from (5.34), there is a vector field 
with purely inhomogeneous linear polarization at the focus (Fig. 5.10d), as putting 
n = 2p + 1, we obtain s3 = S3 = 0. In a phase pattern of the complex Stokes field 
in Fig. 5.10c, there occur three phase singularity points with the topological charge 
+ 2 (1, 2, and 3 points in Fig. 5.10c). In total, the Stokes index is σ = 6, and the 
V-points singularity index is Ic = σ / 2  = 3. The pattern in Fig. 5.10d is seen to 
contain three V-points (2 points of the “center” type and 1 point of the “knot” type). 
Thus, when field (5.19) has an odd order n, the  С-lines (Fig. 5.8а) of the original 
plane are transformed into a number of V-points (Fig. 5.10d) and the whole field 
becomes vectorial (with no points of elliptical polarization).

Shown in Fig. 5.11a is an intensity pattern at the focus, which has a fourth-order 
symmetry relative to the Cartesian coordinates. The amplitude and phase of the
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Fig. 5.9 a An intensity I = Ix + Iy + Iz, b amplitude, and c phase of a complex Stokes field (5.35) 
when focusing field (5.19) at  n = 2. d Pattern of elliptic polarization at the focus, and e pattern of 
points with circular, elliptic, and linear polarization

complex Stokes field are depicted in Figs. 5.11b, c. Phase singularities points linked 
with the C-points are observed in the phase pattern of the Stokes field (Fig. 5.11e). 
Finally, Fig. 5.11f depicts a plot for the Stokes index against the radius R of an origin-
centered circle along which the phase delay of the Stokes field (5.35) of Fig.  5.11c 
is calculated. From the plot it is seen that at different radii R, the Stokes index takes 
values of 8, 6, 2, 0, which is in good agreement with the theory in Eq. (5.35).
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Fig. 5.10 a An intensity I = Ix + Iy + Iz, b amplitude, and c phase of the complex Stokes field 
(5.35) when focus in field (5.19) at  n = 3. d A pattern of linear polarization vectors at the focus: 
(black V-points of the “center” type and red V-point of the “knot” type)

From Fig. 5.11e, d, the C-points are seen to lie on the Cartesian axes and two diag-
onal lines, where C-lines were located in the original plane (Fig. 5.8d). Two center-
symmetrical C-points located on the horizontal axis (Fig. 5.11e, f) have a singularity 
index of ± 1/2, producing a ‘lemon’-shaped topology. Remarkably, when making 
a circle around such a C-point, the surface of the polarization ellipses produces a 
Mobius strip in the 3D space [45–47]. 

Figure 5.12 depicts the neighborhood of a C-point (marked with bold black) in 
more detail, showing a characteristic tilt of the major axis of polarization ellipses 
(‘lemon’-type topology) lying on a circle centered on the C-point. The axes of the 
polarization ellipses are seen to turn by an angle of π when making a full circle, i.e., 
the index of the C-point equals 1/2.

Summing up, we have theoretically and numerically studied a new type of nth 
order hybrid vector light field that is tightly focused with an aplanatic system [48]. The 
polarization of the source hybrid vector field varies in the original plane from linear, 
to elliptical and circular with the polar angle. The polarization pattern of the field has
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Fig. 5.11 a An intensity I = Ix + Iy + Iz, b amplitude, and c phase of the complex Stokes field 
(5.35) when focusing field (5.19) at  n = 4. d pattern of points characterized by circular, elliptic, and 
linear polarization at the focus, e pattern of the elliptical polarization in focus, and f dependence of 
the Stokes index σ on the radius R of the circle on which it is calculated (1 μm frame size)

n C-lines of circular polarization that pass through the center. Components for the 
Stokes vector of such a field have been analytically derived and the field polarization 
singularity index has been shown to equal n/2. Based on a Richards-Wolf formalism, 
analytical relationships for projections of the E-vector and an intensity of light at the 
tight focus have been deduced. At even n, the intensity at the focus has been shown 
to possess a center symmetry and have C-points lying on lines coincident with the 
C-lines of the source field. Analytical relationships have been deduced to describe
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Fig. 5.12 Polarization 
ellipses for a field fragment 
at the focus depicted in 
Fig. 5.11e limited by (− 1 μ 
< x < 0;  − 0.5 μm <  y < 
0.5 μm) and a C-point with 
Ic = 1/2 found at (− 
0.47 μm; 0) marked with a 
black point around which the 
major axes of the 
polarization ellipses centered 
on a circle of radius 0.15 μm 
are depicted as blue lines

projections of the Stokes vector at the focus, which suggest that at odd n, the field at 
the focus is purely vector and has several V-points, while having no C-points. 

5.3 Spin-Orbital Conversion in a Tight Focus of an Axial 
Superposition of a High-Order Cylindrical Vector 
Beam and a Beam with Linear Polarization 

Cylindrical vector fields, including those of higher orders, are well known [7, 49]. 
They are an example of inhomogeneously polarized light beams, in the cross section 
of which the local linear polarization vector changes its direction from point to 
point. Cylindrical beams of low orders are called beams with radial and azimuthal 
polarizations [49]. Such beams can, for example, be formed using two half-wave 
plates rotated relative to each other [49], multisection polarizers [50], metasurfaces 
[51], quarter-wave plates, and a light modulator [52]. Cylindrical vector beams (CVB) 
are used in particle micromanipulation [53], microscopy [54], quantum informatics 
[55, 56]. 

CVBs of any order do not have a spin angular momentum (SAM) and the third 
component of the Stokes vector is zero. This means that both in the initial plane and 
in any other section of the beam during its propagation the polarization is locally 
linear. It has recently been shown that local subwavelength regions with circular and 
elliptical polarization appear at the focus of CVBs with a fractional order [57]. The 
optical effect of spin-orbital conversion is known in laser beams, when a transverse
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vortex energy flux is formed during sharp focusing of an ordinary Gaussian beam 
with a circular polarization. That is, such a beam has an orbital angular momentum 
(OAM) in the focus [4]. However, the occurrence of a local SAM in the focus of 
fractional-order CVBs [57] have not the explanation since such a beam has not a SAM 
in the initial plane. Another disadvantage of the research [57] is that it is impossible 
to apply the analytical theory of Richards-Wolf [1] to describe the electromagnetic 
field in a sharp focus due to the fractional order of the beam. In [58], a modification 
of a cylindrical vector field formed by a superposition of such a beam with a beam 
of uniform linear polarization was considered. However, in [58] the tight focusing 
of such a superposition did not considered. 

In this section, all six projections of the electric and magnetic field strength vectors 
in the sharp focus of a superposition of a cylindrical vector field and a uniform 
field with linear polarization are calculated theoretically and numerically, using the 
Richards-Wolf approach [1]. Energy fluxes (projections of the Poynting vector), 
intensity distributions, and Stokes components in the focus are also obtained. It was 
shown that local transverse vortex energy fluxes and subwavelength regions with an 
elliptical and a circular polarization are formed in the focus of such a field with an 
odd integer order. 

5.3.1 Projections of Vectors of Electric and Magnetic Fields 
in Focus 

We consider an initial light field with a non-uniform polarization, the Jones vector 
for the electric and magnetic fields of which has the form: 

Em(ϕ, a) =
(
cos(mϕ) − a 
sin(mϕ)

)
=
(
cos(mϕ) 
sin(mϕ)

)
− a

(
1 

0

)
, 

Hm(ϕ, a) =
(

− sin(mϕ) 
cos(mϕ) − a

)
, 

(5.36) 

where (r, ϕ) are polar coordinates in the initial plane, a is a real number. This light 
field was considered in [58]. It was shown that the field (5.36) has the Poincaré-Hopf 
polarization singularity index η [30], which is η = m for |a| < 1, η = m/2 for 
|a| = 1, and η = 0 for  |a| > 1. The light field (5.36) is an axial superposition of 
two well-known light fields: a cylindrical vector field of the mth order and a light 
field with the linear polarization directed along the horizontal axis. The real number 
a determines the polarization singularity index of the field (5.36) and the distribution 
of intensity, the energy flux, and the density of SAM in the sharp focus of the field 
(5.36). 

For a = 0, the field (5.36) is a well-known CVB of a high order [7, 17]. The beam 
(5.36) at  a = 0 has an inhomogeneous polarization and the polarization is locally
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linear in each point of the beam cross section. The polarization of mth order CVB 
is also linear in each point of the focus. The purpose of this study is to show the 
presence of local areas in the focus of the field (5.36) with a �= 0, where a transverse 
energy flow (the energy circulates in a closed loop) is formed, and the longitudinal 
projection of the SAM vector is different from zero, i.e., there is an elliptical and a 
circular polarization. 

Using the Richards-Wolf formalism [1], explicit expressions for all projections 
of electric and magnetic field intensity vectors in the sharp focus of the light field 
(5.36) were obtained: 

Ex(r, ϕ) = im−1
(
cos(mϕ)I0,m + cos((m − 2)ϕ)I2,m−2

)+ ia
(
I0,0 + cos(2ϕ)I2,2

)
, 

Ey(r, ϕ) = im−1(sin(mϕ)I0,m − sin((m − 2)ϕ)I2,m−2
)+ ia sin(2ϕ)I2,2, 

Ez(r, ϕ) = 2im cos((m − 1)ϕ)I1,m−1 + 2a cos ϕI1,1, 
Hx(r, ϕ) = −im−1(sin(mϕ)I0,m + sin((m − 2)ϕ)I2,m−2

)+ ia sin(2ϕ)I2,2, 
Hy(r, ϕ) = −im−1

(− cos(mϕ)I0,m + cos((m − 2)ϕ)I2,m−2
) + ia

(
I0,0 − cos(2ϕ)I2,2

)
, 

Hz(r, ϕ) = −2im sin((m − 1)ϕ)I1,m−1 + 2a sin ϕI1,1. 

(5.37) 

In (5.37), functions Iν,μ depend only on the radial variable r and are equal to the 
expression: 

Iν,μ =
(
4π f 

λ

) θ0∫
0 

sinν+1

(
θ 
2

)
cos3−ν

(
θ 
2

)
cos1/2 (θ )A(θ )eikz cos θ Jμ(x)dθ,  (5.38) 

where k is the wave number of light, λ is the wavelength of light, f is the focal length 
of an ideal spherical lens that forms the focus, z is an optical axis (z = 0 is the focal 
plane), x = krsinθ, Jμ(x) is the Bessel function of the first kind and of the μth order, 
NA = sinθ 0 is the numerical aperture of the aplanatic optical system, A(θ ) is any  real  
function that describes the input field amplitude, which has axial symmetry (plane 
wave, Gaussian beam, Bessel-Gaussian beam). For the integrals Iν, μ (5.38), the first 
index ν = 0, 1, 2 describes the type of the integral, and the second index μ = 0, 1, 
2, …, m is equal to the order of the Bessel function. 

Each projection of electric and magnetic field vectors (5.37) is the  sum of two  
beams vectors projections: a cylindrical vector field of the mth order and a light 
field with linear polarization. This is easy to verify if we recall what projections an 
electromagnetic field with linear polarization directed along the horizontal axis has 
in the focus [1]:
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ELx(r, ϕ) = −i
(
I0,0 + cos(2ϕ)I2,2

)
, 

ELy(r, ϕ) = −i sin(2ϕ)I2,2, 
ELz(r, ϕ) = −2 cos ϕI1,1, 
HLx(r, ϕ) = −i sin(2ϕ)I2,2, 
HLy(r, ϕ) = −i

(
I0,0 − cos(2ϕ)I2,2

)
, 

HLz(r, ϕ) = −2a sin ϕI1,1. 

(5.39) 

5.3.2 The Intensity Distribution in the Focal Plane 

Based on the obtained amplitudes of the electric field vector projections in the focus 
(5.37), it is possible to derivate expressions for the intensity and its components along 
the Cartesian axes. It should be noted that the expressions for the intensity with even 
and odd numbers m will be different. Indeed, formula (5.37) implies expressions for 
I = Ix + Iy + Iz = |Ex|2 +

∣∣Ey

∣∣2 + |Ez|2 : 

Ix = 

⎧⎪⎪⎪⎪⎨ 

⎪⎪⎪⎪⎩

[
a(−1)p+1

(
I0,0 + cos(2ϕ)I2,2

)+ cos(mϕ)I0,m + cos((m − 2)ϕ)I2,m−2
]2 

, 
m = 2p,[
a
(
I0,0 + cos(2ϕ)I2,2

)]2 + [
cos(mϕ)I0,m + cos((m − 2)ϕ)I2,m−2

]2 
, 

m = 2p + 1, 
(5.40) 

Iy = 

⎧⎪⎪⎪⎪⎨ 

⎪⎪⎪⎪⎩

[
a(−1)p+1 sin(2ϕ)I2,2 + sin(mϕ)I0,m − sin((m − 2)ϕ)I2,m−2

]2 
, 

m = 2p,[
a sin(2ϕ)I2,2

]2 + [
sin(mϕ)I0,m − sin((m − 2)ϕ)I2,m−2

]2 
, 

m = 2p + 1, 

(5.41) 

Iz = 

⎧⎪⎪⎪⎪⎨ 

⎪⎪⎪⎪⎩ 

4
[
a(−1)p cos(ϕ)I1,1 + cos((m − 1)ϕ)I1,m−1

]2 
, 

m = 2p, 

4
[
a cos(ϕ)I1,1

]2 + 4
[
cos((m − 1)ϕ)I1,m−1

]2 
, 

m = 2p + 1. 

(5.42) 

It can be seen from (5.42) that for m = 2 and p = 1 the intensity is equal to the 
simple expression: 

I2z(r, ϕ) = 4 cos2 (ϕ)I2 1,1(1 − a)2 . (5.43)
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It can be seen from 5.43) that the longitudinal intensity is zero at a = 1, and it has 
two local maxima on the horizontal x-axis (ϕ = 0 and ϕ = π ) at  a �= 1. 

Next, we obtained the expressions for the total intensity in the focus at m = 2p + 
1, because, as it will be shown later, the transverse energy fluxes and the longitudinal 
projection of the SAM arise in the focus only for odd numbers m: 

I = a2
[
I2 0,0 + I2 2,2 + 2I2 1,1 + 2 cos 2ϕ

(
I0,0I2,2 + I2 1,1

)]
+ [

I2 0,m + I2 2,m−2 + 2I2 1,m−1 + 2 cos(2(m − 1)ϕ)(
I0,mI2,m−2 + I2 1,m−1

)]
. (5.44) 

The expressions for the intensity (5.40) and (5.44) for an arbitrary m contains 
a term  a2I2 0,0 > 0, in which according to the integral (5.38) the zero-order Bessel 
function is used as one of the factor. Therefore, the intensity will be different from 
zero (there will be a local maximum) on the optical axis (at r = 0), since J0(0) = 
1. The arguments of the cosines are even in the expression (5.44) for the intensity. 
This means that the intensity pattern, although it does not have radial symmetry, has 
axial symmetry, i.e., I (r, ϕ)  = I (r, ϕ  + π). Also it can be seen from (5.40) that the 
intensity Ix will have a maximum on the optical axis due to the term a2I2 0,0, and it 
follows from (5.41) that Iy will have a zero on the optical axis. It should be also noted 
that that the intensity pattern Iy will have 2m local maxima since the expression for 
Iy contains the squared cos(mϕ). The total intensity (5.44) will have 2(m − 1) local 
maxima (except the intensity maximum on the optical axis), since formula (5.44) 
has cos(2(m − 1)ϕ). These conclusions will be confirmed by modeling. 

5.3.3 The Energy Flux Density in the Focal Plane 

In this section, the expressions for three projections of the Poynting vector in the 
focus of the light field (5.36) are obtained. It is known [17, 59] that a cylindrical 
vector field of any order with a = 0 does not have a spin or vortex energy flows both 
in the initial plane (Ex, Ey) = (cos(mϕ), sin(mϕ)) and in the focus (5.37). It means 
that the longitudinal projections of the SAM and the OAM vectors in the focus are 
zero at each point. Below we will show that the superposition of a CVB and a light 
field with linear polarization (5.37) has a local spin and a vortex energy flux. The 
Poynting vector is given by the next formula [1]: 

P = 
c 

2π 
Re
(
E∗ × H

)
, (5.45) 

where E and Н are vectors of electric and magnetic fields, * is a complex conjugation, 
× is a vector multiplication, c is the light speed in vacuum. Further the constant 
c/(2π ) will be ignored. We substituted the expressions for the projections of the 
electromagnetic field in the focus (5.37) into expression (5.45) and obtained:
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Px(r, ϕ) = 

⎧⎪⎨ 

⎪⎩ 

2a(−1)(m−1)/2
[
cos((m − 1)ϕ)

(
I1,1I2,m−2 − I0,0I1,m−1

)
+ cos((m + 1)ϕ)

(
I2,2I1,m−1 − I1,1I0,m

)]
, m = 2p + 1, 

0, m = 2p, p = 0, 1, 2, ... 
(5.46) 

Py(r, ϕ) = 

⎧⎪⎨ 

⎪⎩ 

2a(−1)(m−1)/2
[− sin((m − 1)ϕ)

(
I1,1I2,m−2 − I0,0I1,m−1

)
+ sin((m + 1)ϕ)

(
I2,2I1,m−1 − I1,1I0,m

)]
, m = 2p + 1, 

0, m = 2p, p = 0, 1, 2, ... 
(5.47) 

Pz(r, ϕ) = 

⎧⎪⎨ 

⎪⎩ 

a2
(
I2 0,0 − I2 2,2

)+ (
I2 0,m − I2 2,m−2

)
+2a(−1)p cos(mϕ)

(
I2,2I2,m−2 − I0,0I0,m

)
, m = 2p, 

a2
(
I2 0,0 − I2 2,2

)+ (
I2 0,m − I2 2,m−2

)
, m = 2p + 1, p = 0, 1, 2, ... 

(5.48) 

It can be seen from (5.48) that the distribution of the Poynting vector longitudinal 
component for odd numbers m has a circular symmetry in the focus. For an even 
number m it depends on the polar angle and has m maxima when going around 
the optical axis. It can be seen from (5.46) and (5.47) that the transverse energy 
flow takes place only for odd numbers m and is equal to zero for an even m. To  
characterize the transverse energy flux in the focus in more detail, we proceed to the 
polar projections of the transverse energy flux vector. Using the transition from the 
Cartesian projections of the Poynting vector to polar: 

Pr = Px cos ϕ + Py sin ϕ, 
Pϕ = −Px sin ϕ + Py cos ϕ, 

(5.49) 

from (5.46) and (5.47) we find the transverse components of the Poynting vector 
in the tight focus of field (5.36) in polar coordinates for odd numbers m (for even 
numbers m, the Poynting vector components are equal to zero): 

Pr = 2a(−1)p cos(mϕ)Q1(r), m = 2p + 1, 
Q1(r) = I1,m−1

(
I2,2 + I0,0

)− I1,1
(
I2,m−2 + I0,m

)
, 

Pϕ = 2a(−1)p sin(mϕ)Q2(r), m = 2p + 1, 
Q2(r) = I1,m−1

(
I2,2 − I0,0

)+ I1,1
(
I0,m − I2,m−2

)
. 

(5.50) 

It can be seen from (5.50) that the transverse energy flow rotates non-uniformly at 
different radii and for different p the rotation occurs counterclockwise or clockwise. 
The irregularity lies in the fact that the transverse vector of the energy flux rotates 
around the optical axis not tangentially to some circle, but at a different angle to 
some circle. There are an 2m subwavelength regions on a circle centered on the 
optical axis in which the transverse energy flow rotates along a closed trajectory. 
This follows from (5.50), in which the argument of cosine and sine is equal to mϕ. 
From Eqs. (5.46) and (5.47) it follows that the transverse flow changes sign 2(m +
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1) times per complete revolution. This follows from the fact that in Eqs. (5.46) and 
(5.47) there are terms with sin(m + 1) or with cos(m + 1), which change sign 2(m 
+ 1) times. Moreover, the energy flow rotates in different directions (clockwise or 
counterclockwise) in neighboring areas. Integration of radial and azimuthal energy 
fluxes in (5.50) over the angle ϕ gives zero. It means that the total transverse energy 
flux is zero in the focus. 

5.3.4 The Density of the Stokes Vector in the Focal Plane 

In this section, we find the projections of the Stokes vector in the focus of the initial 
vector field (5.36). The components of the Stokes vector S are calculated by the 
formulas [60]: 

S1 = 
|Ex|2 −

∣∣Ey

∣∣2 
|Ex|2 +

∣∣Ey

∣∣2 , S2 = 
2Re

(
E∗
x Ey
)

|Ex|2 +
∣∣Ey

∣∣2 , S3 = 
2Im

(
E∗
x Ey
)

|Ex|2 +
∣∣Ey

∣∣2 , 
s1 = |Ex|2 −

∣∣Ey

∣∣2 , s2 = 2Re
(
E∗ 
x Ey
)
, s3 = 2Im

(
E∗ 
x Ey
)
, 

(5.51) 

where Re and Im determine the real and the imaginary parts of a complex number. In 
(5.51), the small letters (s1, s2, s3) denote the unnormalized components of the Stokes 
vector. The normalized Stokes vector, as it can be seen from (5.51), has a unit length 
S2 
1 +S2 

2 +S2 
3 = 1. Due to the cumbersomeness of the expressions, and in order to find 

out whether the circular polarization will be in focus, we obtained expressions only 
for the third Stokes projection without normalization, i.e., we calculated a function of 
the form s3 = 2Im

(
E∗
x Ey
)
. It should be preliminarily noted that the third component 

of the Stokes vector is proportional to the longitudinal projection of the SAM [59]: 

S = 1 

16πω  
Im
(
E∗ × E

)
, (5.52) 

where ω is a cyclic frequency of light. Further the constant 1/(16πω) will be ignored. 
It can be seen from (5.52) that the longitudinal component of the SAM (without taking 
into account the constant) coincides with the unnormalized third component of the 
Stokes vector: 

s3 = Sz = 2Im
(
E∗ 
x Ey
)

(5.53) 

Substituting the projections of the electric field (5.37) into (5.53), we obtain: 

s3 = Sz(r, ϕ) = 

⎧⎪⎨ 

⎪⎩ 

2a(−1)(m−1)/2
[
sin((m − 2)ϕ)

(
I0,0I2,m−2 − I2,2I0,m

)
− sin(mϕ)

(
I0,0I0,m − I2,2I2,m−2

)]
, m = 2p + 1, 

0, m = 2p, p = 0, 1, 2, ... 
(5.54)
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It can be seen from (5.54) that there are no regions with a circular (elliptical) 
polarization in the focus of field (5.36) for an even m. If  m is odd and a �= 0 than 
there are 2m local regions in the focus, in which the light has an elliptical polarization. 
It should be noted from (5.50) that for an odd m there are also 2m local regions of 
transverse vortex energy flows in the focus. Comparison of (5.50) and (5.54) shows  
that the number of regions with a transverse vortex energy flow in focus is 2m and is 
equal to the number of regions with an elliptical polarization. Moreover, the direction 
of the transverse energy flow rotation is different in neighboring regions, just as the 
direction of the polarization vector rotation alternates in neighboring regions. Since 
the field (5.36) does not have the transverse energy flow and the longitudinal SAM 
in the initial plane then both the total (over the entire focal plane) longitudinal SAM 
and the total transverse energy flow must be equal to zero in the focus. It should be 
noted that if we integrate the spin density (5.54), i.e., the longitudinal component of 
the SAM, over the entire beam cross section in the focus, then the integrals over the 
angle ϕ will give zero, and the total beam spin (5.36) in the focus, as in the initial 
plane, will be equal to zero: 

ss3 = 
∞∫
0 

2π∫
0 

s3(r, ϕ)rdrdϕ = 0. 

To compare the theory and simulation results, we derive an expression for s2 only 
for the even number m = 2p, p = 0, 1, 2, …: 

s2 = sin(2ϕ)
[
2I0,mI2,m−2 + a2 I2,2

(
I0,0 + cos(2ϕ)I2,2

)]
sin(2mϕ)I2 0,m − sin(2(m − 2)ϕ)I2 2,m−2 , m = 2p. 

(5.55) 

It can be seen from (5.55) that, the distribution of s2 in the focus will be axisym-
metric since all arguments of the cosines and sines are even. The maximum argument 
in (5.55) has sin(2mϕ) which is equal to 2m. Therefore, the number of sign changes 
for the function s2 will be equal to 4m. 

The mechanism of occurrence of an even number of local vortices of energy fluxes 
at the focus for field (5.36) with an odd order number of a cylindrical vector field 
can be described as follows. First, only when m is odd and when a = 1 does the 
index of the polarization singularity of the field (5.36) become half-integer η = m/2. 
Second, for even m, there are no transverse energy fluxes at the focus (5.46), (5.47). 
The half-integer polarization singularity index leads to the fact that the initial light 
field has m polarization singularity lines emanating from the center (the direction of 
linear polarization is not determined on the singularity lines) and dividing the beam 
cross section into m parts. In each of these parts (between two adjacent singularity 
lines), two local regions are formed at the focus (there are 2m such regions at the 
focus), in which the polarization is circular (elliptical), but of different signs (left and 
right). This also follows from expression (5.54). On the other hand, the presence in
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the focus of regions with non-zero spin density (5.52), according to the effect of spin– 
orbit interaction, must simultaneously generate local regions with a vortex transverse 
energy flux (non-zero longitudinal projection of the orbital angular momentum). In 
total, such regions with a vortex energy flow should be equal to the number of regions 
with circular polarization, that is, equal to 2m. For the total OAM of the beam to be 
equal to zero, the number of local regions with a vortex transverse energy flow must 
be even. And the direction of rotation of the energy flow in neighboring areas should 
be opposite. 

The presence of local regions with a vortex energy flow in the focus can be 
explained in another way. Field (5.36) with a = −1 can be represented as 

Em(ϕ, a = −1) =
(
cos(mϕ) + 1 
sin(mϕ)

)
= 2 cos

(mϕ 
2

)⎛ 

⎜⎝ 
cos
(mϕ 

2

)
sin
(mϕ 

2

)
⎞ 

⎟⎠. (5.56) 

It can be seen from (5.56) that the initial field (5.36) for  a = −1 and odd m is a 
cylindrical vector field of fractional order (m/2).  And it was  shown in [57] that such 
a light field has local regions with a vortex energy flow and with circular polarization 
at the focus. 

The formation at the focus of local regions with circular and elliptical polarization 
for the field (5.36) immediately follows from the expressions for the projections of 
the electric vector at the focus (5.37). From (5.37) it can be seen that at a = 0 (there 
is no field with linear polarization), the product of the transverse projections of the 
electric vector will be real Im(E∗

x Ey) = 0, since both projections will have the same 
factor (−i)m−1. If  a �= 0, then both expressions for the transverse projections of the 
electric vector in (5.37) consist of two terms with factors (−i)m−1 and i. Therefore, 
the product E∗

x Ey will have a factor (−i)m, which will be imaginary when m is odd. 
Therefore, the longitudinal projection of the SAM or the third Stokes component 
will be non-zero Im(E∗

x Ey) �= 0. This means that there are local regions at the focus 
in which the polarization is elliptical or circular. 

5.3.5 Numerical Simulations Results and Discussion 

In this subsection, we present the simulation results for the intensity distribution, 
the projections of the Stokes vectors (or the SAM longitudinal projection), as well 
as the Poynting vector projection in the focus of the initial light field (5.36). The 
calculation was carried out using the general formulas of Richards-Wolf [1], which 
describe the light in the focus area: 

U(ρ,  ψ,  z) = −  
if 

λ

∫ α 

0

∫ 2π 

0 
B(θ,  ϕ)T (θ )P(θ,  ϕ)× 

× exp{ik[ρ sin θ cos(ϕ − ψ) + z cos θ ]} sin θ dθ dϕ, (5.57)
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Fig. 5.13 The geometric 
interpretation of the problem 

where U(ρ, ψ, z) is an electric or a magnetic field strength, B(θ, ϕ) is an electric or  
a magnetic field at the input of a wide-aperture optical system dependent on the exit 
pupil coordinates (θ is a polar angle, ϕ is an azimuth angle), T (θ ) is a lens apodization 
function, f is a focal length, k = 2π /λ is a wave number, λ is a wavelength, α is the 
maximum polar angle defined by the lens numerical aperture (NA = sinα), and P(θ, 
ϕ) is a polarization matrix. Integral (5.57) allows to calculate the distribution of the 
electromagnetic field components in the exit pupil coordinates (Fig. 5.13). 

The polarization matrix P(θ, ϕ) for the strength of electric and magnetic fields 
has the form [61, 62]: 

P(θ, φ) = 

⎡ 

⎢⎣ 
sin2 φ + cos2 φ cos θ sin φ cos φ(cos θ − 1) cos φ sin θ 
sin φ cos φ(cos θ − 1) cos2 φ + sin2 φ cos θ sin φ sin θ 

− sin θ cos φ − sin θ sin φ cos θ 

⎤ 

⎥⎦ × 

⎡ 

⎢⎣ 
a(θ,  φ) 
b(θ,  φ) 
c(θ,  φ) 

⎤ 

⎥⎦ 

(5.58) 

where a(θ, φ), b(θ, φ), and c(θ, φ) are polarization functions for x-, y-, and z-
component of an incident field. For example, for the linearly polarized along the 
x-axis light, the components will be equal to a = 1, b = 0, and c = 0. For all the 
examples considered in this section, the longitudinal component of the focused field 
was proposed to be zero: c = 0 (the initial plane), then: 

P(θ,  ϕ) = 

⎡ 

⎣1 + cos2ϕ(cos θ − 1) 
sin ϕ cos ϕ(cos θ − 1) 

− sin θ cos ϕ 

⎤ 

⎦a(θ,  ϕ) + 

⎡ 

⎢⎣ 
sin ϕ cos ϕ(cos θ − 1) 
1 + sin2 ϕ(cos θ − 1) 
− sin θ sin ϕ 

⎤ 

⎥⎦b(θ,  ϕ), 

(5.59)
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For the initial field (5.36), the polarization functions will have the form: 

E(θ, ϕ) =
(
a(θ,  ϕ) 
b(θ,  ϕ)

)
=
(
cos(mϕ) − a 
sin(mϕ)

)
(5.60) 

for the electric field strength and 

H(θ,  ϕ) =
(
a(θ,  ϕ) 
b(θ,  ϕ)

)
=
(

− sin(mϕ) 
cos(mϕ) − a

)
(5.61) 

for the magnetic field strength. 
The distribution of linear vectors over the beam cross section in the initial plane 

depends on the number m and the parameter a. Figure 5.14 shows the distributions 
of linear polarization vectors in the cross section of the field (5.36) for  m = 2 (a, c, 
e) and m = 3 (b, d, f), and a = 1/2 (a, b), a = 3/2 (c, d), a = 1 (e, f).

It was shown in [58] that the polarization singularity index (the number of linear 
polarization vector rotations by 2π while going around the closed contour around 
the optical axis—around the singularity point) at a < 1 is equal to m. Thus, the 
polarization singularity index is equal to 2 (a) and 3 (b) in Fig. 5.14. The polarization 
singularity index is equal to m/2 for a = 1, since there are only singularity lines 
Fig. 5.14e, f in the field (5.36) and the linear polarization vectors rotate from line to 
line by an angle π. Therefore, the index is equal to 1 (e) and 3/2 (f) in Fig. 5.14. For  a 
> 1, the polarization singularity index of the field (5.36) is equal to zero (Fig. 5.14c, 
d). 

The calculation of the intensity in the focus of the field (5.36) was carried out 
using the Richards-Wolf formulas (5.57)–(5.61) for the wavelength of 633 nm and 
the numerical aperture NA = 0.95. The intensity distribution and its components 
were calculated for the vector beam (5.36) of the second (m = 2) (Figs. 5.15, 5.16 
and 5.17) and third (m = 3) (Figs. 5.18, 5.19 and 5.20) orders. The beam parameter 
a (5.36) was chosen to be 1 (Figs. 5.15 and 5.18), 1/2 (Figs. 5.16 and 5.19), and 3/2 
(Figs. 5.17 and 5.20).

Figures 5.15a, 5.16 and 5.17a show that for any a > 0 an elliptical focal spot 
elongated along the x-axis is formed near the optical axis in the center of focus. 
The intensity maximum on the optical axis follows from formulas (5.42)–(5.44). 
The intensity distributions in Figs. 5.15a, 5.16 and 5.17a differ only by the size of 
the central and two side lobes. For a > 1, the side lobes are small and almost all 
the intensity is in the central elliptical spot. For a = 1, the energy of the side lobes 
increases. For a < 1, the energy of the two side lobes, whose intensity maxima lie on 
the vertical y-axis, is comparable to the intensity of the central focal spot. A feature 
of the intensity distribution in Figs. 5.15, 5.16, and 5.17 is that the longitudinal 
component is absent for case of a = 1. This unique case takes place only when m = 
2 and a = 1, and is described by the formula (5.43). Figures 5.15d, 5.16 and 5.17d 
confirm formula (5.42), according to which the longitudinal intensity Iz at a �= 1 
has two local intensity maxima on the horizontal axis at ϕ = 0 and ϕ = π. There
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Fig. 5.14 The distributions of linear polarization vectors in the cross section of the field (5.36) for  
m = 2 (a, c, e) and  m = 3 (b, d, f), and a = 1/2 (a, b), a = 3/2 (c, d), a = 1 (e, f)

are 4 local maxima for any a in Figs. 5.15c, 5.16 and 5.17c. This is consistent with 
formula (5.41), since Iy should have 2m such maxima. Figures 5.18, 5.19 and 5.20 
show intensity distributions similar to those shown in Figs. 5.15, 5.16, and 5.17 but 
for the odd m = 3. 

Figures 5.18a, 5.19a and 5.20a show a focal elliptical spot with side lobes that 
in the center of the intensity pattern near the optical axis. The number of lobes, 
according to the formula (5.44), is 2(m − 1) = 4. These lobes are clearly visible 
in Fig. 5.19a where the parameter a < 1 and almost invisible in Fig. 5.20a where 
a > 1. Figures 5.18d, 5.19d and 5.20d confirm formula (5.42) according to which the
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Fig. 5.15 The intensity I (a) and its components Ix (b), Iy (c) Iz (d) of the focused vector field 
(5.36) of the second (m = 2) order with a = 1 

Fig. 5.16 The intensity I (a) and its components Ix (b), Iy (c) Iz (d) of the focused vector field 
(5.36) of the second (m = 2) order with a = 1/2
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Fig. 5.17 The intensity I (a) and its components Ix (b), Iy (c) Iz (d) of the focused vector field 
(5.36) of the second (m = 2) order with a = 3/2 

Fig. 5.18 The intensity I (a) and its components Ix (b), Iy (c), Iz (d) of the focused vector field 
(5.36) of the second (m = 3) order with a = 1
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Fig. 5.19 The intensity I (a) and its components Ix (b), Iy (c), Iz (d) of the focused vector field 
(5.36) of the second (m = 3) order with a = 1/2 

Fig. 5.20 The intensity I (a) and its components Ix (b), Iy (c), Iz (d) of the focused vector field 
(5.36) of the second (m = 3) order with a = 3/2
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longitudinal intensity Iz has 4 local intensity maxima for any a. Two maxima located 
on the horizontal x-axis are larger in magnitude than two maxima on the vertical 
y-axis. There are 6 local maxima for any a in Figs. 5.18c, 5.19c and 5.20c. This is 
consistent with formula (5.41), since Iy should have 2m such maxima. 

The Distribution of the Stokes Vector Projections in the Focal Plane 

It can be seen from (5.54) that the third projection of the Stokes vector is equal to 
zero for even m. This means that the polarization is linear at each point of the field in 
the focal plane. Figure 5.21 shows projections of the non-normalized Stokes vector 
s1 and s2 (s3 = 0) for even numbers m = 2 (a, b) and m = 4 (c, d). 

It can be seen from Fig. 5.21a that the distribution pattern s1 almost coincides 
with Ix (Fig. 5.16b). This is because s1 = Ix – Iy and Ix > Iy. 

The third projection of the Stokes vector is non-zero in the focus only for an odd 
number m. Figure 5.22 shows three projections of the non-normalized Stokes vector 
in focus of field (5.36) with m = 3 and a = 1.

Figure 5.22a shows that the distribution pattern of s1 almost coincides with Ix 
(Fig. 5.19c). This is because s1 = Ix – Iy and Ix > Iy. It can be seen from Fig. 5.22c 
that the third projection of the Stokes vector s3 changes sign 2m = 6 times on circles 
with certain radii and with center on the optic axis. This is consistent with formula 
(5.54), which includes sin(mϕ). This function changes sign 2m times per turn. The

Fig. 5.21 The Stokes vector components s1 (a, c) and  s2 (b, d) of the focused vector field (5.36) 
with m = 2 (a, b) and  m = 4 (c, d) for  a = 1 
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Fig. 5.22 The Stokes vector components s1 (a), s2 (b), and s3 (c) of the focused vector field (5.36) 
with m = 3 and  a = 1

second Stokes projection changes sign when going around a closed trajectory around 
the optical axis 4m times: 8 (Fig. 5.21b), 16 (Fig. 5.21d), and 12 (Fig. 5.22b). This is 
consistent with formula (5.55), in which the term with the maximum argument has 
the form sin(2mϕ). 

For comparison, Fig. 5.23 shows the second s2 (a, c) and the third s3 (b, d) 
components of the Stokes vector of the focused vector field (5.36) with other odd 
numbers m: 1 (a, b) and 5 (c, d).

It can be seen from Fig. 5.23 that the distribution s2 changes sign 4m times when 
going around the optical axis: 4 (Fig. 5.23a) and 20 (Fig. 5.23c). This is consistent 
with formula (5.55). And the distribution s3 changes sign 2m times: 2 (Fig. 5.23b) 
and 10 (Fig. 5.23d). This is consistent with formula (5.44). 

For the sake of completeness, we show the distributions of the third component 
of the normalized Stokes vector (Fig. 5.24).

Figure 5.24 shows that the magnitude and size of the regions with an elliptical 
and a circular polarization, where the component S3 is close to + 1 (the brightest) 
or − 1 (the darkest), decreases with decreasing parameter a. The comparison of 
Figs. 5.22c and 5.24 shows that the structures of normalized S3 and non-normalized 
s3 qualitatively agree. 

In this subsection, it is shown by numerical examples that local regions (size is 
about 200–250 nm) with an elliptical or a circular polarization are formed in the 
focus of the vector field (1) (wavelength is 532 nm, NA = 0.95). The number of
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Fig. 5.23 The Stokes vector components s2 (a, c) and  s3 (b, d) of the focused vector field (5.36) 
with m = 1 (a, b) and  m = 5 (c, d)

Fig. 5.24 The third component of the normalized Stokes vector (5.51) S3 of the focused vector 
field (5.36) with  m = 3 and different parameters a: 1/2  (a), 1 (b), and 3/2 (c)
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such regions is related to the field number m. The number of such regions is 2m on 
some circle centered on the optical axis. It should be noted that the regions with 
local elliptical polarization appear in the focus only for an odd number m and for a 
non-zero parameter a. If the parameter a = 0, then the field (1) reduces to the well-
known cylindrical vector field of order m, which has for any m only a local linear 
polarization in the focus, and regions with an elliptical polarization are absent. 

The Distribution of the Poynting Vector Projections in the Focal Plane 

This subsection presents the calculation of the energy flux vector (the Poynting 
vector) (5.45) in the tight focus of the field (5.36) carried out by the Richards-Wolf 
formulas (5.56)–(5.60). 

Figure 5.25 shows the projections of the Poynting vector in the focus of the field 
(5.36) with the even number m = 2 and a = 1. According to the obtained for an 
even number m formulas (5.46)–(5.48), the transverse projections of the energy flux 
vector Px and Py are equal to zero (Fig. 5.25b, c), and the longitudinal component 
Pz does not have radial symmetry (Fig. 5.25a). It can be seen from Fig. 5.25a and 
formula (5.48) that the Poynting vector longitudinal component has a local maximum 
on the optical axis and two local maxima (side lobes) are located on the vertical axis 
at ϕ = π /2 and ϕ = 3π /2, since the function Pz (5.48) for  m = 2 depends on the 
angle as cos(2ϕ). The calculation parameters in Figs. 5.25 and 5.26 are the same as 
in all previous figures. Figure 5.25a also shows that the longitudinal component of 
the Poynting vector outwardly coincides with the intensity distribution in Fig. 5.15a 
(m = 2). This is explained by the fact that the expression for the intensity (5.44) at  
m = 2, as well as (5.48), depends on the angle as cos(2ϕ).

Figure 5.26 shows the Poynting vector projections for the odd number m = 3 and 
a = 1 in the focus. It can be seen Fig. 5.26a that the longitudinal component Pz is 
radially symmetric and has a maximum value on the optical axis. This is consistent 
with Eq. (5.48). It can be seen from Fig. 5.26b, c that the transverse energy flow rotates 
in 8 local subwavelength regions: counterclockwise in 4 regions and clockwise in 
other 4 regions. Both transverse projections of the energy flux Px and Py change sign 
8 times when going around the optical axis along a circle of some radius. This is 
consistent with formulas (5.46) and (5.47), since the dependence on the angle in these 
formulas is determined by the function cos((m + 1)ϕ) at  m = 3. But local areas with 
a transverse vortex flow will be 2m. This follows from Eq. (5.50), in which there are 
factors in the form cos(mϕ) and sin(mϕ). The number of local regions with a vortex 
energy flow must be equal to the number of regions with circular polarization, that is, 
2m. This follows from the effect of spin–orbit interaction. In Fig. 5.26d, their number 
is 6, and they lie along a circle of some radius. Their size is about 200 nm. Integrating 
in (5.50) the angular Pϕ and the radial Pr projections of the Poynting vector over the 
angle ϕ we obtain that the total transverse energy flux is equal to zero in the focus. 

Comparing Figs. 5.22c and 5.26d shows that there are 6 regions lying on a circle 
of a certain radius centered on the optical axis, in which the polarization is circular, 
and also 6 regions in which the energy flow rotates around the ring. 

In the section, theoretically and numerically, using the Richards-Wolf approach, 
all six projections of electric and magnetic field strength vectors in the sharp focus



188 5 Sharp Focusing of Modified Cylindrical Vector Laser Beams

Fig. 5.25 The Poynting vector components in focus for m = 2 and  a = 1: Pz (a), Px (b), Py (c)

of a superposition of a cylindrical vector field with order m and a uniform field with 
linear polarization are calculated [63]. Energy fluxes (projections of the Poynting 
vector), intensity distributions, and Stokes components are calculated in the focus 
plane. The study shows that local regions of about 200–250 nm in size (wavelength 
is 532 nm, NA = 0.95) with the an elliptical or circular polarization are formed in 
the focal plane of such an incident field. The number of such areas is related to the 
field number m. The number of such regions on some circle with center on the optical 
axis is 2m in focus. It should be noted that regions with local elliptical polarization 
appear in the focus only for an odd number m and for a non-zero parameter a. If  
the parameter a of the initial field is zero then the field reduces to the well-known 
cylindrical vector field of order m, which for any m has only a local linear polarization 
in the focus. And regions with an elliptical polarization are absent in this case. In 
addition to the presence of a local SAM for case of an odd number m, there are local 
subwavelength regions in the focus where the transverse energy flux propagates 
along a closed contour. The number of such regions lying on a circle of some radius 
is 2m. Moreover, the energy flow in neighboring areas rotates in different directions 
(clockwise and counterclockwise). The total flow of the transverse energy flow is 
zero. The total transverse energy flow is zero. These beams can be used to create a 
micromachine in which two microparticles in the form of gears are captured in the 
focus of the beam into neighboring local areas in which the energy flow rotates in 
different directions, and therefore, these gears will also rotate in different directions.
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Fig. 5.26 The Poynting vector components in focus for m = 3 and  a = 1: Pz (a), Px (b), Py (c). 
The arrows show the direction of the transverse Poynting vector at the focus (d)
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Chapter 6 
Poincare Beams at the Tight Focus 

6.1 Poincare Beams at the Tight Focus: Inseparability, 
Radial Spin Halls Effect, and Reverse Energy Flow 

Among other recipients of the 2022 Nobel Prize in physics, A. Zeilinger was recog-
nized for research in quantum entanglement between photons. By way of illustration, 
his work [1] has amassed 6,000 + citations. As far as photons are concerned, (hybrid) 
quantum entanglement (in terms of both polarization and angular momentum) implies 
that two photons are in superposition, which can be described by the expression [2]: 

|ψ〉 = a|H 〉|l〉 + eiδ 
√
1 − a2|V 〉|−l〉, 

where H and V stand for the horizontal and vertical polarization vectors, l is the 
orbital angular momentum (OAM) of photon or topological charge, a is the weight 
coefficient (probability density of detecting the photon state), and δ is the phase delay. 
At a = 0.5, the state |ψ〉 gets fully entangled. It turns out that similar entanglement 
may be found in classical physics and refers to a light field described by on-axis 
superposition of two vortex laser beams with different polarization states and different 
topological charges. Physically, a classical entangled state is when the light field is 
impossible to describe as a direct product |P〉|OAM 〉, with no way to simultaneously 
determine a particular polarization state |P〉 and a particular OAM state |OAM 〉 of 
the light field of interest. Hence, the light field described by the aforementioned 
superposition is ill-defined. In this work, we discuss an example of ill-defined light 
fields in the form of a wide class Poincare beams [3, 4], which include linearly and 
circularly polarized vortex laser beams and cylindrical vector beams [5]. Below, we 
show that given specific parameters, remarkable optical effects occur at the tight 
focus of such beams, including a reverse on-axis energy flow [6, 7] and an optical 
Hall effect [8]. The optical Hall effect is divided into spin (SHE) [9–13], orbital 
[14], and spin-orbital [15] effects. An optical Hall effect occurs due to conservation 
of angular momentum of light and spin–orbit interaction. As a rule, the optical Hall
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effect occurs because of the light–medium interaction, for instance when light reflects 
at a metasurface [16]. What we are interested in more is studying the SHE that occurs 
without the involvement of medium and microparticles but by tightly focusing laser 
beams propagating in free space (see the review [17]). For instance, an off-axis focal 
spot has been shown to be generated by passing a tightly focused vortex laser beam 
through an aperture [18]. In this work, analyzing free-space propagation of Poincare 
beams, we show that given specific parameters, there is a transverse energy flow at 
the tight focus, rotating about the optical axis clockwise or anticlockwise. We also 
reveal that at the tight focus, a radial spin Hall effect occurs, when on-axis SAM 
projections (that may be looked at as ’spin’) have different signs on different-radius 
circles centered at the optical axis. That is, on the different-radius circles, vectors of 
elliptic polarization rotate oppositely. 

6.1.1 Inseparability of Vector and Spatial Degrees of Freedom 

In a previous work [19], we derived expressions to describe an intensity pattern from 
Poincare beams at the tight focus. In this work, our purpose is to derive expressions for 
Poynting vector projections and an on-axis projection of the spin angular momentum 
(SAM) at the tight focus of the Poincare beam. But beforehand it makes sense to 
discuss a topic of inseparability (entanglement) of polarization and spatial degrees 
of freedom of the Poincare beam. 

The light beams whose polarization state is described by unit vectors on a Poincare 
sphere are described by a Jones vector given by [3, 4]: 

EP(ϕ) = 
1 √
2

(
ae−inϕ + beinϕ 

iae−inϕ − ibeinϕ

)

, (6.1) 

where a = cos(θ/2)e−iψ/2, b = sin(θ/2)eiψ/2, a2 + b2 = 1, θ and φ are the 
polar and azimuthal angles on the sphere, and n is an integer number that describes 
the topological charge of the optical vortex or the order of cylindrical (azimuthal or 
radial) polarization. Beam (6.1) can be represented as superposition of two beams 
with one having right-handed and the other left-handed polarization: 

1 √
2

(
ae−inϕ + beinϕ 

iae−inϕ − ibeinϕ

)

= 
ae−inϕ 
√
2

(
1 

i

)

+ 
beinϕ 
√
2

(
1 

−i

)

= ae−inϕ |R〉 + beinϕ |L〉, 
(6.2) 

where |R〉 and |L〉, respectively, denote Jones vectors for the right- and left-handed 
polarization. Considering that a2 + b2 = 1, Eq. (6.2) can be rearranged as follows: 

Ep(ϕ) = √
γ e−inϕ |R〉 +√1 − γ einϕ|L〉, γ  = a2 . (6.3)
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The two quantities are said to be inseparable [20–22] when it not possible to 
represent the vector field as the direct product of the spatial scalar function by a Jones 
vector that describes the polarization state of the field. In other words, the vector 
field of inseparable quantities is not possible to represent as U (r, ϕ,  z)|P〉, where 
U (r, ϕ,  z) is a scalar function that describes the solution of a paraxial Helmholtz 
equation and |P〉 is the state of transverse polarization of a paraxial light beam. 

The entanglement notion is a classical analog of quantum entanglement [1, 2, 
20–22]. The degree of inseparability is defined based on Neumann’s entropy Ent, 
which in a simple case of Eq. (6.3) is given by the following: 

Ent
(
Ep
) = −[γ log2(γ ) + (1 − γ )  log2(1 − γ )

]
. (6.4) 

Entropy in Eq. (6.4) lies in the range 0 < Ent(Ep) < 1. If entropy is zero, the vector 
field is fully separable but if entropy equals unity, the vector field is fully (maximally) 
inseparable. At γ = 1/2, the Poincare beam is maximally inseparable. In this case, 
a = b = 1/ 

√
2, which means that the Poincare beam with maximal inseparability is 

identical to an nth order cylindrical vector beam: 

EP(ϕ; a = b = 1/ 
√
2) =

(
cos(nϕ) 
sin(nϕ)

)

. (6.5) 

At other values of a and b, the Poincare beams in Eq. (6.1) are partially inseparable, 
and if one of the parameters equals zero (either a = 0 or  b = 0), the Poincare beams 
become separable circularly polarized vortex beams. Hereinafter, we analyze what 
happens with beam (6.1) at the tight focus. 

6.1.2 Flow Energy at the Tight Focus of Poincare Beam 

Using Richards-Wolf formalism [23], projections of the electric and magnetic fields 
at the tight focus of Poincare beam (6.1) can be derived in the form: 

Ex = 
in−1 

√
2

[(
beinϕ + ae−inϕ

)
I0,n +

(
bei(n−2)ϕ + ae−i(n−2)ϕ)I2,n−2

]
, 

Ey = 
in √
2

[(
ae−inϕ − beinϕ

)
I0,n −

(
ae−i(n−2)ϕ − bei(n−2)ϕ)I2,n−2

]
, 

Ez =
√
2in
(
bei(n−1)ϕ + ae−i(n−1)ϕ

)
I1,n−1, 

Hx = 
in √
2

[(
beinϕ − ae−inϕ

)
I0,n +

(
bei(n−2)ϕ − ae−i(n−2)ϕ

)
I2,n−2

]
, 

Hy = 
in−1 

√
2

[(
beinϕ + ae−inϕ

)
I0,n −

(
bei(n−2)ϕ + ae−i(n−2)ϕ

)
I2,n−2

]
,



196 6 Poincare Beams at the Tight Focus

Hz =
√
2in+1

(
bei(n−1)ϕ − ae−i(n−1)ϕ

)
I1,n−1. (6.6) 

In Eq. (6.6), the notation Iν, μ stands for integrals that depend just on the radial 
variable r: 

Iν,μ =
(
4π f 

λ

) θ0∫

0 

sinν+1

(
θ 
2

)
cos3−ν

(
θ 
2

)
cos1/2 (θ )A(θ )eikz cos θ Jμ(x)d θ, (6.7) 

where f is the focal length of an aplanatic optical system (an ideal spherical lens), λ is 
the wavelength, NA = sin θ 0 is the numerical aperture, Jμ(x) is the Bessel function of 
the first kind and μth order, x = kr sin θ and (r, ϕ, z) are the cylindrical coordinates. 
The function A(θ ) can be in the form of Gaussian, Bessel-Gaussian function or a 
constant (plane wave). 

Using Eq. (6.6), we can write a relationship for the intensity distribution across 
the focal spot: 

I (r, ϕ)  = |Ex|2 +
∣∣Ey

∣∣2 + |Ez|2 
= I2 0,n + I2 2,n−2 + 2I2 1,n−1 + 2 sin  θ cos(2(n − 1)ϕ + ψ)

(
I0,nI2,n−2 + 2I2 1,n−1

)
. 

(6.8) 

From Eq. (6.8), it is seen that at sinθ = 0, the intensity pattern at the focus is 
radially symmetric and independent of the polar angle ϕ. Specifically, at n = 0, 1, 
2, the focal spot forms a circle, but at n > 2 or  n < 0, the focal spot forms a ring. At 
sinθ �= 0, the focal spot is devoid of radial symmetry, depending on the polar angle 
ϕ and index n in Eq. (6.8). 

By using relationships for the field projections in Eq. (6.8), we obtain Poynting 
vector projections (energy flow density) in the form [23]: 

P = 
c 

2π 
Re
(
E∗ × H

)
, (6.9) 

where E and Н are the electric and magnetic field vectors, * denotes complex conjuga-
tion,× stands for the vector product, and c is the speed of light in vacuum. Hereinafter, 
the constant c/(2π ) is neglected. Substituting the relationships for electromagnetic 
field projections at the focus in Eq. (6.6) into (6.9) yields: 

Px = 2
(|a|2 − |b|2) sin(ϕ)I1,n−1

(
I0,n + I2,n−2

)
, 

Py = −2
(|a|2 − |b|2) cos(ϕ)I1,n−1

(
I0,n + I2,n−2

)
, 

Pz = I2 0,n − I2 2,n−2. (6.10) 

In view of the relationships for the parameters a and b from Eq. (6.1), the Poynting 
vector projections of Eq. (6.10) at the focus can be rewritten as follows:
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Px = 2 cos(θ ) sin(ϕ)I1,n−1
(
I0,n + I2,n−2

)
, 

Py = −2 cos(θ ) cos(ϕ)I1,n−1
(
I0,n + I2,n−2

)
, 

Pz = I2 0,n − I2 2,n−2. (6.11) 

In Eq. (6.11), the angle θ is a parameter that defines a point on the Poincare sphere 
of polarization states. The transverse Poynting vector projections in Eq. (6.11) can 
be converted from the Cartesian to the polar coordinates, with Eq. (6.11) transformed 
into: 

Pr = 0, 
Pϕ = −  cos(θ )I1,n−1

(
I0,n + I2,n−2

)
, 

Pz = I2 0,n − I2 2,n−2. (6.12) 

An analysis of Eq. (6.12) allows the following conclusions. With the on-axis 
Poynting vector component depending only on the radial coordinate, the distribu-
tion of the energy flow propagating along the optical axis turns out to be circularly 
symmetric for any parameters (a, b) or (θ, ψ). Interestingly, at n = 2, it follows from 
Eq. (6.12) that near the optical axis in the focal plane a reverse energy flow occurs: 

Pz,2(r) = −I2 2,0 + I2 0,2, 
Pz,2(r = 0) = −I2 2,0 < 0. (6.13) 

The second equality in Eq. (6.13) stems from the fact that among the integrals 
entering Eq. (6.7), only those with zero second index (μ = 0) remain nonzero on 
the optical axis (r = 0). This is because only the zero-order Bessel function is 
nonzero at the origin: J0(0) = 1. Equation (6.13) suggests that an on-axis reverse 
flow will occur when tightly focusing a multitude of initial optical fields, including a 
second-order optical vortex with left-handed circular polarization, exp(i2ϕ)(1, −i)T , 
where T denotes vector transposition, a minus second-order optical vortex with 
right-handed circular polarization exp(−i2ϕ)(1, i)T , a second-order radially polar-
ized vector field (cos(2ϕ), sin(2ϕ))T , a second-order azimuthally polarized optical 
field, (− sin(2ϕ), cos(2ϕ))T and so on. Previously, the reverse energy flow at the 
tight focus was discussed in Refs. [6, 7]. 

From Eq. (6.12), it also follows that at cosθ �= 0 the near-axis transverse energy 
flow at the focus is rotating clockwise at cosθ > 0 and anticlockwise at cosθ < 0.  

At сosθ = 0, the energy flow at the focal plane is laminar (the on-axis Poynting 
vector component is zero) and not rotating. Given cosθ �= 0 (meaning that elliptic 
polarization is found in the source field), the transverse energy flow at the tight focus 
of Poincare beams will rotate around the optical axis at any topological charge n 
due to spin-orbital conversion. At cosθ > 0 and n = 0, the energy flow will rotate 
anticlockwise and at n > 0 – clockwise.
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6.1.3 Spin Angular Momentum at the Tight Focus 
of Poincare Beams 

In this subsection, we derive the spin angular momentum (SAM) of the Poincare beam 
(6.1) at the focus. The spin density vector is calculated using a familiar formula [24]: 

S = 1 

8πω  
Im
(
E∗ × E

)
, (6.14) 

where ω is the cyclic frequency of light. Hereinafter, the constant 1/(8πω) is  
neglected. From (6.14), the on-axis SAM component (without regard for the constant) 
is seen to coincide with the third Stokes vector component, s3: 

s3 = Sz = 2 Im
(
E∗ 
x Ey
)
, (6.15) 

Thus, we infer that it is the on-axis SAM component which indicates that the 
field at the focus is circularly or elliptically polarized. Substituting the electric field 
projections (6.6) into (6.15) yields: 

Sz =
(|a|2 − |b|2)[I2 0,n − I2 2,n−2

]
. (6.16) 

For the source Poincare field (1), the on-axis SAM component is given by the 
following: 

Sz,in = |a|2 − |b|2 = cos θ. (6.17) 

From Eqs. (6.16) and (6.17), the initial homogeneous spin density, defined by 
cosθ, is seen at the focus to become inhomogeneous, as well as changing sign and 
taking a zero value at certain radii. The radius-dependent separation of regions with 
the opposite sign of spin (6.16) may be interpreted as a radial spin Hall effect for 
all n. If in the initial plane, the spin density is zero (cosθ = 0), then at the focus the 
on-axis spin density component of Eq. (6.16) will also be zero. If the original spin in 
(6.17) is positive (cosθ > 0), i.e. the initial polarization vector rotates anticlockwise 
(Eq. (6.12), then, given n = 0, the transverse energy flow at the focus will also rotate 
anticlockwise thanks to the spin-orbital conversion. 

6.1.4 Orbital Angular Momentum at the Tight Focus 
of Poincare Beams 

Now, let us analyze the behavior of the angular momentum at the tight focus of a 
Poincare beam (6.1). The angular momentum is given by [25]:
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J = 
1 

2c 
Re
(
r × (E∗ × H

)) = 
2π 
c2 

(r × P), (6.18) 

where r is the radius vector and c is the speed of light in vacuum. Dropping the 
constant 2π /c2 in Eq. (6.18) and considering Eq. (6.12), the on-axis projection of the 
angular momentum vector (6.18) takes the form: 

Jz = rPϕ = −r cos(θ )I1,n−1
(
I0,n + I2,n−2

)
. (6.19) 

From Eq. (6.19), the angular momentum is seen to always be zero on the optical 
axis at r = 0, because the “lever” is zero. The angular momentum is the sum of SAM 
and orbital angular momentum (OAM) [25]: 

J = S + L = 
1 

8πω  
Im
(
E∗ × E

)+ 1 

8πω

∑

p=x,y,z 

Im
(
E∗ 
p (r × ∇)Ep

)
. (6.20) 

Dropping the constant 1/(8πω) in Eq.  (6.20) and taking into account Eq. (6.16) 
and (6.19), the relation for the on-axis component Lz of the OAM density takes the 
form: 

Lz = −  cos(θ )
[
rI1,n−1

(
I0,n + I2,n−2

)+ I2 0,n − I2 2,n−2

]
. (6.21) 

Equation (6.21) suggests that if the source Poincare beam has zero spin (cosθ = 
0), the OAM is zero at the focus (Lz = 0). If, however, the source Poincare beam has 
nonzero spin (cosθ �= 0), both the angular momentum (6.19) and OAM (6.21) occur 
at the focus. 

6.1.5 Numerical Modeling 

The numerical simulation in this section is based on calculating the Debye integral 
using a Richards-Wolf method [23]. The focusing is assumed to be conducted with 
an aplanatic objective with NA = 0.95 for a wavelength of λ = 0.532 nm. Figure 6.1 
depicts intensity patterns I = |Ex|2 +

∣∣Ey

∣∣2 + |Ez|2 at the tight focus of a Poincare 
beam at the parameters θ = π /4, ψ = π /4, n = 0 (non-vortex elliptically polarized 
beam, Fig. 6.1а); θ = 0, ψ = π /2, n = 0 (non-vortex right-handed circularly polarized 
beam, Fig. 6.1b); θ = π /4, ψ = π /4, n = 1 (elliptically polarized vortex, Fig. 6.1c); 
and θ = 0, ψ = 0, n = -1 (right-handed circularly polarized vortex, Fig. 6.1d).

From Fig. 6.1, beams with elliptical (a), circular (b), and near-radial (c) polar-
ization are seen to produce an elliptic or circular focal spot, whereas a vortex beam 
with circular polarization (d) produces an annular focal spot. Such types of intensity 
patterns agree well with Eq. (6.8). 

Figure 6.2 depicts transverse Poynting vector components Px (а, c) and Py (b, 
d) at the foci of two out of the four beams shown in Fig. 6.1. The energy flow
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Fig. 6.1 Intensity patterns at the focus for different Poincare beams of Eq. (6.1): θ = π /4, ψ = π / 
4, n = 0 (a); θ = 0, ψ = π /2, n = 0 (b); θ = π /4, ψ = π /4, n = 1 (c); θ = 0, ψ = 0, n = −1 (d)

in Fig. 6.1a, b for the beam with the parameters θ = π /4, ψ = π /4, n = 0 is  
identical to those for the beams with θ = π /4, ψ = π /4, n = 1 and θ = 0, ψ 
= 0, n = −1 (d). From Fig. 6.2a, b, the transverse energy flows at the focus are 
seen to be rotating anticlockwise for these three beams. Meanwhile, the transverse 
energy flow produced by the beam with π /4, ψ = π /4, n = 1 (Fig. 6.2c, d) will 
experience clockwise rotation. This may be concluded from Eq. (6.12), because at 
n = 0, −1 the angular projection of the near-axis energy flow (kr < 1) is positive: 
Pϕ = cos(θ )I1,1

(
I0,0 + I2,2

)
> 0, Pϕ = cos(θ )I1,2

(
I0,1 + I2,3

)
> 0, becoming 

negative at n = 1: Pϕ = −  cos(θ )I1,0
(
I0,1 − I2,1

)
< 0. The only situation when the 

energy flow does not rotate is at cos θ = 0.
Figure 6.3 depicts patterns of the on-axis SAM vector component (6.16) at the  

foci of two beams with the parameters: θ = π /4, ψ = π /4, n = 0 (a, b); θ = π /4, ψ 
= π /4, n = 1 (c, d). We note that the beam with the parameters θ = 0, ψ = π /2, n 
= 0 produces a SAM pattern similar to that in Fig. 6.3а, with the beam at θ = 0, ψ 
= 0, n = −1 producing a pattern of the on-axis SAM projection analogous to that in 
Fig. 6.3c. This conclusion follows from Eq. (6.16), because at n = 0, the on-axis SAM 
projection does not take zero values: Sz(r = 0) = cos θ

[
I2 0,0 − I2 2,2

] �= 0, meanwhile 
at n = 1, everywhere on the optical axis the SAM projection is zero: Sz(r = 0) = 
cos θ

[
I2 0,1 − I2 2,1

] = 0, as is the case at n = -1: Sz(r = 0) = cos θ
[
I2 0,1 − I2 2,3

] = 0.
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Fig. 6.2 Patterns of the transverse energy flow (Poynting vector projections) at the tight focus: Px 
(а, c), Py (b, d) for two different Poincare beams: θ = π /4, ψ = π /4, n = 0 (a, b); θ = π /4, ψ = 
π /4, n = 1 (c, d)

Figures 6.3b, d, f show sections along the x-axis of the axial projection of the 
SAM vector. It can be seen from Fig. 6.3b, d that at some distance from the optical 
axis, the SAM projection becomes negative (see enlarged fragments). In Fig. 6.3f, 
negative SAM values appear near the optical axis. Negative values of the longitudinal 
projection of the SAM take place in those places of the focus plane where the axial 
energy flow is negative, since it follows from (6.12) and (6.16) that 

Sz = Pz cos θ. (6.22) 

In this section, we obtained the following new results. Using a relationship for von 
Neumann entropy it has been shown that the family of Poincare beams represents 
a classical entangled (non-separable) state of light [26]. The entanglement has been 
shown to become maximal when the Poincare beams are reduced to cylindrical nth 
order vector beams, Eq. (6.5). Classical entanglement, or non-separability, of a light 
beam implies that polarization and orbital degrees of freedom cannot be separated. 
However, at certain parameters, the Poincare beams are fully separable, in which 
case they are reduced to left- or right-handed circularly polarized vortex beams. The 
Poincare beams show remarkable properties at the tight focus. Namely, at n = 2, a
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Fig. 6.3 Distributions of the axial projection of the SAM (Sz) and their cross sections along the 
x-axis for three different Poincaré beams: θ = π /4, ψ = π /4, n = 0 (a,  b);  θ = π /4, ψ = π /4, n = 
1 (c, d); θ = π /4, ψ = π /4, n = 2 (e, f)

near-axis reverse energy flow has been found to occur when the on-axis Poynting 
vector component is negative, Eq. (6.13). Given certain parameters of the Poincare 
beam (cosθ �= 0), the transverse energy flow has been found to rotate around the 
optical axis at any topological charge n thanks to spin-orbital conversion, Eq. (6.12). 
More specifically, the energy flow rotates anticlockwise at cosθ > 0 and n = 0, 
rotating clockwise at n > 0. The condition cosθ �= 0 means that in the source plane,
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the on-axis SAM component of Poincare beams is nonzero, Eq. (6.17). In this case, at 
the focus, a nonzero on-axis SAM component with alternating sign is also observed, 
Eq. (6.16) that can take zero values on certain radii. Radius-dependent separation 
of focal regions with alternating sign of spin density (6.16) can be interpreted as a 
radial spin Hall effect for all n. Finally, it has been revealed that thanks to spin-orbital 
conversion, a nonzero on-axis component of the OAM vector occurs at the focus of 
Poincare beams, Eq. (6.21). 

6.2 Generalized Poincaré Beams in the Tight Focus 

Poincaré beams, whose polarization state is related with the polarization Poincaré 
sphere [4, 27, 28], are actively studied in optics, starting with works [3, 28–30]. 
In a general case, a Poincaré beam is a superposition of two optical vortices with 
different topological charges (TC) p and q and with orthogonal polarizations. As the 
optical vortices, the conventional Laguerre-Gaussian beams of different indices [31– 
33] can be chosen, or diffraction-free Bessel beams, or the Bessel-Gaussian beams 
generated by axicons [34–36]. The Poincaré beams can be generated as all the other 
vector beams, by using liquid–crystal light modulators, half-wave and quarter-wave 
plates [34, 37, 38], or by using the lasers and q-plates [39], and metasurfaces [36]. In 
[19], polarization singularity index (Poincaré-Hopf index) of the Poincaré beams was 
studied. In [26], the optical Hall effect was theoretically discovered in the tight focus 
of the Poincaré beams. The optical (or photonic) Hall effect is divided into the spin [9, 
18] and orbital [13, 14]. Usually, the Hall effect in optics is observed when a light field 
is reflected from an interface between the media [13, 14], or when it passes through 
multilayered media [40], crystals [16, 41], or through a metasurface [42]. There are 
known works investigating the Hall effect in the tight focus of a laser radiance [24, 
43] or in vicinity of the focal plane [44]. We note that the above mentioned works do 
not contain theoretically obtained, with using the Richards-Wolf formalism [23], key 
characteristics of the generalized Poincaré beams in the tight focus: amplitudes of 
the electric and magnetic vectors, intensity distribution, distributions of components 
of the Poynting vector and of the spin angular momentum (SAM) vector. 

In this section, adopting the Richards-Wolf approach, we obtain analytical expres-
sions, describing key characteristics of the generalized Poincaré beams in a case when 
the topological charges (TC) of the two optical vortices with left and right circular 
polarization are equal, respectively, to p = m + 1 and q = –m. We demonstrate that in 
the focus of such beams, radial spin and orbital Hall effects take place. We note that 
in [45] we demonstrated the spin Hall effect for fractional-order cylindrical vector 
beams in the focus plane. In the current work, at p = m + 1 and q = –m, there is also 
a cylindrical vector beam with a fractional order m + 1/2. Therefore, we can expect 
that there is also the spin Hall effect in the focus of such generalized Poincaré beam. 
The work [45] does not contain analytical expressions for electric field components 
in the focus of fractional-order cylindrical vector beams. In the current work, we 
derive such analytical expressions.
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In our previous work [46], we have shown that the orbital Hall effect occurs 
before and after the focus of the conventional vectorial cylindrical beams, which are 
a special case of the Poincaré beams when the optical vortices have the TCs m and 
–m, and that local areas in the beam cross section, where the transverse energy flow 
is rotating clockwise or counterclockwise, reside in pairs on a certain-radius circle 
with the center on the optical axis. In this work, energy flows, rotating clockwise or 
counterclockwise, reside on circles with different radii. Therefore, this orbital Hall 
effect is called radial. 

We note that the Richards-Wolf formalism [23] adequately describes the light 
field only near the focus. The work [47] investigates behavior of light in the focus 
by using an exact solution of the Helmholtz equation in the spherical coordinates, 
which is correct in the whole space. However, generating such a light field in the 
focus requires generating in the initial plane all three components of the electric 
vector. This is a challenging problem. In our case, only the transverse components of 
the electric field should be generated in the initial plane, which is easy to implement 
in practice. 

6.2.1 Vector Field in the Initial Plane 

We consider here the following Jones vector of the initial light field: 

E1 = a 
exp(ipϕ) √

2

(
1 

i

)

+ b 
exp(iqϕ) √

2

(
1 

−i

)

, 

a2 + b2 = 1, (6.23) 

with (r, ϕ) being the polar coordinates in the initial plane, and a, b being complex 
constants. If p = –n and q = n, the beam from Eq. (6.23) reduce to a conventional 
Poincaré beam [3, 29, 30]. If a = b = 1/ 

√
2 then the field (6.23) becomes maximally 

inseparable [26]: 

E2 = exp
(
i(q + p)ϕ 

2

)
⎛ 

⎜⎜ 
⎝ 

cos

(
q − p 
2

)
ϕ 

sin

(
q − p 
2

)
ϕ 

⎞ 

⎟⎟ 
⎠. (6.24) 

When p = q, the field (6.23) reduces to a linearly polarized optical vortex with 
the topological charge (TC) q. When p = –q, the field (6.23) is a cylindrical vector 
beam of the order q [5]. When p = –m and q = m + 1, the field (6.24) is given by
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E2 = exp
(
iϕ 
2

)
⎛ 

⎜⎜ 
⎝ 

cos

(
m + 

1 

2

)
ϕ 

sin

(
m + 

1 

2

)
ϕ 

⎞ 

⎟⎟ 
⎠ = 

exp(i(m + 1)ϕ) 
2

(
1 

−i

)

+ 
exp(−imϕ) 

2

(
1 

i

)

. 

(6.25) 

The field (6.25) is interesting for it is a cylindrical vector beam of a half-integer 
order. In [48], the beam (6.25) is called a vector vortex beam with a fractional 
topological charge not quite correctly. As was already shown in [45], in the tight focus 
of the fractional-order cylindrical vector beams, subwavelength areas are generated 
with elliptic polarization of different handedness, that is the polarization vector in 
these areas is rotating clockwise or counterclockwise. We note that the initial light 
field (6.25) is linearly polarized in each point of its cross section. Therefore, similarly 
to [45], it should be expected that the focused field (6.25) should also contain the 
areas with elliptic polarization of different handedness. It is also seen from Eq. (6.25) 
that the initial field is a coaxial superposition of two optical vortices with left and 
right circular polarization and with different topological charges of m + 1 and –m. 
Since these topological charges do not compensate each other, it is worth to expect 
circular energy flow in the focus. This means that in the focus, nonzero distribution 
of the axial component of the angular momentum vector should be present. Below 
we show that this is indeed so. 

6.2.2 Components of the Strength Vector of the Electric Field 
in the Focus 

The Richards-Wolf formalism [23] allows obtaining all the components of the 
strength vector of the electric field in the tight focus of the initial field (6.25): 

E2x = 
im 

2

[
ei(m+1)ϕ I0,m+1 + ei(m−1)ϕ I2,m−1 − ie−imϕ I0,m − ie−i(m−2)ϕ I2,m−2

]
, 

E2y = 
im 

2

[−iei(m+1)ϕ I0,m+1 + iei(m−1)ϕ I2,m−1 + e−imϕ I0,m − e−i(m−2)ϕ I2,m−2
]
, 

E2z = im
[
ieimϕ I1,m + e−i(m−1)ϕ I1,m−1

]
, (6.26) 

where 

Iν,μ =
(
4π f 
λ

) θ0∫

0 

sinν+1

(
θ 
2

)
cos3−ν

(
θ 
2

)
cos1/2 (θ )A(θ )eikz cos θ Jμ(ξ )d θ,  (6.27) 

where k = 2π /λ is the wavenumber of light with the wavelength λ, f is the focal 
length of an aplanatic system (ideal spherical lens), ν = 0, 1, 2, Jμ(ξ ) is the  μth-order
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Bessel function of the first kind, ξ = krsinθ, θ is the polar angle that defines the tilt 
to the optical axis of rays converging into the focus, θ 0 is the maximal angle that 
defines the numerical aperture of the aplanatic system (NA = sin θ 0), (r, ϕ, z) is the  
cylindrical coordinate system with the origin in the focus (z = 0 is the focus plane), 
A(θ ) is the amplitude of the initial circularly symmetric field (real-valued function). 

6.2.3 Intensity Distribution of the Electric Field in the Focus 

From the components of the electric vector (6.26), we can derive the intensity 
distribution of light field in the focus plane (z = 0): 

I = I⊥ + Iz = Ix + Iy + Iz 

= 
1 

2

[(
I2 0,m+1 + I2 2,m−2 − 2 sin((2m − 1)ϕ)I0,m+1 I2,m−2

)

+ (I2 0,m + I2 2,m−1 − 2 sin((2m − 1)ϕ)I0,m I2,m−1
)

+ 2
(
I2 1,m + I2 1,m−1 − 2 sin((2m − 1)ϕ)I1,m I1,m−1

)]
, (6.28) 

where the first two terms in the round brackets describe the transverse intensity 
I⊥ = Ix + Iy, whereas the third term in the round brackets describes the longitudinal 
intensity Iz. As seen from Eq. (6.28), the intensity is a non-negative function (I ≥ 0), 
since each term in the round brackets in Eq. (6.28) is non-negative, for the sum of 
two squared numbers is equal or greater than their doubled product. From Eq. (6.28) 
also follows that the intensity distribution contains 2m – 1 local maxima and 2m – 1  
local minima (or intensity nulls), that reside on a certain-radius circle with the center 
on the optical axis. Thus, the number of these intensity maxima and nulls is always 
odd (2m – 1).  

6.2.4 Longitudinal Component of the Spin Angular 
Momentum Vector in the Focus 

Using the components of the electric field vector in the focus (6.26), longitudinal 
component can be derived of the spin angular momentum (SAM) vector of the field 
(6.25), since the longitudinal SAM component Sz is equal to the third Stokes param-
eters S3, whose magnitude indicates the presence of elliptic or circular polarization 
in the beam cross section. The SAM vector is defined by the following expression 
[24]: 

S = 1 

16πω  
Im
(
E∗ × E

)
, (6.29)
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with ω being the angular frequency of light. Below we omit the constant factor 1/ 
(16πω) for brevity. It is seen from Eq. (6.29) that the longitudinal SAM component 
(without the constant) coincides with the non-normalized third component of the 
Stokes vector: 

S3 = Sz = 2 Im
(
E∗ 
x Ey
)
. (6.30) 

Substitution of expressions (6.26) for the electric field components into Eq. (6.30) 
yields 

Sz = 
1 

2

[(
I2 0,m + I2 2,m−1 − 2 sin((2m − 1)ϕ)I0,m I2,m−1

)

− (I2 0,m+1 + I2 2,m−2 − 2 sin((2m − 1)ϕ)I0,m+1 I2,m−2
)]

. (6.31) 

Comparison of Eqs. (6.28) and (6.31) reveals that if the transverse intensity is a 
sum of two positive terms A and B: 

I⊥ = A + B = 
1 

2

[(
I2 0,m+1 + I2 2,m−2 − 2 sin((2m − 1)ϕ)I0,m+1 I2,m−2

)

+ (I2 0,m + I2 2,m−1 − 2 sin((2m − 1)ϕ)I0,m I2,m−1
)]

, (6.32) 

then the longitudinal SAM component is a difference of these terms: 

Sz = B − A. (6.33) 

According to Eq. (6.31), similarly to the intensity distribution in Eq. (6.28), the 
SAM distribution also has 2m – 1 local maxima and 2m – 1 local minima. As seen 
from Eq. (6.33), if B > A then Sz > 0 (polarization vector is rotating counterclockwise). 
And vice versa, if B < A then Sz < 0 (polarization vector is rotating clockwise). In 
the areas with B = A (Sz = 0), polarization is linear. The points in the beam cross 
section in the focus, where Sz = 0, are called in [49] topological spin defects. Thus, 
it follows from Eqs. (6.31) and (6.33) that there are areas with different spin in the 
focus: positive (Sz > 0) and negative (Sz < 0). Spatial separation of areas with left 
circular and right circular polarization is called the spin Hall effect [24, 43, 44]. In the 
Simulation section below, these conclusions are confirmed by concrete examples. 

6.2.5 Energy Flow Density in the Focus 

Here, we derive the Poynting vector (energy flow density) in the focus of the field 
(6.25). To do this, we should obtain at first the components of the strength vector of 
the magnetic field in the focus. The same way as we obtained the components of the 
electric vector (6.26) by using the Richards-Wolf theory [23], we can obtain also the
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magnetic vector: 

H2x = 
im 

2

[
iei(m+1)ϕ I0,m+1 + iei(m−1)ϕ I2,m−1 − e−imϕ I0,m − e−i(m−2)ϕ I2,m−2

]
, 

H2y = 
im 

2

[
ei(m+1)ϕ I0,m+1 − ei(m−1)ϕ I2,m−1 − ie−imϕ I0,m + ie−i(m−2)ϕ I2,m−2

]
, 

H2z = −im
[
eimϕ I1,m + ie−i(m−1)ϕ I1,m−1

]
. (6.34) 

The Poynting vector is defined by the well-known formula [23]: 

P = [c/(8π )]Re
[
E × H∗], (6.35) 

where c is the vacuum speed of light, Re is the real part of a complex number, E × 
H is the cross-product, * is the complex conjugation. Below we omit the constant c/ 
(8π ) for brevity. Substituting the components (6.26) and (6.34) into Eq. (6.35), we 
get the components of the Poynting vector in the focus of the field (6.25): 

Px = Q(r) sin ϕ, 
Py = −Q(r) cos ϕ, 

Pz = 
1 

2

(
I2 0,m + I2 0,m+1 − I2 2,m−1 − I2 2,m−2

)
, 

Q(r) = I1,m−1
(
I0,m + I2,m−2

)− I1,m
(
I0,m+1 + I2,m−1

)
. (6.36) 

Passing to the polar components Pr and Pϕ of the transverse Poynting vector, we 
get: 

Pr = 0, 
Pϕ = −Q(r). (6.37) 

As seen from Eq. (6.36), the longitudinal component of the Poynting vector in the 
focus has a circularly symmetric distribution and does not depend on the azimuthal 
angle ϕ. It is also seen from Eq. (6.36) that if m = 1 or  m = 2 then there is reverse 
energy flow on the optical axis, since for m = 1 or  m = 2, we get on the optical axis 

Pz(r = 0) = −  
1 

2 
I2 2,0 < 0. 

Equation (6.37) indicates that the transverse energy flow in the focus is rotating 
along a closed trajectory with the center on the optical axis, clockwise if Q(r) > 0,  
and counterclockwise if Q(r) < 0. Since the function Q(r) is of different signs on 
different radii r, it can be stated that the radial orbital Hall effect occurs in the focus 
of the light field (6.25). This also follows from the expression for the longitudinal 
component of the angular momentum vector J of the field (6.25), when it is written 
by definition via the azimuthal component of the energy flow [24]:
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J = r × P, 
Jz = rPϕ = −rQ(r). (6.38) 

The energy flow in the focus is rotating along a spiral around the optical axis, since 
the topological charges of the two optical vortices, present in the superposition in the 
initial field (6.25), do not compensate each other for they have different magnitudes: 
m + 1 and –m. 

6.2.6 Simulation 

Using the Richards-Wolf formalism [23], we computed the distributions of intensity 
and of the longitudinal component of the SAM vector (spin density) in the tight focus 
of the light field with the initial distribution given by Eq. (6.25). We supposed that 
the field amplitude in the initial plane is constant, i.e., A(θ ) = 1, wavelength λ = 
532 nm, focal length f = 10 μm, numerical aperture NA = 0.95. Shown in Fig. 6.4 
are distributions of the longitudinal component of the spin angular momentum Sz 
(Fig. 6.4a–d) (red and blue colors denote positive and negative values), of intensity 
I (Fig. 6.4e–h) (black and yellow colors denote zero and maximal values) and of 
the angular component of the Poynting vector Pϕ (Fig. 6.4i–l) (red and blue colors 
denote positive and negative values) of a light beam with polarization (6.25) of  
different order m in the tight focus. The beam orders in Fig. 6.1 are m = 1 (Fig. 6.4a, 
e, i), m = 2 (Fig. 6.4b, f, j), m = 3 (Fig. 6.4c, g, k), m = 5 (Fig. 6.4d, h, l). The arrows 
in Fig. 6.4i–l illustrate the directions of the angular energy flow. The scale mark in 
each figure denotes 1 μm.

As seen in Fig. 6.4 (2nd row), the number of local maxima in the intensity distri-
bution in the focus is consistent with the theory [Eq. (6.28)] and is equal to 2m – 1: 1  
(Fig. 6.4e), 3 (Fig. 6.4f), 5 (Fig. 6.4g) and 9 (Fig. 6.4h). It is also seen in Fig. 6.4 (1st 
row), that, according to Eq. (6.31), the SAM distribution also contains 2m – 1 local 
maxima (red color in Fig. 6.4a–d), where Sz > 0, and which reside on a certain circle 
with the center on the optical axis. On a circle with a larger radius, (blue color in 
Fig. 6.4a–d), Sz < 0. Black color in Fig. 6.4a–d denotes the areas with zero spin, i.e. 
where polarization is linear. Since the brightness of the blue color in Fig. 6.4a–d is 
2–3 times lower than that of the red color, elliptic polarization in the areas of positive 
spin is closer to circular polarization, whereas the polarization ellipses in the areas of 
negative spin are more elongated and close to linear polarization. Nevertheless, space 
separation of the areas with positive and with negative spin in the focus demonstrates 
the spin Hall effect. 

Figures 6.4i–l (3rd row) confirms theoretical predictions [Eq. (6.37)] and demon-
strates that the transverse energy flow in the focus plane rotates. On a circle closer 
to the optical axis (blue color in Figs. 6.4i–l), Pϕ < 0, i.e. the transverse energy flow 
is rotating clockwise. On a larger radius circle (red ring in Figs. 6.4i–l), Pϕ > 0, and 
the energy flow is rotating counterclockwise. Such spatial separation of the orbital
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Fig. 6.4 Distributions of the longitudinal component of the spin angular momentum (a–d) (red  
and blue color denotes, respectively, positive and negative values), intensity (e–h) (black means 
zero and yellow means maximum), and angular component of the Poynting vector (i–l) (red means 
positive and blue means negative values) of a light beam with polarization (6.25) and with different 
order in the tight focus. Arrows (i–l) denote the directions of the angular energy flow. Scale mark 
in each figure denotes 1 μm

energy flux in opposite directions is a manifestation of the radial orbital Hall effect 
in the focus. 

6.2.7 Discussion of the Results 

Here, we compare the transverse components of the electric field in the initial plane 
(6.25) and in the focus plane (6.26). Although in the initial plane the components Ex 

and Ey of the field (6.25) have the same phase, and thus the field has inhomogeneous 
linear polarization, then, in the focus, the transverse components of the field (6.26) 
acquire relative phase delay by π /2 or by 3π /2. This leads to the areas with elliptic 
polarization in the focus. On the other hand, the longitudinal SAM component (6.29) 
in the initial plane is equal to zero Sz = 0, while the energy flow (6.35) has only one 
longitudinal component, equal to unit: Pz = 1. In the focus plane, the SAM density is 
given by Eq. (6.31), but if the functions Sz is integrated over the whole focus plane,
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then it is equal to zero. Thus, the full longitudinal SAM component is conserved 
and equal to zero. The field (6.25) in the initial plane has a nonzero density of the 
longitudinal component of the orbital angular momentum (OAM) vector [50]: 

Lz = Im
(
E∗ 
x 

∂ 
∂ϕ 

Ex + E∗ 
y 

∂ 
∂ϕ 

Ey

)
= 

1 

2 
. (6.39) 

If the OAM density (6.39) is integrated over the angle ϕ from  0 to 2π, then the full 
OAM in the initial plane is nonzero and equal to the half of the initial beam power 
W /2. 

In the focus plane, longitudinal OAM component can also be obtained: 

Lz = Im
(
E∗ 
x 

∂ 
∂ϕ 

Ex + E∗ 
y 

∂ 
∂ϕ 

Ey + E∗ 
z 

∂ 
∂ϕ 

Ez

)

= 
1 

2

{
(m + 1)I2 0,m+1 − mI2 0,m + 2mI2 1,m + (m − 1)I2 2,m−1 − 2(m − 1)I2 1,m−1 

−(m − 2)I2 2,m−2 + sin(2m − 1)ϕ
[
I0,m I2,m−1 − 3I0,m+1I2,m−2 − 2I1,m I1,m−1

]}

(6.40) 

According to Eq. (6.40), the OAM density depends on the angle as sin(2m – 1)ϕ. 
This means that on a certain-radius circle with the center on the optical axis, the 
OAM has (2m – 1) local maxima and minima, similarly to the SAM distribution 
(6.31). It can be shown that if the OAM density is integrated over the whole focus 
plane, then this also yields the half of the initial beam power W /2. Thus, in this case, 
the full SAM and OAM are conserved separately. Therefore, it can be concluded that 
the spin Hall effect in the focus of the beam (6.25) arises due to the conservation 
of the full longitudinal SAM of the beam. Since the longitudinal SAM of the whole 
beam is zero, the areas with the spin of different sign should arise in pairs. The same 
way, the radial orbital Hall effect in the focus occurs due to the conservation of the 
full longitudinal OAM of the beam. 

Summing the SAM (6.31) and OAM (6.40) densities, we get: 

Lz + Sz = 
1 

2

{
m
(
I2 0,m+1 + 2I2 1,m + I2 2,m−1

)− (m − 1)
(
I2 0,m + 2I2 1,m−1 + I2 2,m−2

)

− sin(2m − 1)ϕ
[
I0,m I2,m−1 + I0,m+1I2,m−2 + 2I1,m I1,m−1

]}
(6.41) 

Comparison of Eq. (6.38) for the density of the longitudinal component of the 
angular momentum (AM) vector and of Eq. (6.41) for the sum of the longitudinal 
SAM and OAM components reveals that they are not equal to each other: Jz �= Lz + 
Sz. The reason of this inequality we considered earlier in [50]. 

In conclusion of this section we consider the difference between the Hall effect 
near the tight focus [26, 45, 46, 50] and the Hall effect occurring when light is 
reflected off the interface between two media [11, 14]. As was shown in [14], when an 
optical vortex is reflected from a plane glass surface, the annular intensity distribution
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becomes inhomogeneous. For the optical vortices with the topological charges m 
and –m, the intensity maxima on the ring appear in different places, i.e., shifted 
relative to each other (orbital Hall effect). In [11], it was shown that when a p-
polarized Gaussian beam (polarization vector is in the incidence plane) is reflected 
from the glass surface under an angle close to the Brewster angle, the spin Hall effect 
occurs, when the reflected light is split into two beams with opposite spins in the 
direction orthogonal to the incidence plane. In the tight focus [26, 45, 46, 50], spin 
and orbital Hall effects occur due to the conservation of the full angular momentum. 
The light with opposite spins or (and) with opposite energy rotation in the focus 
plane is concentrated in different places. A different manifestation of the Hall effect 
in the focus, investigated in different works [26, 45, 46, 50], is explainable since 
the different types of the initial vector fields were considered. In [26], focusing of 
the conventional Poincaré beams was considered, while [45] dealt with focusing of 
fractional-order cylindrical vector beams. In [46], the Hall effect of the cylindrical 
vector beams of an integer order arises before and beyond the focus, whereas it is 
absent in the focus itself. In [50], the Hall effect was studied in the focus of a circularly 
polarized optical vortex. In contrast to these works, we studied here tight focusing 
of a generalized Poincaré beam, whose topological charge is equal to 1/2 and whose 
order of inhomogeneous linear polarization is equal to m + 1/2. It is impossible to 
predict in advance, based on the initial light field, whether or not the Hall effect will 
arise in the tight focus. Thus, each new type of the initial vector beams should be 
considered separately. 

Based on the Debye integrals [44], we have investigated both theoretically and 
numerically generalized (hybrid) Poincaré beams in the tight focus [51]. A general-
ized Poincaré beam is a coaxial superposition of two optical vortices with left and 
right circular polarization and with the TC of p and q. For certainty, we studied 
the case when p = m + 1 and q = –m [Eq. (6.25)]. Simple analytical expressions 
have been obtained for the components of the electric and magnetic strength vectors 
in the focus [Eqs. (6.26) and (6.34)], for the intensity distribution [Eq. (6.28)], for 
the longitudinal component of the spin angular momentum [Eq. (6.31)], and for the 
components of the Poynting vector [Eq. (6.36)]. It has been shown that the intensity 
in the focus has 2m – 1 local maxima, residing evenly on a certain-radius circle with 
the center on the optical axis. In addition, radial spin and orbital Hall effects has 
been demonstrated. This means that the longitudinal SAM component has different 
signs on circles with different radii in the focal plane, and the azimuthal component 
of the transverse Poynting vector also has different signs (Fig. 6.4). Such beams can 
be used for simultaneous trapping into local intensity maxima of several micro- or 
nanoparticles (Fig. 6.4h) that should simultaneously rotate around their centers of 
mass (Fig. 6.4d) and move along the ring (Fig. 6.4l). In addition, when moving along 
the ring, the particles will need to overcome the ’breaks’ in the intensity distribution 
(Fig. 6.4h).
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6.3 Controlling the Spin Hall Effect in the Sharp Focus 
of an Axial Superposition of Two Optical Vortices 
with Left- and Right-Handed Circular Polarization 

The control of a spin–orbit conversion (SOC) in spintronics by managing the spin of 
electrons is well known (see recent review [52]). In optics, works on the control of 
SOC parameters have been appeared recently. In [53], SOC was controlled utilizing 
excitation of a superposition of vortex laser modes with different spins in thin annular 
fibers with an empty core, although the first works on SOC in multimode fibers was 
made much earlier [54]. In [55], SOC is the cause of the emission of an optical vortex 
perpendicular to the plane of a ring cavity with defects, along which two whispering 
gallery modes with different spins (different polarization states) propagate. It was 
shown in [56] that SOC can be controlled using q-plates, which transform the light 
with left-handed circular polarization into an optical vortex with right-handed circular 
polarization. The theoretical aspects of the spin–orbit interaction of light were consid-
ered in [24, 57]. Spin–orbit conversion was observed during light scattering [58], in 
a sharp focus [59], in an anisotropic medium [60], and upon reflection from an inter-
face of two media [61]. Spin–orbit interaction was also observed in plasmonics [62], 
in nonlinear optics [63], and in electron optics [64]. One of the clear manifestations 
of the spin–orbit light conversion is the optical Hall effect, which appears when the 
light is reflected from multilayer structures [65] and when it passes through metasur-
faces [66]. The Hall effect in optics appears as the spatial separation of light beams 
with different directions of circular polarization (left- and right-handed)—this is the 
spin Hall effect in optics [9, 18]. Or it leads to the spatial separation of light beams 
with an orbital angular momentum of a different sign – this is the orbital Hall effect 
[13, 14]. For further consideration, it is useful to mention works on the optical Hall 
effect in a sharp focus [50, 51, 67]. The Hall effect at the focus appears not only due 
to the SOC [68], but also due to the preservation of the total longitudinal SAM equals 
to zero during beam propagation [69]. As was shown in [43], when a linearly polar-
ized light is sharply focused, the spin is zero in the initial plane and in the focus, but 
before and after the focus, four local areas appear with nonzero spin of different sign. 
In [70], SOC was studied in the light reflected from two crossed metasurfaces. In 
[71], the geometric spin Hall effect was considered. The SOC in a freely propagating 
vector cylindrical laser beam with a vortex phase was considered in [72]. In [18], 
the spin-controlled Hall effect was implemented based on a spin-dependent beam 
splitting into two beams. Sometimes, the Hall effect is understood as a transverse 
shift of the beam center in the focus because of symmetry violation of a vortex beam 
or due to the displacement [73]. 

In this section, we consider a spin–orbit conversion of a superposition of two iden-
tical optical vortices with circular polarization of different signs and with different 
amplitudes at a sharp focus. The ratio of the amplitudes of the beams included in this 
superposition is a parameter that can be varied in order to manage the reduction in 
spin angular momentum (SAM) and the increase in the orbital angular momentum 
(OAM) during focusing. The change in the total spin and orbital angular momentum
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occurs immediately after the light passes through the spherical lens. Further, during 
propagation in the free space from the lens to the focus, the total spin and orbital 
angular momentums remain unchanged. 

Controlling the spin–orbit conversion in the focus of a spherical lens can be used 
for changing the rotation velocity of dielectric microparticles. Continuous variation of 
the parameter (ratio between the beam amplitudes in the considered superposition) 
allows, changing the SAM in the focus, changing the rotation velocity of a non-
spherical microparticle around its center of mass from zero to maximal. In addition, 
changing the same parameter allows tuning the OAM in the focus and changing the 
rotation velocity of a microparticle along a circular path. 

Microparticles rotation either around the own axis or along a circular path is 
needed in micromachines for contactless driving the details by light [74–76]. 

6.3.1 Projections of the Electric and Magnetic Field Strength 
Vectors at the Focus 

Let us consider an initial light field with a Jones vector satisfies: 

E = 
exp(inϕ)A(θ ) 
√
2(1 + α2)

(
1 + α 
i(1 − α)

)

= 
exp(inϕ)A(θ ) 
√

(1 + α2)

[
1 √
2

(
1 

i

)

+ 
α √
2

(
1 

−i

)]

. 

(6.42) 

Here (r, ϕ) are the polar coordinates in the beam section (r = f sinθ, f is the focal 
length of a spherical lens), n is an integer topological charge of the optical vortex, 
A(θ ) is the real function, the amplitude of the radially symmetric initial light field 
(6.42). The radial coordinate r on the spherical front of the converging wave is related 
to the angle θ between the optical axis and the segment connecting the center of the 
focus with a point on the spherical front, 0 < α < 1 is a real number that regulates the 
contribution to the superposition of light with left- and right-handed circular polar-
ization. It can be seen from (6.42) that this light field is an axial superposition of two 
optical vortices with identical topological charges and left- and right-handed circular 
polarizations. At α = 0, the beam (6.42) has right-handed circular polarization, and 
at α = 1 the polarization is linear. 

The beam (6.42) can be considered as a generalized Poincare beam [51]: 

EP = a 
exp(ipϕ) √

2

(
1 

i

)

+ b 
exp(iqϕ) √

2

(
1 

−i

)

, 

a2 + b2 = 1, (6.43) 

at p = q = n and a = (
1 + α2

)−1/2 
, b = α

(
1 + α2

)−1/2 
. In practice, two light 

modulators are required to form a field (6.43) with different topological charges p
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and q. Therefore, we restrict our consideration to the field (6.42), when p = q, this  
beam (6.42) can be formed by only one light modulator. Using the theory [23], we 
can write components of the electric and magnetic fields vectors in the sharp focus 
of the beam (6.42) as follows: 

Ex = 
in−1 exp(inϕ) 
√
2(1 + α2)

(
(1 + α)I0,n + αe−2iϕ I2,n−2 + e2iϕ I2,n+2

)
, 

Ey = 
in exp(inϕ) 
√
2(1 + α2)

(
(1 − α)I0,n + αe−2iϕ I2,n−2 − e2iϕ I2,n+2

)
, 

Ez =
√
2in exp(inϕ) 
√

(1 + α2)

(
αe−iϕ I1,n−1 − eiϕ I1,n+1

)
, 

Hx = −  
in exp(inϕ) 
√
2(1 + α2)

(
(1 − α)I0,n − αe−2iϕ I2,n−2 + e2iϕ I2,n+2

)
, 

Hy = 
in−1 exp(inϕ) 
√
2(1 + α2)

(
(1 + α)I0,n − αe−2iϕ I2,n−2 − e2iϕ I2,n+2

)
, 

Hz =
√
2in+1 exp(inϕ) 
√

(1 + α2)

(
αe−iϕ I1,n−1 + eiϕ I1,n+1

)
. (6.44) 

Functions Iν,μ in (6.44) are defined by the following: 

Iν,μ = 2kf 
θ0∫

0 

sinν+1

(
θ 
2

)
cos3−ν

(
θ 
2

)
cos1/2 (θ )A(θ )eikz cos θ Jμ(kr sin θ )d θ,  

(6.45) 

where k = 2π /λ is the wavenumber of the monochromatic light with the wavelength 
λ, f is a focal distance of the lens, θ 0 is the maximum tilt angle of the rays to the 
optical axis, which determines the numerical aperture of the aplanatic lens NA = sin 
θ 0, Jμ(x) is the Bessel function of the first kind and μ-th order, z is a longitudinal 
coordinate, the focal plane is situated at z = 0. Functions (6.45) depends on the radial 
and longitudinal coordinates Iν,μ(r, z). Numbers of the function (6.45) can be: ν = 
0,1,2; μ = n – 2,  n – 1,  n, n + 1, n + 2. 

Equations (6.44) indicate that the spherical lens generates additional optical 
vortices in the converging beam. Besides the initial vortex exp(inϕ), the field contains 
four other vortices: exp(i(n + 2)ϕ), exp(i(n-2)ϕ), exp(i(n + 1)ϕ), and exp(i(n−1)ϕ). 
Therefore, the power of the initial optical vortex as partially transferred to these four 
additional vortices [77]. Since all the vortices have different amplitudes, left and 
right circular polarizations can no longer sum up, generating only linear polariza-
tion. Elliptic polarization of different sign appears, i.e. the spin Hall effect arises. 
And vice versa, if initial polarization is right-handed circular then, due to the addi-
tional vortices in Eq. (6.44), the SAM of the beam decreases since some portion of
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the beam power goes for generating transverse energy rotation, i.e., for generating 
the longitudinal component of the OAM vector. 

It can be supposed that if a light field is focused by spherical lenses with aberra-
tions, the OAM spectrum of the transmitted radiance is even broader and thus even 
more additional vortices with different topological charges are generated. It is also 
known that the astigmatic transform, implemented by a cylindrical lens, changes the 
OAM of an initial vortex-free beam [78]. 

Since the amplitudes of the additional optical vortices I2,n±2, I1,n±1 are signifi-
cantly lower than the amplitude of the main optical vortex I0,n [77], then polarization 
of the main vortex I0,n (for instance, linear) dominates, whereas polarization of the 
additional vortices I2,n±2, I1,n±1 (for instance, elliptic with different signs) is weaker 
for any numerical aperture. 

6.3.2 Density of the Longitudinal Component of the Spin 
Angular Momentum Vector at the Focus 

Using the projections of the electric field strength vectors at the focus (6.44), we can 
find the distribution of the longitudinal projection of the spin angular momentum 
(SAM) at the focus of the field (6.42). The SAM vector is determined by the relation 
[57]: 

S = 1 

16πω  
Im
(
E∗ × E

)
, (6.46) 

where ω is the angular frequency of the monochromatic light. The constant 1/(16π ω) 
is omitted below. Further, we obtain an expression only for the longitudinal projection 
of the SAM (6.46), since it coincides with the third component of the Stokes vector 
and reveals the presence of regions with elliptical polarization in the beam cross 
section. Taking into account (6.44), the longitudinal projection of the SAM at the 
focus of the field (6.42) can be written as follows: 

Sz,α = 2 Im
(
E∗ 
x Ey
)

= 1 

1 + α2

[(
1 − α2

)
I2 0,n + α2 I2 2,n−2 − I2 2,n+2 + 2α cos(2ϕ)I0,n

(
I2,n−2 − I2,n+2

)]
. 

(6.47) 

Equation (6.47) shows that at α = 1, field (6.42) becomes linearly polarized and, 
at the focus, the longitudinal component of the SAM (6.47) is equal to the SAM of 
an optical vortex with linear polarization obtained in [67]: 

Sz,α=1 = 
1 

2

[
I2 2,n−2 − I2 2,n+2 + 2 cos(2ϕ)I0,n

(
I2,n−2 − I2,n+2

)]
. (6.48)
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It can be seen from (6.48) that there are four regions at the focus, in two of them 
the longitudinal SAM is positive at ϕ = 0 and ϕ = π, since near the optical axis 
I2 2,n−2 > I2 2,n+2, and in the other two regions at ϕ = π /2 and ϕ = 3π /2 the SAM 
is negative. On the other circle, where I2 2,n−2 < I2 2,n+2, on the contrary, at ϕ = π /2 
and ϕ = 3π /2 the SAM is positive, and at ϕ = 0 and ϕ = π the SAM is negative. 
The presence of regions with the longitudinal projection of the SAM with different 
signs at the focus demonstrates the spin Hall effect. Where the SAM is positive, 
the elliptical polarization vector rotates counterclockwise, and in the regions with 
the negative longitudinal SAM there is a left-handed elliptical polarization and the 
polarization vector rotates clockwise. 

It follows another extreme case from Eq. (6.47), when the parameter α = 0. In 
this case, the longitudinal SAM at the focus will be equal to the SAM of an optical 
vortex with right-handed circular polarization obtained in [50]: 

Sz,α=0 = I2 0,n − I2 2,n+2. (6.49) 

It is seen from (6.49) that for an optical vortex with right-handed circular polar-
ization at the focus, the SAM varies only along the radius and can have a different 
sign at different radii. This effect can be called as the radial spin Hall effect at the 
focus. Thus, we have shown that, by varying the parameter α of the initial light field, 
it is possible to control the characteristics of the spin Hall effect at the focus, i.e., 
obtain different types of spin distribution at the focus, (6.48) and (6.49). 

6.3.3 Full Longitudinal SAM at the Focus 

Five angular harmonics is seen from (6.44) to involve in the formation of the light 
field at the focus: exp(inϕ), exp(i(n + 2)ϕ), exp(i(n – 2)ϕ), exp(i(n + 1)ϕ), exp(i(n – 
1)ϕ). Each such an angular harmonic transfers a certain fraction of the total energy 
(power) of the beam. It was shown in [77] that the fraction of power transferred by 
each such harmonic for sharp focusing of light is equal to: 

Wν,μ = Wν = 
∞∫

0 

2π∫

0 

I2 ν,μ(r, ϕ)rdrd ϕ 

= 4π f 2 
α∫

0 

sin2ν+1

(
θ 
2

)
cos5−2v

(
θ 
2

)
|A(θ )|2 d θ 

. (6.50) 

Using (6.50), we can find the total (averaged over the beam cross section) 
longitudinal SAM at the beam focus (6.42):
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S
∧

z,α = 
∞∫
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2π∫
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Sz,αrdrd ϕ = 1 

1 + α2 
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0 

2π∫

0 

rdrd ϕ
[(
1 − α2

)
I2 0,n + α2 I2 2,n−2 

− I2 2,n+2 + 2α cos(2ϕ)I0,n
(
I2,n−2 − I2,n+2

)] = 
1 − α2 

1 + α2 
(W0 − W2) 

= 
1 − α2 

1 + α2 
(W − 2(W2 + W1)). (6.51) 

Let us compare the resulting expression (6.51) with the density of the longitudinal 
SAM in the initial plane (6.42): 

S
∧

z,0,α = 
∞∫

0 

2π∫

0 

Sz,0,α rdrd ϕ = 
1 − α2 

1 + α2 

∞∫

0 

2π∫

0 

A2 (θ ) rdrd ϕ = 
1 − α2 

1 + α2 
W , (6.52) 

where W is a full beam power (6.42). To compare (6.51) and (6.52) we derive 
additional intensity distribution (power density) at the focus of the beam (6.42): 

Iα = 1 

1 + α2

[(
1 + α2

)
I2 0,n + α2 I2 2,n−2 + I2 2,n+2 + 2α2 I2 1,n−1 

+2I2 1,n+1 + 2α cos(2ϕ)I0,n
(
I2,n−2 + I2,n+2

)]
, (6.53) 

from which the total beam power (6.42) can be obtained: 

W = 
∞∫

0 

2π∫

0 

Iα(r, ϕ)rdrd ϕ = W0 + W2 + 2W1. (6.54) 

Comparison of (6.51) and (6.52) shows that when focusing the beam (6.42) the  full  
longitudinal SAM decreases from (1−α2)W /(1+α2) to (1−α2)(W0−W2)/(1+α2), 
because W0 − W2 = W − 2(W1 + W2) <  W . It is also seen from (6.51) and (6.52) 
that for α = 1 the total longitudinal SAM is equal to 0. As α decreases from 1 to 
0, the total SAM in the initial plane increases from 0 to W, and in the focal plane 
also increases from 0 to W0 – W2. The decrease in the total SAM during focusing is 
due to the spin–orbit conversion, when part of the spin is converted into an “orbit”. 
Below we show this in more detail. 

6.3.4 The Density of the Longitudinal Orbital Angular 
Momentum at the Focus 

To analyze the effect of spin–orbit conversion at the focus, we find the density of the 
longitudinal component of the orbital angular momentum (OAM) of the field (6.42).
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To do this, we use the definition of the OAM vector [79]: 

L = 1 

8πω

∑

p=x,y,z 

Im
(
E∗ 
p (r × ∇)Ep

)
. (6.55) 

We consider only the longitudinal projection of the OAM vector in order to 
compare it with the longitudinal projection of the SAM. Substituting (6.44) into  
(6.55), we obtain the following: 

Lz,α = Im
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E∗ 
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∂ 
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Ex + E∗ 
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∂ 
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Ey + E∗ 
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Ez
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1 + α2

[
n(1 + α2 )I2 0,n 

+ α2 (n − 2)I2 2,n−2 + (n + 2)I2 2,n+2 + 2(n + 1)I2 1,n+1 

+ 2α2 (n − 1)I2 1,n−1 + 2α cos(2ϕ)
(
(n − 1)I0,nI2,n−2 + (n + 1)I0,nI2,n+2 − 2nI1,n−1I1,n+1

)]
. (6.56) 

From (6.56) at  α = 1, we obtain the longitudinal projection of the OAM at the 
focus of an optical vortex with linear polarization, previously derived in [50]: 

Lz,α=1 =
[
nI2 0,n + 

1 

2 
(n − 2)I2 2,n−2 + 

1 

2 
(n + 2)I2 2,n+2 + (n + 1)I2 1,n+1 

+ (n − 1)I2 1,n−1 + cos(2ϕ)((n − 1)I0,nI2,n−2 

+(n + 1)I0,nI2,n+2 − 2nI1,n−1I1,n+1)
]
. (6.57) 

And if we suppose the parameter α = 0 in (6.56), then we obtain the longitudinal 
projection of the OAM at the focus of the optical vortex with right-handed circular 
polarization, which was previously derived in [50]: 

Lz,α=0 = nI2 0,n + (n + 2)I2 2,n+2 + 2(n + 1)I2 1,n+1. (6.58) 

Equation (6.56) by varying the parameter α enables to continuously change the 
OAM of the beam at the focus from (6.58) to (6.57). In the initial field plane (6.42), 
the density of the longitudinal component of the OAM can be found from (6.42): 

Lz,0,α = nA2 (θ ). (6.59)
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6.3.5 Total Longitudinal OAM at the Focus 

Utilizing (6.50) and (6.56), we obtain the total (averaged over the beam cross section) 
longitudinal OAM at the field focus (6.42): 
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+ 2 
1 − α2 
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From (6.51) and (6.60) follows the expression for the sum of the total longitudinal 
SAM and OAM at the field focus (6.42): 

S
∧

z,α + L
∧

z,α =
(
n + 

1 − α2 

1 + α2

)
W . (6.61) 

The total longitudinal OAM in the initial plane is follows from (6.59) to be equal 
to the expression: 

L
∧

z,0,α = 
∞∫

0 

2π∫

0 

Lz,0,α rdrdϕ = nW . (6.62) 

In the initial plane, the sum of the SAM and OAM is follows from (6.52) and 
(6.62) to be equal to the expression: 

S
∧

z,0,α + L
∧

z,0,α =
(
n + 

1 − α2 

1 + α2

)
W . (6.63) 

The total longitudinal SAM and OAM for the field (6.42) is seen from comparison 
of (6.61) and (6.63) to remain unchanged during focusing. By varying the parameter 
α from 1 to 0, the angular momentum of the field (1) at the focus can be changed in
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the range: 

nW ≤ S
∧

z,α + L
∧

z,α ≤ (n + 1)W . (6.64) 

6.3.6 Simulation 

The simulation is carried out utilizing a Richards-Wolf transformation (RW) [23]. 
The numerical aperture of the spherical lens is assumed to be NA = 0.95, that is, the 
field is limited by an aperture with a radius of 4 μm, a focal length is f = 1.31 μm. 
The wavelength λ is 532 nm, the incident wave is a Gaussian beam with the radius σ 
= 1.33 μm, the size of the initial and output fields is 8 × 8 μm, 400 × 400 points, α 
= 0. The simulation is obtained at a distance from –1 to 1 μm from the focal plane, 
an apodization is chosen for the case of a spherical lens: T (θ ) = (cos θ )1/2 , and a 
zone plate (ZP), T (θ ) = (cos θ )−3/2 . In order to avoid dependence on intensity, and 
also for a more convenient comparison of the results, the OAM and SAM values 
obtained at a distance z were divided by the total field energy W. The OAM and 
SAM normalized to the field energy 

W = 
∞∫

0 

2π∫

0 

|E(r, ϕ,  z)|2 rdrd ϕ 

are shown in Fig. 6.5 
Shown in Fig. 6.5 is the change in the normalized total longitudinal SAM and 

OAM for field (6.42) due to a spin–orbit conversion when the field is focused using

Fig. 6.5 Dependences of S
∧

z/W (curve 1) and L
∧

z/W (curve 2) on the distance z for a non-vortex 
field (6.42) with  n = 0 (a) and for an optical vortex with a topological charge n = 1 (b) and  at  α = 
0 
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a ZP. The numerical aperture of the zone plate is NA = 0.95. The SAM (curve 1) 
and OAM (curve 2) are calculated for two cases of the topological charge n of the 
initial beam (6.42): 0 (a) and 1 (b). Shown in Fig. 6.5, the SAM and OAM values are 
calculated before and after the ZP, but are not calculated inside it. From Fig. 6.5a, the 
SAM before the lens is seen to be equal to 1, while the OAM is equal to 0, since n = 
0. After the lens, the SAM decreases and became equal to about 0.76, and the OAM 
increases up to 0.24. The sum of the SAM and OAM remains unchanged and is equal 
to 1. Such behavior of the SAM and OAM occurs in accordance with Eqs. (6.51), 
(6.52) and (6.60), (6.62) at  α = 0. If the topological charge of the initial field (6.42) 
is 1, then both the SAM and OAM before the lens are equal to 1 (Fig. 6.5b). Just 
after the diffractive lens, due to the spin–orbit conversion, the SAM decreases down 
to 0.76, while the OAM increases and becomes equal to 1.24. The sum of them 
before and after the lens remains unchanged and is equal to 2. This result confirms 
the correctness of the Eq. (6.61). 

Figure 6.6 shows the change in the normalized total longitudinal SAM and OAM 
after the lens depending on the α for the initial light field (6.42) at  n = 0 (a) and n 
= 1 (b). From Fig.  6.6a, at α = 0 (circular polarization), the SAM and OAM after 
the lens is seen to be the same as in Fig. 6.5a. As α increases, the initial circular 
polarization becomes elliptical and, therefore, the initial SAM decreases (curve 1) 
and the part of the SAM that converts into the OAM decreases (curve 2). And when α 
= 1 (linear polarization) both the SAM and OAM after the lens (and before the lens) 
are equal to zero. The behavior of the SAM and OAM after the lens for an optical 
vortex (6.42) with n = 1 is shown in Fig. 6.6b. From it, the maximum SAM for the 
initial field (6.42) with circular polarization (α = 0) is seen to be equal to 0.76. And, 
the minimal value of the SAM is zero, for the field with the linear polarization (α 
= 1). In this case, the maximal OAM is equal to 1.24 when α = 0, and the minimal 
OAM is equal to 1 at α = 1. Such behavior of the SAM and OAM after the lens is 
described by Eqs. (6.51), (6.60), and (6.61). 

Fig. 6.6 The dependence of S
∧

z/W (curve 1) and L
∧

z/W (curve 2) on α after the spherical lens (or 
zone plate) for the initial field (6.42) at  n = 0 (a) and  n = 1 (b)
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Fig. 6.7 Dependences of 
S
∧

z/W (curve 1), L
∧

z/W 
(curve 2) and their sum 
(curve 3) on the focal length 
f of a spherical lens or on the 
numerical aperture NA (n = 
1, α = 0.5) 

Shown in Fig. 6.7 are the normalized total longitudinal SAM and OAM as func-
tions of a numerical aperture and focal distance for the initial field (6.42) at  n = 1, 
α = 0.5. From Fig. 6.7, the sum of the SAM and OAM is seen to remain unchanged 
and be equal to 1.6. This follows from Eq. (6.20), since n+ (1− α2)/(1+ α2) = 1.6. 
For the numerical aperture of 0.95 and α = 0.5, from Fig. 6.6a, the SAM after the 
lens is seen to be approximately 0.5, whereas the initial SAM is equal to 0.6. That 
is, because of the spin–orbit conversion, only a small part of the SAM (about 0.1) 
transferred into the OAM. From Fig. 6.7, the minimum value of the SAM after the 
lens is seen to be approximately 0.35 for a numerical aperture close to 1. Therefore, 
the maximum value of 0.25 is converted from the SAM into the OAM. As the numer-
ical aperture decreases, curve 1 in Fig. 6.7 tends to a value of 0.6, i.e., to the initial 
SAM value before the lens. That is, it follows from Fig. 6.7 that the effect of the 
spin–orbit conversion in a spherical lens with a numerical aperture less than 0.7 can 
be neglected. 

Shown in Fig. 6.8 are the intensity I (first and third rows) and the longitudinal 
SAM Sz (second and fourth rows) for different values of the parameter α: 0 (first 
column), 0.5 (second column), 0.75 (third column), 0.9 (fourth column), and 1 (fifth 
column). The topological charges are as follows: n = 3 (first and second rows), n = 
5 (third and fourth rows).

It is seen from Fig. 6.8 that, according to the theory (6.47)–(6.49), the distribution 
of the longitudinal SAM is radially symmetric (red ring in the first and second 
columns) in the focus of the field (6.42) for a small parameter α. As the parameter 
α increases, the red ring in Fig. 6.8 becomes an ellipse (second and third column), 
and when α is close to 1, one part of the ring remains red, and another part becomes 
blue (fourth and fifth columns). That is, areas with a negative SAM appear in the 
focus and the spin Hall effect appears (separation of left- and right-handed elliptical 
polarizations). When the parameter α increases from 0 to1, the intensity (green rings 
in Fig. 6.8) gradually transforms from a round ring (at initial circular polarization) 
into an elliptical one (at initial linear polarization), which is elongated along the



224 6 Poincare Beams at the Tight Focus

Fig. 6.8 Intensity distributions I (first and third rows) and longitudinal SAM Sz (second and fourth 
rows) calculated at the beam focus (1) for different α: 0 (first column), 0.5 (second column), 0.75 
(third column), 0.9 (fourth column), and 1 (fifth column). The topological charges are as follows: 
n = 3 (first  and second rows),  n = 5 (third and fourth rows)

horizontal axis x. However, since the term with I2 0,n exceeds the term with cos(2ϕ) 
in the formula (6.53) for the intensity distribution, the intensity ellipticity in Fig. 6.8 
is almost invisible at α = 1. With an increase in the topological charge of the optical 
vortex (1) from n = 3 to  n = 5, the diameter of the light ring shown in Fig. 6.4 
increases. This follows from the intensity Eq. (6.53). 

In this section, we study a spin–orbit conversion in a spherical lens with a high 
numerical aperture. Utilizing the Richards-Wolf theory [23], analytical formulas are 
obtained for the density of the longitudinal SAM and OAM projections at the focus
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of the lens for the initial light field (6.42). The amplitude of the field depends on the 
real parameter α. The initial light field (6.42) is an axial superposition of two optical 
vortices with the same topological charge n and right- and left-handed circular polar-
izations. Amplitudes of both beams in the superposition are different. The parameter 
α is the ratio of the amplitudes of the beams. In this section, analytical formulas are 
obtained for the total longitudinal projections of the SAM and OAM at the focus of 
the field (6.42). It follows from the formulas (6.51), (6.52) and (6.60), (6.62) that 
when passing through a spherical lens (or a diffractive lens), the total SAM decreases 
due to a spin–orbit conversion, while the OAM increases by the same amount. In this 
case, the sum of the SAM and OAM remains unchanged during focusing (Eq. (6.61)). 
The simulations are also carried out using the Debye and Richards-Wolf integrals 
[23]. When the light field (6.42) propagates before a spherical lens, the total SAM 
and OAM is shown to remain unchanged separately. After passing through the lens, 
the total SAM decreases, and the total OAM increases by the same value. When 
propagating after the lens, the total SAM and OAM remain unchanged separately 
too. The sum of the SAM and OAM before the lens and after it does not change 
(Fig. 6.5). When the parameter α increases from 0 to 1, the spin–orbit conversion 
in a spherical lens is shown numerically to decrease from its maximum value to 
zero. With a numerical aperture of 0.95 and with α = 0, the initial normalized total 
longitudinal SAM is equal to 1 before the spherical lens, and equal to 0.76 after it. 
That is, only a quarter of the SAM transferred to the OAM (Fig. 6.6). The maximum 
spin–orbit effect in a spherical lens is shown numerically to occur at a numerical 
aperture close to 1 (Fig. 6.7). For smaller aperture values, the effect decreases. It is 
shown that, at a numerical aperture less than 0.7, the spin–orbit conversion can be 
neglected, since the total SAM remains almost unchanged when light passes through 
a spherical lens. Theoretically (Eq. (6.48)) and numerically (Fig. 6.8) it is shown that 
there is a spin Hall effect at the focus of the light field (6.42). This effect leads to 
appearance of regions with elliptical polarizations with different signs in the sharp 
focus. That is, at the focus, light with left- and right-handed elliptical polarizations 
is separated in space. In this case, in the initial plane only linearly polarized light 
present (Fig. 6.8). By changing the parameter α the spin Hall effect at the focus can 
be controlled. When α = 0, the initial field is circularly polarized and the Hall effect 
is minimal at the focus. When α = 1, there is a linearly polarized initial field, and 
the Hall effect achieve its maximum at the focus. 

Measuring the magnitude of the spin-orbital conversion effect in the sharp focus 
of a microobjective with a high numerical aperture requires measuring the third 
component of the Stokes vector averaged over the beam transverse section. The 
value of this quantity gives the full longitudinal SAM component. Besides, the third 
component of the Stokes vector can be measured immediately in the microobjective’s 
exit pupil with a diameter of several millimeters, rather than in the focus itself whose 
size can be less than a micron. 

The effects of spin–orbit conversion in a spherical lens and the spin Hall effect at 
the focus considered in this work can be used to control the rotation of microparticles 
[80, 81]. Studies on the control of the Hall effect in focus have been done in [82].
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6.4 Optical Helicity of Light in the Tight Focus 

Optical helicity of circularly polarized light is characterized by a parameter σ = 
± 1, similar to the spin magnitude. A light field with left circular polarization has 
the helicity of h = –1, while a field with right circular polarization has the helicity 
of h = 1. For linearly polarized light, the helicity is zero, whereas for elliptically 
polarized light, the helicity modulus is less than unity. In the general form, the optical 
helicity was defined in several works (e.g., see [83–85]), meanwhile the magnetic 
helicity was considered back in 1958 [86]. The full helicity, defined based on the 
electromagnetic democracy principle, is given by 

ĥ = 
1 

2

∫

3D 

(AB − CE) dV , E = −∇  ×  C, B = ∇  ×  A, (6.65) 

where E, B are the strength vectors of the electric and magnetic fields, A, C are the 
electric and magnetic vector potentials. The helicity density is the integrand: 

h = 
1 

2 
(AB − CE). (6.66) 

The gauge transformation for the helicity is given by A → A+∇f , C → C+∇g 
with f and g being arbitrary scalar functions. This transformation conserves the 
helicity since the curl of a gradient is zero. 

The work [87] has shown a relation between the helicity and chirality, with the 
latter density defined as follows: 

χ = 
ε0 

2

[
E(∇ ×  E) + c2 B(∇ ×  B)

]
, (6.67) 

where ε0 is the vacuum electric permittivity, c is the speed of light in vacuum. As 
demonstrated in a general form in [88], full helicity and chirality are propagation 
invariants. The work [89] has shown the difference between the helicity and the 
chirality. In a circularly polarized light field, each photon has the helicity of ±� and 
the chirality of ±�ω2/c, where � is the Planck constant, ω is the angular frequency, 
c is the speed of light in vacuum. In [90], a general relation was considered between 
the helicity, chirality, and spin density. The helicity and spin densities are written as 
follows: 

h = 
1 

2

[√
ε0 

μ0 
(E(∇ ×  E)) +

√
μ0 

ε0 
(B(∇ ×  B))

]
, 

S = 
1 

2 
[ε0(E × A) + (B × C)], (6.68) 

with μ0 being the vacuum permeability. In free space, for monochromatic light with 
angular frequency ω, the magnetic helicity is equal to the electric helicity, and thus
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the helicity in free space can be written in the following form [91]: 

h = −  
√

ε0μ0 

2ω 
Im
(
E∗H

)
, (6.69) 

with H being the magnetic field strength vector in free space. Hereinafter, we use the 
above definition of the helicity density. Spin-to-orbit conversion discussed in [25] is  
also a matter of interest in this work thanks to the helicity property. In [91], the authors 
computed densities of some quantities (spin, energy flow, and helicity) for optical 
vortices propagating in various waveguides (planar waveguide, circular step-index 
waveguide). It was possible to carry out such an analysis as the components of the 
electric and magnetic field vectors of modes of those waveguides are well known. The 
said work has prompted us to investigate the helicity at the tight focus of laser beams. 
Obtaining explicit expressions for space distributions of light field characteristics, 
such as the energy density (intensity), energy flow (Poynting vector), spin angular 
momentum (SAM), orbital angular momentum (OAM), helicity, and others, is an 
interesting and important problem, allowing these quantities to be analyzed without 
numerical simulation. For many vector light fields, the Richards-Wolf theory [23] 
allows deriving exact analytical expressions to describe all field characteristics near 
the focus. 

In this section, we analyze four different initial vector fields and derive relation-
ships for helicity densities in the initial plane and at the focus, as well as for full 
helicities. The full helicities are obtained by integration only over the beam section 
rather than over the whole space. We consider the following initial fields: a linearly 
polarized optical vortex, a circularly polarized optical vortex, superposition of a 
cylindrical vector beam and a linearly polarized beam, and a hybrid light field with 
circular-azimuthal polarization. Previously, based on the Richards-Wolf theory [23], 
expressions for all components of the electric and magnetic field vectors at the tight 
focus of all fields of interest have been derived [46, 67, 69, 77, 92]. Using these 
expressions for the light field components we can derive analytical expressions for 
the helicity of these fields at the focus. In this work, we show that the helicity density at 
the focus is related to the longitudinal component of the SAM density. Note, however, 
that the full longitudinal SAM does not conserve when a light field passes through 
a spherical lens since as thanks to the spin-orbital conversion, the spin is partly 
converted to the OAM. On the contrary, the full helicity (helicity density averaged 
over the beam section) is the invariant and conserves upon free-space propagation 
and focusing of light. 

6.4.1 Helicity at the Focus of a Linearly Polarized Optical 
Vortex 

If the initial vector field is a linearly polarized optical vortex, its Jones vectors for 
the electric and magnetic field are given by the following:
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E(θ, ϕ) = A(θ ) exp(inϕ)

(
1 

0

)

, H(θ, ϕ) = A(θ ) exp(inϕ)

(
0 

1

)

, (6.70) 

where ϕ is the azimuthal angle in the beam cross section, θ is the angle between the 
optical axis and a line drawn from the focus center to a spherical wavefront point 
in the initial plane, n is integer topological charge of the optical vortex, A(θ ) is a  
circularly symmetric real-valued function defining the beam amplitude in the initial 
plane. Using a Richards-Wolf method [23], expressions were obtained in [67] for  the  
intensity distribution and the spin angular momentum (SAM) at the focus of field 
(6.70). For comparison purposes, below we give those expressions, analyzing them 
in relation to the helicity distribution at the focus of field (6.70), derived herein. The 
distributions of the intensity I = |Ex|2 +

∣∣Ey

∣∣2 + |Ez|2 and the longitudinal SAM 
component Sz = 2 Im

(
E∗
x Ey
)
are given by the following: 

I = 
1 

2

[
2I2 0,n + I2 2,n+2 + I2 2,n−2 + 2I2 1,n+1 + 2I2 1,n−1 

+ 2 cos(2ϕ)
(
I0,nI2,n+2 + I0,nI2,n−2 − 2I1,n+1I1,n−1

)]
, (6.71) 

Sz = 
1 

2

(
I2,n+2 − I2,n−2

)(
I2,n+2 + I2,n−2 + 2 cos(2ϕ)I0,n

)
. (6.72) 

Equations (6.71) and (6.72) contain functions Iν,μ that depend only on the radial 
and longitudinal variables, r and z: 

Iν,μ = 2kf 
α∫

0 

sinν+1

(
θ 
2

)
cos3−ν

(
θ 
2

)
cos1/2 (θ )A(θ )eikz cos θ Jμ(kr sin θ )d θ,  

(6.73) 

where k = 2π /λ is the wavenumber of monochromatic light of wavelength λ; f is the 
lens focal length; α is the maximal tilt angle of light rays to the optical axis, which 
defines the numerical aperture of an aplanatic lens, NA = sin α; Jμ(kr sin θ ) is the  
μth-order Bessel function of the first kind. In Eq. (6.72) and throughout the paper, 
the indices ν and μ can take the following values: ν = 0, 1, 2; μ = n – 2,  n – 1,  n, n 
+ 1, n + 2. 

Further, we obtain the helicity distribution at the focus of field (6.70), using the 
helicity definition from [91]: 

h = −  
√

ε0μ0 

2ω 
Im
(
E∗H

)
, (6.74) 

where ε0 and μ0 are the vacuum electric permittivity and the vacuum magnetic 
permeability, ω is the angular frequency of light, E and H are the electric and magnetic 
field vectors. Below, we omit the constant

√
ε0μ0/(2ω) for brevity. We note that the
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helicity (6.74) has the same dimension as the SAM (6.72). Using expressions for the 
components of the electric and magnetic vectors at the focus of field (6.70), derived 
in [67], Eq. (6.74) is rearranged to: 

h(r) = 
1 

2

(
I2 2,n+2 − I2 2,n−2 + 2I2 1,n+1 − 2I2 1,n−1

)
. (6.75) 

As seen from Eq. (6.75), the helicity distribution is circularly symmetric. We 
note that despite zero helicity of field (6.70) in the initial plane (h = 0), in the 
focal plane the helicity has a nonzero density (helicity at each point of the beam 
cross section). Comparison of Eqs. (6.72) and (6.75) indicates that if the numerical 
apertures are small, i.e., when the longitudinal field component can be neglected 
(2
∣∣I2 1,n+1 − I2 1,n−1

∣∣ � 1), the helicity coincides with the longitudinal SAM (6.72) at  
the polar angles ϕ = π/4 + π p/2 (p = 0,1,2,3), at which cos 2ϕ = 0. Then, the 
helicity and the SAM coincide: h = Sz. FromEq.  (6.72), it follows that if n = –2, then, 
the light is right-handed elliptically polarized near the optical axis and the positive 
helicity is equal to the SAM, coinciding with the intensity: h(r = 0) = Sz(r = 
0) = I (r = 0) = I2 2,0/2 > 0. And, vice versa, at n = 2, the helicity and the SAM 
are negative at the focus center: h(r = 0) = Sz(r = 0) = −I2 2,0/2 < 0. Thus, the 
helicity sign coincides with the SAM sign, or, in other words, the helicity is positive in 
focal regions with right-handed elliptic polarization, being negative in focal regions 
with left-handed elliptic polarization. The difference between the helicity and the 
SAM is that at n = 1 or  n = –1, the on-axis helicity (6.75) is nonzero, whereas the 
on-axis SAM (6.72) is zero. Thus, the helicity (6.75) is not only related to spin and 
indicates focal areas with left- or right-handed elliptic polarization, but also indicates 
the transverse helicity of the focal field, related to the longitudinal component of the 
electric field vector. It can be shown that the full helicity, averaged over the beam 
cross section, equals zero and conserves upon focusing. Indeed, as shown in [77], 
the following expression holds: 

Wν,μ = 2π 
∞∫

0

∣∣Iv,μ(r)
∣∣2 rdr = 4π f 2 

α∫

0 

sin2ν+1

(
θ 
2

)
cos5−2v

(
θ 
2

)
|A(θ )|2 d θ = Wν . 

(6.76) 

From Eq. (6.76), we get the averaged helicity: 

ĥ = 
∞∫

0 

2π∫

0 

h(r)rdrd ϕ = 
1 

2 

∞∫

0 

2π∫

0

(
I2 2,n+2 − I2 2,n−2 + 2I2 1,n+1 − 2I2 1,n−1

)
rdrd ϕ 

= 
1 

2 
(W2 − W2 + 2W1 − 2W1) = 0. (6.77) 

The full longitudinal SAM, averaged over the focal plane based on Eq. (6.72), is 
also zero:
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S
∧

z = 
1 

2 

∞∫

0 

2π∫

0 

rdrd ϕ
(
I2,n+2 − I2,n−2

)(
I2,n+2 + I2,n−2 + 2 cos(2ϕ)I0,n

) = W2 − W2 = 0. (6.78) 

6.4.2 Helicity at the Focus of a Circularly Polarized Optical 
Vortex 

In this section, we investigate the helicity at the focus of a circularly polarized optical 
vortex in a similar way. The Jones vectors for the initial electric and magnetic fields 
read as 

E(θ, ϕ) = 
A(θ ) √

2 
exp(inϕ)

(
1 

i

)

, H(θ, ϕ) = 
A(θ ) √

2 
exp(inϕ)

(
−i 

1

)

. (6.79) 

The amplitudes in the initial field (6.79) are given for right circular polarization. In 
the initial plane, the longitudinal SAM component of field (6.79) equals Sz = A2(θ ), 
whereas the full spin in the initial plane is equal to the full beam energy: 

S
∧

z = 2π 
∞∫

0 

2π∫

0 

A2 (θ ) rdr = W . (6.80) 

In [92], adopting the Richards-Wolf method [23], expressions were obtained for 
the intensity and the longitudinal SAM component at the focus. We write these 
expressions here for a comparison with a helicity expression that is derived below. 
Distributions of the intensity and the longitudinal SAM component at the focus of 
field (6.79) are given by the following: 

I (r, ϕ)  = |Ex|2 +
∣∣Ey

∣∣2 + |Ez|2 = I2 0,n + I2 2,n+2 + 2I2 1,n+1, (6.81) 

Sz = 2 Im
(
E∗ 
x Ey
) = I2 0,n − I2 2,n+2. (6.82) 

Due to circular polarization of the initial field, both the intensity distribution 
(6.81) and the spin density distribution (6.82) have circular symmetry at the focus. 
The helicity distribution (6.74) at the focus of field (6.79) is equal to the intensity: 

hR(r) = I (r) = I2 0,n + I2 2,n+2 + 2I2 1,n+1. (6.83)
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Similar to Eq. (6.77), the full helicity of beam (6.79) at the focus is given by the 
following: 

ĥR = 
∞∫

0 

2π∫

0 

hR(r)rdrd ϕ = W = 
∞∫

0 

2π∫

0

(
I2 0,n + I2 2,n+2 + 2I2 1,n+1

)
rdrd ϕ 

= W0 + W2 + 2W1, (6.84) 

with W being the total beam power/energy. The full longitudinal SAM component 
at the focus of field (6.79) is given by the following: 

S
∧

z = 
∞∫

0 

2π∫

0 

rdrd ϕ
(
I2 0,n − I2 2,n+2

) = W0 − W2. (6.85) 

In the initial plane, the helicity density and the full helicity of field (6.79) read as 
follows: 

h0R(r) = |A(θ )|2 , ĥ0R = W . (6.86) 

A comparison of Eqs. (6.84) and (6.86) reveals that the full helicity conserves 
upon focusing, which is in contrast with the full spin. As seen from comparison 
of Eqs. (6.80) and (6.85), the full spin is not conserved. Instead, it decreases and, 
due to the spin–orbit conversion, the spin is partly transferred to the orbital angular 
momentum (OAM). 

It can also be seen that for circular polarization, the helicity achieves its maximal 
value and equals the beam power. For left circular polarization, the helicity in the 
initial plane and at the focus changes sign: 

hL(r) = −I(r) = −(I2 0,n + I2 2,n−2 + 2I2 1,n−1), 
h0L(r) = −|A(θ )|2 , ĥ0L = ĥL = −W , r = f sin θ, (6.87) 

We note that the on-axis helicity magnitude depends on the topological charge 
and, with increasing modulus of n, decays from the maximum (at n = 0) to zero (at 
n > 2 or  n < –2): 

hR(r = 0) = I2 0,0, n = 0, 
hR(r = 0) = I2 2,0, n = −2, 
hR(r = 0) = 2I2 1,0, n = −1, 
hR(r = 0) = 0, |n| > 2. (6.88)
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The full helicity for the circularly polarized optical vortex is independent of the 
topological charge n and equal to the beam power, W, for right-handed circular 
polarization, taking the opposite sign, –W, for left-handed circular polarization. 

6.4.3 Helicity at the Focus of a Cylindrical Vector Beam 

In the initial plane, a high-order cylindrical vector beam has the following Jones 
vectors: 

E(θ, ϕ) = A(θ )
(
cos mϕ 
sin mϕ

)
, H(θ, ϕ) = A(θ )

(− sin mϕ 
cos mϕ

)
. (6.89) 

As shown in [46], the longitudinal component Sz of the SAM vector at the focus 
of field (6.89) is zero. It can be shown that the helicity density and the full helicity 
in the initial plane (6.89) and at the focus is also zero (h(r) = 0). However, if the 
cylindrical vector field (6.89) is coherently superimposed with a linearly polarized 
field, we obtain an initial light field 

E(θ, ϕ) = A(θ )
(
cos mϕ − a 
sin mϕ

)
, H(θ, ϕ) = A(θ )

(− sin mϕ 
cos mϕ − a

)
, (6.90) 

with a nonzero helicity density at the focus. Indeed, in [69], analytical expressions 
were obtained for the electric and magnetic field components at the focus of the 
initial field (6.90). Using these expressions and the definition in (6.74), we can derive 
a formula for the helicity density at the focus of field (6.90): 

h(r, ϕ)  = 

⎧ 
⎨ 

⎩ 

−2a(−1)p
(
I0,0I0,m + I2,2I2,m−2 − 2I1,1I1,m−1

)
sin(mϕ), 

m = 2p + 1, 
0, m = 2p. 

(6.91) 

According to Eq. (6.91), the helicity of a cylindrical vector beam at the focus is 
nonzero only for an odd order (m = 2p + 1). We note that at the focus of beam (6.90), 
the spin density is also nonzero only for an odd order m = 2p + 1 [69]: 

Sz(r, ϕ) = 

⎧ 
⎨ 

⎩ 

2a(−1)p
[
sin((m − 2)ϕ)

(
I0,0I2,m−2 − I2,2I0,m

)

− sin(mϕ)
(
I0,0I0,m − I2,2I2,m−2

)]
, m = 2p + 1, 

0, m = 2p, p = 0, 1, 2, . . .  
(6.92) 

A comparison of Eqs. (6.91) and (6.92) indicates that the helicity changes sign 
in approximately the same areas of the focal spot at which the spin density changes 
sign, since both quantities depend on sin(mϕ). Besides, with the terms with I0,0I0,m 
contribute the most [77], the magnitudes h and Sz have the same sign. The difference
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is, in particular, that the expression for the helicity in (6.91) includes the longitudinal 
component of the electric field, whereas the spin density in (6.92) includes only the 
transverse components of the electric field. The full helicity ĥ, i.e., the helicity density 
(6.91) averaged over the focal plane, as well as the full spin S

∧

z, i.e., the averaged 
spin density (6.92), are both equal to zero (ĥ = S

∧

z = 0), since the integrals over the 
polar angle in Eqs. (6.91) and (6.92) yield zeros. 

6.4.4 Helicity at the Focus of a Field with Hybrid 
Circular-Azimuthal Polarization 

Here, we consider the tight focusing of light with initial hybrid circular-azimuthal 
polarization. At different polar angles, polarization of this field changes from linear 
to elliptic and to circular polarization. The Jones vectors of the initial electric and 
magnetic fields of such a hybrid field read as 

E(θ, ϕ) = A(θ )
(−i sin(mϕ) 
cos(mϕ)

)
, H(θ, ϕ) = A(θ )

(− cos(mϕ) 
−i sin(mϕ)

)
. (6.93) 

The initial field (6.93) has the spin density equal to Sz = A2(θ ) sin(2mϕ), whereas 
the full spin, averaged over the entire beam section, is equal to zero: 

S
∧

z = 
∞∫

0 

2π∫

0 

A2 (θ ) sin(2mϕ)rdrd ϕ = 0. (6.94) 

As shown in [93], at the focus of field (6.93), the density of the longitudinal 
component of the SAM vector is nonzero and reads as follows: 

Sz = 
1 

4

[
I0,m
(
I2,m+2 − I2,m−2

)
sin 2ϕ+ (I2 0,m − I2,m−2I2,m+2

)
sin(2mϕ)

]
. (6.95) 

According to Eq. (6.76), the full longitudinal component of the SAM vector is 
zero: 

S
∧

z = 
1 

4 

∞∫

0 

2π∫

0 

rdrd ϕ
[
I0,m

(
I2,m+2 − I2,m−2

)
sin 2ϕ +

(
I2 0,m − I2,m−2I2,m+2

)
sin(2mϕ)

]
= 0. 

(6.96) 

The integrals over the angle are equal to zero in Eqs. (6.94) and (6.96), since 
the integration of the periodic function is done over an integer number of periods. 
From Eqs. (6.94) and (6.96), it follows that the full spin is zero and conserves upon
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focusing. Using the components of the strength vectors of field (6.93) at the focus, 
computed in [93], an expression can be obtained for the helicity density: 

h = (I2 0,m + I2,m+2I2,m−2 − 2I1,m+1I1,m−1
)
sin(2mϕ). (6.97) 

As seen from Eq. (6.97), the helicity, as the SAM (6.95), changes sign 4m 
times along a certain-radius circle around the optical axis. Since the terms with 
I2 0,m contribute the most [77], approximate expressions for the SAM (6.95) and for 
the helicity (6.97) are almost identical and equal to Sz ≈ h ≈ I2 0,m sin(2mϕ). From  
Eq. (6.97), it also follows that the full helicity at the focus is zero, like the full spin 
in (6.96). In the initial plane of field (6.93), the helicity density is also coincident 
with the longitudinal SAM density: h = Sz = A2(θ ) sin(2mϕ), whereas the full 
helicity and the full SAM in the initial plane are equal to zero: ĥ = S

∧

z = 0. Thus, the 
full helicity and the full longitudinal SAM component are zero and conserve upon 
focusing. 

6.4.5 Numerical Simulation 

Shown in Fig. 6.9 are the intensity, helicity, and SAM density distributions for linearly 
polarized beam (6.70) at the tight focus for different values of the topological charge. 
The helicity and SAM density distributions in Fig. 6.9 and in all the figures below are 
obtained by formulae Sz = 2 Im

(
E∗
x Ey
)
and h = −Im(E∗H) with the components of 

the strength vectors E and H obtained using the Richards-Wolf formulae, as well as 
Eqs. (6.75) and (6.72). The computed images are visually indistinguishable.

As seen from Fig. 6.9, indeed, in contrast to the SAM density, the helicity distri-
bution is circularly symmetric. Besides, Fig. 6.9 confirms the negative helicity in the 
focus center at n = 2, as well as the nonzero helicity on the optical axis at n = ±  1. 

Figure 6.10 also illustrates the intensity, helicity, and SAM density distributions 
at the tight focus for different values of the topological charge, but for a beam with 
right circular polarization (6.79).

Figure 6.10 confirms that if the initial field is circularly polarized, then the inten-
sity, helicity, and the SAM density distributions at the focus are circularly symmetric. 
In addition, Fig. 6.10 demonstrates that the helicity distribution at the focus coincides 
with the intensity distribution. The maximal helicity value is equal to the maximal 
intensity value, whereas the maximal SAM density value is smaller due to the spin– 
orbit conversion, when the SAM is partly converted into the OAM. Nevertheless, the 
maximal SAM density value is much higher than when the initial field is linearly 
polarized (Fig. 6.9). 

Shown in Fig. 6.11 are the intensity, helicity, and SAM density distributions 
at the tight focus for different values of the polarization singularity index for the 
superposition of two beams with cylindrical and linear polarization states (6.90).
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Fig. 6.9 Intensity (a–d), helicity (e–h), and SAM density (i–l) distributions of linearly polarized 
optical vortex (6.70) at the tight focus for the following parameters: wavelength λ = 532 nm, focal 
length of the lens f = 10 μm, numerical aperture of the lens NA = 0.95, topological charges n = 
1 (a, e, i), 2 (b, f, j), 3 (c, g, k), 5 (d, h, l), radial amplitude function A(θ) ≡ 1 (plane beam). The 
numbers near the colorbars under each figure denote the maximal and minimal values. Maximal 
intensity values are given in relative units and proportional to the maximal intensities for different 
topological charges. Maximal values of the helicity and the SAM density are normalized to the 
maximal intensity values

According to Fig. 6.11, the helicity and the SAM density at the focus are indeed 
nonzero only for an odd-order cylindrical vector beam, m = 2p + 1. It is also seen 
that the helicity changes sign at near-same polar angles in the focal plane, as does 
the SAM density (the outer rings in Fig. 6.11g, k, h, l). 

Finally, Fig. 6.12 demonstrates the intensity, helicity, and SAM density distribu-
tions at the tight focus for different values of the polarization singularity index, but 
for a beam with hybrid circular-azimuthal polarization (6.93).
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Fig. 6.10 Intensity (a–d), helicity (e–h), and SAM density (i–l) distributions of a optical vortex with 
right circular initial polarization (6.79) at the tight focus for the following parameters: wavelength λ 
= 532 nm, focal length of the lens f = 10 μm, numerical aperture of the lens NA = 0.95, topological 
charges n = 1 (a, e, i), 2 (b, f, j), 3 (c, g, k), 5 (d, h, l), radial amplitude function A(θ) ≡ 1 (plane  
beam). The numbers near the colorbars under each figure denote the maximal and minimal values. 
Maximal intensity values are given in relative units and proportional to the maximal intensities for 
different topological charges. Maximal values of the helicity and of the SAM density are normalized 
to the maximal intensity values

As Fig. 6.12 reveals, in contrast to the superposition of beams with cylindrical and 
linear polarization, the helicity and the SAM at the focus change sign 4m, rather than 
2m, times along a certain-radius circle around the optical axis. Besides, Fig. 6.12 
also confirms that if the numerical aperture is high enough, then the approximate 
expressions for the SAM and for the helicity are very similar. 

Thus, the numerical simulation confirms the theoretical expressions and the prop-
erties of the helicity and the SAM density. As seen in Figs. 6.9, 6.10, 6.11 and 6.12,
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Fig. 6.11 Intensity (a–d), helicity (e–h), and SAM density (i–l) distributions of superposition of 
beams with cylindrical and linear polarization (6.90) at the tight focus for the following parameters: 
wavelength λ = 532 nm, focal length of the lens f = 10 μm, lens numerical aperture, NA = 0.95, 
polarization singularity index m = 1 (a, e, i), 2 (b, f, j), 3 (c, g, k), 5 (d, h, l), radial amplitude 
function A(θ) ≡ 1 (plane beam), amplitude of the linearly polarized term a = 0.5. The numbers near 
the colorbars under each figure denote the maximal and minimal values. Maximal intensity values 
are given in relative units and proportional to the maximal intensities for different index. Maximal 
values of the helicity and of the SAM density are normalized to the maximal intensity values

much greater values of the helicity and the SAM density are achieved for fields that 
are nonlinearly polarized in the initial plane, as is the case for the circularly polarized 
beams (Fig. 6.10) and beams with hybrid circular-azimuthal polarization (Fig. 6.12). 

For four different vector fields, we have obtained exact expressions for the helicity 
density at the tight focus. The expressions derived are similar to the expressions for 
the longitudinal SAM component at the focus, with the difference being that the 
helicity expressions include terms consisting of angular harmonics that are present
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Fig. 6.12 Intensity (a–d), helicity (e–h), and SAM density (i–l) distributions of a beam with hybrid 
circular-azimuthal initial polarization (6.93) at the tight focus for the following parameters: wave-
length λ = 532 nm, focal length of the lens f = 10 μm, numerical aperture of the lens NA = 0.95, 
polarization singularity index m = 1 (a, e, i), 2 (b, f, j), 3 (c, g, k), 5 (d, h, l), radial amplitude 
function A(θ) ≡ 1 (plane beam). The numbers near the colorbars under each figure denote the 
maximal and minimal values. Maximal intensity values are given in relative units and proportional 
to the maximal intensities for different topological charges. The maximal values of the helicity and 
SAM density are normalized to the maximal intensity values

only in the longitudinal components of the field strength vectors. If the full SAM 
in the initial plane is zero, then it conserves upon propagation and equals zero at 
the focus. In this case, the full helicity in the initial plane and in the focus is also 
zero and conserves upon focusing. If, however, the full SAM in the initial plane 
is nonzero, then does not conserve upon focusing, but is partially converted to the 
longitudinal OAM component due to the spin–orbit conversion. In this case, the full 
helicity is also nonzero, but conserves upon focusing. This means that the helicity,
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like the beam power, is propagation invariant. For a circularly polarized vortex, the 
full helicity achieves a maximal value and is equal in magnitude to the full beam 
energy /power. 

Similar to the Poynting vector components (energy flow), measuring the helicity 
density in practice is also challenging. The longitudinal component of the spin density 
Sz can be measured by using a well-known technique of determining the Stokes vector 
components [94, 95], since the longitudinal component of the spin density is equal 
to the third component of the Stokes vector S3. However, determining the helicity 
density h [96, 97], as well as the Poynting vector components, requires knowing 
the amplitude and phase of the electric and magnetic field components [98, 99]. 
Transverse and longitudinal components of the spin density vector were investigated 
in an interesting work [100] for plasmons propagating on a cylindrical or conical 
surface. The helicity density in this work was considered as a spin density. Studies 
on helicity in focus were carried out in [101]. 
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Chapter 7 
Hall Effect in Paraxial Laser Beams 

7.1 Spin Hall Effect in the Paraxial Light Beams 
with Multiple Polarization Singularities 

In micromachines, elements can be driven by light and optical vortex beams are 
widely adopted in optical tweezers. One of the natural generalizations of optical 
vortex beams are light fields with multiple vortices. Rather general expressions for 
describing such fields have been obtained by Indebetouw [1] and Abramochkin [2]. 
Such fields propagate in free space without changing their transverse intensity shape, 
up to scale and rotation around the optical axis. In addition to the optical vortices, 
which are phase singularities or points with an uncertain phase, vector light fields can 
have polarization singularities, where uncertain is polarization. Polarization singu-
larities were investigated in a huge number of papers. Recently, a review about polar-
ization singularities was published [3]. Most widely studied polarization singularities 
are radial and azimuthal polarization, and their superposition known as cylindrical 
polarization [4]. Such light fields can be constructed as superpositions of optical 
vortices with opposite circular polarizations and with opposite topological charges 
of ± 1 [5]. Based on this scheme, we investigated in 2018 light fields with multiple 
polarization singularities residing on a circle with the center on the optical axis [6, 7]. 
Such fields have locally linear polarization. We found that, in contrast to the phase 
singularities, which conserve in an arbitrary transverse plane, polarization singular-
ities appear only in a discrete number of transverse planes. We discovered that the 
singularities can transform, for instance, from radial and azimuthal polarization in 
the initial plane to, respectively, azimuthal and radial polarization in the far field. 
However, we did not investigate what happens with polarization between the planes 
where polarization singularities reconstructed, i.e., between the planes with locally 
linear polarization. In [8], it was noticed that along the propagation direction, such 
singularities generically split into a pair of C-points. As it turns out, such splitting is a 
manifestation of the optical spin Hall effect, which means that areas with nonzero spin 
angular momentum appear, despite linear polarization in the initial plane. Such an
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effect was observed, for instance, in microcavities [9], metamaterials [10], dielectric 
gratings [11], and in free space in the tight-focusing conditions [12]. 

In this section, we investigate this phenomenon in the paraxial Gaussian beam 
with multiple polarization singularities from [6, 7]. Such a beam is a superposition 
of a cylindrically polarized Laguerre-Gaussian (LG) beam with a linearly polarized 
Gaussian beam. We found that maximal SAM density magnitudes appear on a circle 
and the radius of this circle has been derived. It was obtained that the maximal SAM 
density is generated in a certain transverse plane, the distance to which has been 
obtain approximately. It was derived that the maximal SAM density can be achieved 
when the singularities circle has a definite radius, such that the energy of the Gaussian 
beam is equal to the energy of the LG beam. We revealed the mechanism of the spin 
Hall effect in such beams. This effect arises due to the different divergence of the 
LG beam and of the Gaussian beam. 

7.1.1 Paraxial Light Fields with Multiple Phase 
or Polarization Singularities 

It has been shown (Eq. (17) in [2]) that any function given by the following: 

E(r, ϕ,  z) = 
1 

q 
exp

(
− 

r2 

qw2 
0

)
f

(
reiϕ 

qw0

)
, (7.1) 

where (r, ϕ, z) are the cylindrical coordinates, w0 is the waist radius of the Gaussian 
beam, and q = 1 + iz/z0, f (reiϕ) is an arbitrary entire analytical function, describes 
a solution of a paraxial Schrödinger-type Helmholtz equation: 2ik(∂E/∂z) + (∂2E/ 
∂x2) + (∂2E/∂y2) = 0. 

The light field described by Eq. (7.1) propagates in free space without changing 
its shape. The parameter q defines the scaling and rotation of the light field: at a 
distance z the field becomes |q| = [1 + (z/z0)2]1/2 times wider and rotates around the 
optical axis by an angle equal to the Gouy phase ψ = arg q = arctan(z/z0). 

Using Eq. (7.1), it is possible to obtain a solution of the paraxial Helmholtz 
equation with optical vortices located in arbitrary points with their polar coordinates 
in the initial plane (rp, ϕp) (p = 0, 1, …, m – 1). In an arbitrary transverse plane, the 
complex amplitude of such a field takes the form [1]: 

E(r, ϕ,  z) = 
1 

qwm 
0 

exp

(
− 

r2 

qw2 
0

) m−1∏
p=0

(
reiϕ 

q 
− rpeiϕp

)
. (7.2) 

Choosing the vortices on a circle with the radius a0, i.e., rp = a0, ϕp = 2πp/m, 
we get
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E(r, ϕ,  z) = 1 

qw|m| 
0 

exp

(
− 

r2 

qw2 
0

)[(
r 

q

)|m| 
eimϕ − a|m| 

0

]
. (7.3) 

This field is a superposition of a single-ringed mth-order Laguerre-Gaussian (LG) 
beam with a fundamental Gaussian beam. 

It has been known [5] that radially polarized light can be expressed as a superpo-
sition of optical vortices of the ± 1st order and of the opposite handedness since the 
Jones vector can be presented as follows:

(
cos ϕ 
sin ϕ

)
= 

1 

2 
eiϕ

(
1 
−i

)
+ 

1 

2 
e−iϕ

(
1 
i

)
. (7.4) 

If in this expression eiϕ and e–iϕ are replaced by the field (7.3) of the orders, 
respectively, m and –m, we get a vector light field with m polarization singularities 
located on a circle of the radius a0 [6, 7]: 

E(r, ϕ,  z) = 1 

qm+1wm 
0

√
W0 

exp

(
− 

r2 

qw2 
0

)[
rm cos mϕ − am 0 q

m 

rm sin mϕ

]
, (7.5) 

where the multiplier 

W0 = 
πw2 

0 

2

[
m! 
2m 

+
(
a0 
w0

)2m
]

(7.6) 

is introduced for normalizing the beam energy (making it equal to unit and thus equal 
for all values m and a0). 

Examples of such field with m = 2, 3, 4 are shown in Fig. 7.1. Since the vortices 
reside on a circle with the radius a0, from now on, we call this parameter a singularities 
circle radius.

We note that the field (7.5) can be treated as a superposition of two single-
ringed Laguerre-Gaussian beams with opposite topological charges and with circular 
polarizations, and of a linearly polarized Gaussian beam: 

E(r, ϕ,  z) = 1 

2 
√
W0 

LGm(r, ϕ,  z)
[
1 
−i

]
+ 1 

2 
√
W0 

LG−m(r, ϕ,  z)
[
1 
i

]

− 
1 √
W0

(
a0 
w0

)m 

LG0(r, ϕ,  z)
[
1 
0

]
, 

(7.7) 

with LGm(r, ϕ, z) being the scalar mth-order single-ringed Laguerre-Gaussian beam: 

LGm(r, ϕ,  z) = 
1 

q

(
r 

qw0

)|m| 
exp

(
− 

r2 

qw2 
0 

+ imϕ

)
. (7.8)
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Fig. 7.1 Intensity distributions of the light field (7.5) in the initial plane (z = 0) for the following 
parameters: wavelength λ = 532 nm, Gaussian beam waist radius w0 = 1 mm, number of polarization 
singularities m = 2 (a), m = 3 (b) and  m = 4 (c), radius of the singularities circle a0 = 600 μm 
(a), a0 = 700 μm (b), a0 = 800 μm (c). Size of all figures is 5 × 5 mm2, scale mark in each figure 
denotes 1 mm. Arrows show the directions of linear polarization

7.1.2 Intensity Distribution 

From Eq. (7.5), the intensity distribution is given by the following: 

I (r, ϕ,  z) = |Ex(r, ϕ,  z)|2 + ∣∣Ey(r, ϕ,  z)
∣∣2 

= 1 

|q|2m+2 w2m 
0 W0 

exp

(
− 

2r2 

|q|2 w2 
0

)[
r2m + a2m 0 |q|2m − 2am 0 |q|m rm cos(mψ) cos(mϕ)

]
, 

(7.9) 

with ψ = arctan(z/z0) being the Gouy phase. It is seen that the intensity nulls can 
appear only in a discrete set of transverse planes, where cos(mψ) = ±  1, i.e., tan(mψ) 
= 0, which is consistent with [6, 7]. In the initial plane, the intensity is 

I (r, ϕ,  0) = 
1 

w2m 
0 W0 

exp

(
− 
2r2 

w2 
0

)[
r2m + a2m 0 − 2am 0 r

m cos(mϕ)
]
. (7.10) 

However, the beam from Eq. (7.5) is a superposition of circularly polarized single-
ringed LG vortex beams of the orders ±m and of a linearly polarized Gaussian beam. 
At a small singularities circle radius a0, the LG beam overwhelms and the intensity 
looks like a ring (Fig. 7.2a, d). At large a0, vice versa, the Gaussian beam is brighter 
and the intensity looks more like a spot (Fig. 7.2b, e). In some applications, however, 
it is desirable to confine the intensity nulls between the light walls. For instance, in 
2008, Dienerowitz et al. showed that a vortex beam with annular profile can confine 
metal nanoparticles in the dark region of the beam center [13]. Thus, the intensities 
from Fig. 7.2a–e are undesirable. Now we try to find the radius a0 such that the 
intensity in the beam center and in the edges, beyond the intensity nulls, are nearly 
the same. Since the first intensity null is at ϕ = 0, this condition can be written as 
follows:



7.1 Spin Hall Effect in the Paraxial Light Beams with Multiple Polarization … 249

Fig. 7.2 Intensity distributions of the light field (7.5) in the initial plane (z = 0) for the following 
parameters: wavelength λ = 532 nm, Gaussian beam waist radius w0 = 1 mm, number of polarization 
singularities m = 5 (a–c) and  m = 6 (d–f), radius of the singularities circle a0 = 800 μm (a, d), a0 
= 1200 μm (b, e), a0 = 942 μm (c), a0 = 1041 μm (f). Size of all figures is 8 × 8 mm2, scale mark 
in each figure denotes 1 mm. Blue-dashed circles (c, f) denote the radius of the maximal peripheral 
intensity computed by Eq. (7.20) 

I (0, 0, 0) = max 
r>a0 

I(r, 0, 0), (7.11) 

or, after taking the square root of both parts, 

am 0 = max 
r>a0

{
exp

(
− 

r2 

w2 
0

)(
rm − am 0

)}
. (7.12) 

Thus, we need to determine the maximal peripheral intensity, beyond the null. 
Taking the derivative of the right part of Eq. (7.12) with respect to r yields an 
equation for the radial coordinate rmax of the maximal intensity: 

2
(
rm max − am 0

) = mw2 
0r

m−2 
max . (7.13) 

This equation can be solved only for small values m. However, we do not need to 
solve it, since we are interested in a0 rather than in rmax. Expressing a0 via rmax and 
substituting it into Eq. (7.12), we get 

rm max − 
mw2 

0 

2 
rm−2 
max = 

mw2 
0 

2 
rm−2 
max exp

(
− r2 max 

w2 
0

)
, (7.14) 

Division of both parts by
(
mw2 

0

/
2
)
rm−2 
max yields a simple equation:
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2 

m 
ξ − 1 = exp(−ξ ). (7.15) 

with ξ = (rmax/w0)2. Since for large m an approximate solution is ξ ≈ m/2, we denote 
ξ = m/2 + η and get 

2 

m 
η ≈ e−m/ 2 (1 − η) (7.16) 

and, therefore, 

η ≈ e−m/ 2 

2
/
m + e−m/ 2 

. (7.17) 

Returning back to ξ, we obtain the solution 

ξ = 
m 

2

(
1 + 1 

m
/
2 + em/ 2

)
. (7.18) 

Thus, we get the singularities circle radius a0, for which the intensity in the center 
and at the edge (near the dark spot) is nearly the same: 

a0 =
(
rm max − 

mw2 
0 

2 
rm−2 
max

)1/ m 
, (7.19) 

with 

rmax = w0 

√
m 

2 

√
1 + 1 

m
/
2 + em/ 2 

. (7.20) 

It is seen that the first two multipliers are equal to the maximal-intensity radius of a 
single-ringed mth-order LG beam with the waist radius w0, while the third multiplier 
tends to unit with growing number of singularities m. Shown in Fig. 7.2c,f are the 
intensity distributions with the singularities circle radius obtained by Eq. (7.19). 
These figures confirm that Eq. (7.19) allows making the intensities in the center and 
in the periphery nearly equal. 

In optical tweezers, the intensity distribution affects where the particles are 
trapped. However, the motion of particles is governed by the spin and orbital angular 
momenta.
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7.1.3 Spin Angular Momentum Density 

In paraxial light fields, only the longitudinal component of the SAM vector can be 
significant. It is equal to 

Sz = 2Im
{
E∗ 
x Ey

}
, (7.21) 

Substituting here Eq. (7.5) for the light field, we get 

Sz = 2 

|q|2 W0

(
a0r 

|q|w2 
0

)m 

exp

(
− 

2r2 

|q|2 w2 
0

)
sin(mψ) sin(mϕ), (7.22) 

where ψ = arctan(z/z0) is the Gouy phase. 
It is seen from this expression that there are transverse planes where the SAM is 

zero, i.e., polarization is linear. In these planes, sin(mψ) = 0, i.e., they are located at 
the following distances [6, 7]: 

z = z0 tan
(π p 
m

)
, (7.23) 

with p = 0, 1, …, [m/2], where [.] means the integer part of a fractional number. In 
other planes, the SAM is generally nonzero, but in each plane, it equals to zero at the 
polar angles ϕp = πp/m with p = 0, …, m – 1. Comparison of the expressions for 
the SAM and for the intensity reveals that in an arbitrary transverse plane, the light 
field has C-points, where polarization is circular [14, 15]. Equation Sz(r, ϕ,  z) = 
±I (r, ϕ,  z) leads to the following C-points coordinates: 

⎧⎨ 

⎩ 

r = a0|q|, 
ϕ = ±ψ + 

2πp 

m 
, 

(7.24) 

where p = 0,.., m – 1. Thus, there are m points with right circular polarization (at 
ϕ = ψ + 2πp/m) and m points with left circular polarization (at ϕ = –ψ + 2πp/ 
m). It is seen that on propagation, C-points with right and left circular polarization 
are rotated around the optical axis in opposite directions. When passing through the 
planes given by Eq. (7.23), coordinates of these C-points coincide, they annihilate 
each other and polarization becomes linear. Evolution of the C-points is illustrated 
in Fig. 7.3.

Now we try to determine where the SAM achieves zero or maximal magnitudes. 
If sin(mψ) > 0 in Eq.  (7.22), then the maximal and minimal SAM density is achieved, 
respectively, at the polar angles ϕp = (π + 4πp)/(2m) and ϕp = (–π + 4πp)/(2m) 
with p = 0, …, m – 1, and these angles are independent of the propagation distance 
and on the singularities circle radius a0. However, after passing the planes with 
linear polarization and with the polarization singularities (Eq. 7.23), the angles of 
the maximal and minimal SAM density are swapped. Differentiating Eq. (7.22) by
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Fig. 7.3 Evolution of the C-points in the light field (7.5). In the initial plane (a), polarization is 
linear, i.e., opposite C-points reside in the same points and compensate each other. When starting 
to propagate (b), C-points with right and left circular polarization rotate in the transverse plane 
in opposite directions. When approaching the next plane with linear polarization (c), given by 
Eq. (7.23), C-points with right and left circular polarization merge again

r yields that at a fixed propagation distance z and at the angles ϕp, maximal SAM  
density is achieved on a circle with the radius 

r = 
w0|q| 
2 

√
m, (7.25) 

This radius is 
√
2 times smaller than the radius of maximal intensity of a single-

ringed mth-order LG beam. Substituting the radius from Eq. (7.25) into Eq. (7.22) 
for the SAM, we get the maximal SAM density in a transverse plane at a distance z 
from the initial plane: 

max 
r,ϕ 

Sz = 2 

|q|2 W0

(
a0 

√
m 

2w0

)m 

exp
(
− 
m 

2

)
sin(mψ). (7.26) 

Now, after obtaining the maximal SAM in each transverse plane, we find the 
planes with where the SAM achieves the maximal value. For this plane, the following 
condition should be fulfilled: 

∂ 
∂z

(
max 
r,ϕ 

Sz

)
= 0, (7.27) 

Substituting here the maximal SAM in the plane [Eq. (7.26)], we get 

∂ 
∂z

{(
1 + 

z2 

z2 0

)−1 

sin

[
m arctan

(
z 

z0

)]}
= 0. (7.28) 

This equation leads us to the following distance zmax to the plane with the maximal 
SAM:
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tan

(
m arctan

(
zmax 

z0

))
= 

mz0 
2zmax 

. (7.29) 

This equation can also be written in a short form via the Gouy phase ψmax of this 
plane: 

tan(ψmax) tan(mψmax) = m
/
2, (7.30) 

Both these equations indicate that the distance to the plane with maximal SAM 
is independent of the radius of the singularities circle a0. These equations can be 
solved analytically only for small values m. For instance, z = z0/

√
2 at  m = 1 and z 

= z0/
√
3 at  m = 2. For larger values m, we try to estimate their solutions. Since 

sin(mψmax) = 1 √
1 + 1/tan2(mψmax) 

= m √
4tan2(ψmax) + m2 

= m √
4(zmax/z0 )

2 + m2 
, 

(7.31) 

we get the following expression for the SAM in the planes, where it achieves extreme 
magnitudes: 

max 
r,ϕ 

Sz(z = zmax) = 
2 

W0

(
a0 

√
m 

2w0

)m 
e−m/2

[
1 + (zmax/Z0)

2][1 + (2/m)2 (zmax/Z0)
2]1/2 . 
(7.32) 

This expression indicates that in each such plane with locally maximal SAM, the 
SAM achieves lower and lower magnitude, i.e., the strongest SAM is in the first plane 
given by Eqs. (7.29) and (7.30). The left and right parts of Eq. (7.29) are shown in 
Fig. 7.4. The right part is always positive and decays hyperbolically. The left part 
is a discontinuous function with the zeros in the points z1,p = z0 tan(πp/m) (p = 0, 
1, …) and with the discontinuities in the points z2,p = z0 tan(π(2p + 1)/(2m)) (p = 
0, 1, …). The roots of Eq. (7.29) are thus in the intervals [z1,p, z2,p]. On the other 
hand, the left part of Eq. (7.30) grows slower than the function tan(mψ) without the 
multiplier tan(ψ). Thus, the first root of Eq. (7.30) should be between the values ψ 
= m–1arctan(m/2) and the discontinuity ψ = π/(2m).

Thus, the first root of Eq. (7.29) is in the interval from z = z0tan[m–1arctan(m/2)] 
to z = z0 tan(π/(2m)). In our work, we will use the average value 

zmax ≈ 
z0 
2 
tan

[
arctan(m/2) 

m

]
+ 

z0 
2 
tan

[ π 
2m

]
. (7.33) 

The Simulation section below confirms that this is a good approximation at m > 
3. 

We note that the SAM magnitude is different for different values a0. In two  
extreme cases, when all the vortices merge in the center (a0 = 0) and when they
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Fig. 7.4 Left and right parts 
of Eq. (7.29) as functions of 
z/z0 at m = 9

move to infinity (a0 → ∞) the SAM should be equal to zero. In the first case, the 
light field reduces to a LG beam with mth-order cylindrical polarization which is 
not destroyed on propagation and the field has inhomogeneous linear polarization 
in an arbitrary transverse plane. In the second case, the superposition (7.5) consists 
only of the fundamental Gaussian beam while the portion of the LG beam with mth-
order polarization vortex tends to zero. The Gaussian beam is linearly polarized and 
therefore the SAM should tend to zero. 

To derive the radius of the polarization singularities that yield the maximal SAM, 
we should differentiate Eq. (7.26) by  a0. Thus, we get 

a0,max = (m!)1/ (2m) w0 √
2 

(7.34) 

At this value, the maximal SAM in an arbitrary transverse plane is then equal to 

max 
r,ϕ 

Sz
(
α0 = α0,max

) = 2 

πw2 
0 

1 

|q|2 √m!
(m 
2

)m/ 2 
exp

(
− 
m 

2

)
sin(mψ). (7.35) 

Applying the Stirling’s approximation m! ~ (2πm)1/2(m/e)m [16], we get 

max 
r,ϕ 

Sz(α0 = α0,max) ≈ 2 

πw2 
0 

1 

|q|2 (2π)1/4 
1 

2m/2m1/4 
sin(mψ)  ≤ 2 

πw2 
0(2π)1/4 

1 

2m/2m1/4 
. 

(7.36) 

This estimation indicates that the maximal achievable SAM decreases with 
increasing number of the polarization singularities. We note that the linearly polarized 
Gaussian beam in the whole field has the following initial intensity distribution 

IGB(r, ϕ,  0) = 
1 

W0

(
a0 
w0

)2m 

exp

(
− 
2r2 

w2 
0

)
(7.37) 

and its energy fraction in the whole energy is
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WGB = 2π 
∞∫
0 

IGB(r, ϕ,  0)rdr 

= 
2π 
W0

(
a0 
w0

)2m 
∞∫
0 

exp

(
− 
2r2 

w2 
0

)
rdr =

(
a0 
w0

)2m
[
m! 
2m 

+
(
a0 
w0

)2m
]
. 

(7.38) 

At the singularities circle radius from Eq. (7.34), this energy reduces to 

WGB
(
a0 = a0,max

) = 
1 

2 
. (7.39) 

Thus, the maximal SAM density is achieved when the energy of the linearly 
polarized Gaussian beam in the superposition (7.5) is equal to the energy of the 
cylindrically polarized LG beam, i.e., equal to the half of the energy of the whole 
light field. 

7.1.4 Orbital Angular Momentum Density 

In paraxial light fields, only the longitudinal component of the OAM vector can be 
significant. It is equal to [17, 18]: 

Jz = Im
{
E∗ 
x 

∂Ex 

∂ϕ 
+ E∗ 

y 

∂Ey 

∂ϕ

}
. (7.40) 

Substituting here the light field from Eq. (7.5), we get 

Jz = 1 

|q|2m+2 w2m 
0 W0 

exp

(
− 

2r2 

|q|2 w2 
0

)

×Im

{(
rm cos mϕ − am 0 q

m
)∗ ∂ 

∂ϕ

(
rm cos mϕ − am 0 q

m
) + (

rm sin mϕ
)∗ ∂ 

∂ϕ

(
rm sin mϕ

)}
. 

(7.41) 

The second term is real and its imaginary part is zero. Then, the OAM density 
reduces to 

Jz = 1 

|q|2m+2 w2m 
0 W0 

exp

(
− 

2r2 

|q|2 w2 
0

)
Im

{(
rm cos mϕ − am 0 q

∗m)(−mrm sin mϕ
)}

= 
−m 

|q|2 W0 
exp

(
− 

2r2 

|q|2 w2 
0

)(
a0r 

|q|w2 
0

)m 

sin(mψ) sin(mϕ). 

(7.42)
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It is seen that the OAM is equal to the SAM from Eq. (7.22), but multiplied by 
–m/2. It is in contrast with the conventional vortex beams with homogeneous circular 
polarization, whose OAM exceeds SAM m of –m times. 

7.1.5 Analogy with Plane Wave and Revealing 
the Mechanism 

According to Eq. (7.5), the light field includes two opposite-charge circularly polar-
ized LG beams. On propagation in free space, they rotate clockwise and counter-
clockwise. Thus, an angular analogue of standing wave is generated. This leads to 
a natural question whether the above described effect can occur with the conven-
tional standing wave if it is composed of two plane waves that have opposite tilt to 
the optical axis and opposite circular polarization. When superimposed with a plane 
wave without the tilt, such a field has the following complex amplitude: 

E(x, y, z) = 1 √
W1 

exp(ikxx + ikzz)
[
1 
−i

]
+ 

1 √
W1 

exp(−ikxx + ikzz)
[
1 
i

]

+ 
a0 √
W1 

exp(ikz)

[
1 
0

]
, 

(7.43) 

where k2 x + k2 z = k2 = (
2π

/
λ
)2 

and kx = kcos α with α being the tilt angle. The 
multiplier a0 defines the relative strength of the plane wave without the tilt. The field 
(7.43) is of infinite energy, but to make the energy equal for different values a0, we  
introduced the multiplier W −1/ 2 

1 with W1 = 4 + a2 0 (four scalar tilted plane waves 
and one wave without the tilt and with the amplitude proportional to a0). It turns out 
that, on propagation in space, such a field also acquires nonzero SAM density: 

Sz(x, y, z) = 2Im
{
E∗ 
x Ey

} = 
−4a0 
4 + a2 0 

sin(kxx) sin[(k − kz)z]. (7.44) 

Due to infinite energy, plane waves do not spread on propagation. Therefore, the 
SAM density is repeated periodically and does not decay, in contrast to the realistic 
finite-energy beam (7.5), whose SAM density decays. 

It is seen in Eq. (7.44) that no matter how the beam without the tilt is polarized, 
the nonzero SAM would not occur without the difference k – kz. Due to circular 
polarizations, electric vectors of the tilted plane waves rotate, but in opposite direc-
tions. These rotations cancel each other and common polarization of tilted waves is 
linear (Fig. 7.5a). Adding linearly polarized non-tilted beam changes polarization 
direction, but leaves it linear in the initial plane, where all the waves are superim-
posed in phase. But on propagation, tilted waves become retarded compared to the 
non-tilted wave (Fig. 7.5b). Thus, a phase delay appears between the tilted waves
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Fig. 7.5 Generating linearly polarized field in a superposition of two tilted plane waves with oppo-
site tilts and with opposite circular polarizations (a), generating nonzero SAM density in a super-
position of two tilted circularly polarized plane waves with a linearly polarized wave without the 
tilt: Tilted waves acquire phase retard and polarization becomes elliptic 

and non-tilted one. This delay means elliptic polarization. However, if the electric 
field of the linearly polarized wave greatly exceeds or, vice versa, much weaker than 
the electric field of tilted circularly polarized waves, than, despite the phase delay 
between them, elliptic polarization is close to linear and the SAM density is small. 
Thus, a question arises about the energies of the tilted waves and of the non-tilted 
wave that leads to the maximal SAM. From Eq. (7.44) follows that the maximal 
SAM magnitude is achieved at a0 = 2. This means that the energy of the linearly 
polarized wave is half of the energy of the whole superposition. Thus, we obtained 
just the same result as for the field (7.5) with multiple polarization singularities: The 
energy of the linearly polarized term should amount half the energy of the whole 
field. 

Elliptic polarization is not generated when the linear polarization of the two tilted 
circularly polarized plane waves is parallel to linear polarization of the non-tilted 
wave. Thus, according to Eq. (7.44), if kxx = πp (p is an integer), then polarization 
is linear. On the contrary, when these vectors are orthogonal, polarization is closest 
to circular. This happen when cos(kxx) = 0. Thus, the maximal SAM magnitude of 
the field (7.5) should be achieved when LGm(r, ϕ,  z)+LG−m(r, ϕ,  z) = 0, i.e., when 
cos(mϕ) = 0. This occurs exactly at the above obtained polar angles ϕp = (±π + 
4πp)/(2m) (p = 0, …, m – 1).  

The above explanation of the nonzero SAM also explains the proportionality 
between the OAM and SAM densities. It has no special physical meaning, but it is a 
consequence of the special-type complex amplitude (7.5). Indeed, the SAM density 
is due to the phase delay between the terms rmsin(mϕ) and (a0q)m, whereas the OAM 
is contributed only by the Ex component and it is due to the phase delay between the 
terms rmcos(mϕ) and (a0q)m. It can be shown that for an arbitrary vector light field 
given by the following:
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E(r, ϕ,  z) =
[
A(r, ϕ)ei
(r) + B(r)eiX(r) 

γ (∂A/∂ϕ)ei
(r)

]
, (7.45) 

with A, B, Ψ , X being real functions and with γ being a real number, the SAM and 
the OAM densities are equal to 

Sz = 2γ B
(
∂A

/
∂ϕ

)
sin(
 − X), 

Jz = B
(
∂A

/
∂ϕ

)
sin(
 − X). 

(7.46) 

Thus, Jz = Sz/(2γ ). For the field (7.5), γ = –m. That is why the OAM density in 
Eq. (7.42) equals the SAM density (7.22) multiplied by (–m/2). 

7.1.6 Simulation 

Figure 7.6 depicts the initial intensity distributions of the light field (7.5) for several 
orders m as well as the intensity and SAM density distributions on propagation in 
space to the plane with the maximal SAM. The singularities circle radius a0 was 
chosen so as to equalize the intensities in the center and in the periphery, i.e., by 
Eq. (7.19). The intensity distributions were obtained by Eq. (7.9), but were compared 
with those obtained by the numerical Fresnel transform implemented as a convolution 
with using the fast Fourier transform. All the figures looked identical. To make the 
magnitudes of the order of units, all field components were multiplied by a constant 
factor C0 = 3000.

The radii a0 were computed by Eq. (7.19) to equalize the intensities in the center 
and in the periphery. Circles on the SAM distributions (k–o) show the maximal SAM 
radii obtained by Eq. (7.25). All quantities (maximal intensity and SAM magnitude) 
are given in arbitrary units. Scale mark in each figure denotes 1 mm. Figure 7.6 
confirms that the singularities circle radius computed by Eq. (7.19) allows equalizing 
the beam intensity in the center and in the periphery. Figure 7.6 also confirms that 
in the transverse plane the maximal SAM magnitude is achieved at a circle of the 
radius given by Eq. (7.25), which is 

√
2 times smaller than the radius of maximal 

intensity of a single-ringed mth-order LG beam. If is also seen in Fig. 7.6 that the 
transverse plane with the maximal SAM is closer and closer to the initial plane with 
increasing number of singularities m. This is because this plane should be close than 
the first transverse plane with linear polarizations, which is also closer and closer, 
according to Eq. (7.23). 

To verify the approximate expression (7.33) for finding the plane with the maximal 
SAM, Fig. 7.7 illustrates the SAM dependence on the propagation distance for the 
beams shown in Fig. 7.6. The SAM was computed by Eq. (7.26). Dots in the top of 
each plot indicate the maximal SAM distance obtained by Eq. (7.33).

Figure 7.8 depicts the initial intensity distributions of the light field (7.5) as well  
as the intensity and SAM density distributions on propagation in space to the plane
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Fig. 7.6 Intensity distributions in the initial plane (a–e) and at the maximal SAM distance (7.33) 
(f–j), as well as SAM density distributions at the maximal SAM distance (k–o) for the following 
parameters: wavelength λ = 532 nm, Gaussian beam waist radius w0 = 1 mm, number of the 
polarization singularities in the initial plane m = 4 (a, f, k), m = 5 (b, g, l), m = 6 (c, h, m), m = 7 
(d, i, n), m = 8 (e, j, o), radius of the singularities circle a0 = 828 μm (a, f, k), a0 = 942 μm (b, g, 
l), a0 = 1041 μm (c, h, m), a0 = 1129 μm (d, i, n), a0 = 1210 μm (e, j, o), propagation distance is 
z = 0.349z0 (a, f, k), z = 0.284z0 (b, g, l), z = 0.240z0 (c, h, m), z = 0.208z0 (d, i, n), z = 0.183z0 
(e, j, o)

Fig. 7.7 Maximal SAM for 
several numbers of the 
polarization singularities 
m when the singularities 
circle radius is chosen so as 
to equalize the intensities in 
the center and in the 
periphery. Dots in the top of 
each plot indicate the 
maximal SAM distance 
obtained by the approximate 
formula (7.33)
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with the maximal SAM with all parameters being the same as in Fig. 7.6, but  the  
singularities circle radius is chosen so as to maximize the SAM density. 

The radii a0 were computed by Eq. (7.34) to maximize the SAM over all other radii 
a0. Propagation distances were computed by Eq. (7.33) to maximize the SAM density. 
Circles on the SAM distributions (k–o) show the maximal SAM radii obtained by 
Eq. (7.25). All quantities (maximal intensity and SAM magnitude) are given in 
arbitrary units. Scale mark in each figure denotes 1 mm. It is seen in Fig. 7.8 that 
for each number of singularities m, the SAM density achieves magnitudes nearly 1.5 
times higher than those in Fig. 7.6. 

In addition, it is seen that the initial fields have the same maximal intensity inde-
pendently of m. This is because the maximal SAM is achieved, according to the 
above theory, when the energy of the Gaussian beam is equal to the half of whole

Fig. 7.8 Intensity distributions in the initial plane (a–e) and at the maximal SAM distance (7.33) 
(f–j), as well as SAM density distributions at the maximal SAM distance (k–o) for the following 
parameters: wavelength λ = 532 nm, Gaussian beam waist radius w0 = 1 mm, number of the 
polarization singularities in the initial plane m = 4 (a, f, k), m = 5 (b, g, l), m = 6 (c, h, m), m = 
7 (d, i, n), m = 8 (e, j, o), radius of the singularities circle a0 = 1052 μm (a, f, k), a0 = 1141 μm 
(b, g, l), a0 = 1223 μm (c, h, m), a0 = 1300 μm (d, i, n), a0 = 1371 μm (e, j, o), propagation 
distance is z = 0.349z0 (a, f, k), z = 0.284z0 (b, g, l), z = 0.240z0 (c, h, m), z = 0.208z0 (d, i, n), 
z = 0.183z0 (e, j, o) 
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Fig. 7.9 Maximal SAM of the light field (7.5) at  m = 6 for several values of the singularities circle 
radius a0: a0 = a0,max given by Eq. (7.34) (curve E), a0 = 0.8a0,max (curve A), a0 = 1.2a0,max 
(curve B), a0 = 0.9a0,max (curve C), a0 = 1.1a0,max (curve D). Dashed line indicates the maximal 
SAM distance obtained by the approximate formula (7.33), which is independent on a0 

beam energy. The rest energy of the same amount goes into the light ring and the 
intensity of this ring is weaker than the central intensity of the Gaussian beam. Thus, 
the central part of the intensity patterns of all the beams in Fig. 7.8 is the Gaussian 
beam of the same energy, i.e., of the same amplitude. That is why the central intensity 
is the same. 

Now we verify that indeed the singularities ring radius a0 from Eq. (7.34) yields 
the maximal SAM density over other radii. Figure 7.9 illustrates the longitudinal 
SAM distributions of the light field (7.5) at  a0 given by Eq. (7.34) and at some other 
values a0. 

Figure 7.9 confirms that the maximal SAM is achieved at a0 given by Eq. (7.34). 
Finally, we compute the OAM density of the light field (7.5). 
Figure 7.10 depicts the OAM density distributions of the light field shown in 

Fig. 7.8. The OAM distributions look like inverted SAM distributions, but they were 
obtained by a quite different way: by Eq. (7.40) where the angular derivative was 
represented as ∂/∂ϕ = x∂/∂y – y∂/∂x and was computed by using finite differences.

The radii a0 were computed by Eq. (7.34) to maximize the SAM (and thus the 
OAM) over all other radii a0. Propagation distances were computed by Eq. (7.33) to  
maximize the SAM (OAM) density. All quantities are given in arbitrary units. Scale 
mark in each figure denotes 1 mm. The maximal OAM magnitudes confirm that the 
OAM exceeds the SAM –m/2 times. 

We investigated paraxial light beams with multiple polarization singularities 
residing evenly on a circle (singularities circle) [19]. In the initial plane, polarization 
of such light beam is linear in all points, and the beam has zero spin and orbital 
angular momenta (SAM and OAM). When such a beam is propagating in free space, 
there are several transverse planes where polarization is also linear and polarization 
singularities occur. However, between such planes, polarization is, in general, elliptic, 
and there are alternating areas with the positive and negative SAM, i.e., the spin Hall
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Fig. 7.10 Distributions of the OAM density of the light field (7.5) at the maximal SAM distance 
(7.33) for the following parameters: wavelength λ = 532 nm, Gaussian beam waist radius w0 = 
1 mm, number of the polarization singularities in the initial plane m = 4 (a), m = 5 (b), m = 6 (c), 
m = 7 (d), m = 8 (e), radius of the singularities circle a0 = 1052 μm (a), a0 = 1141 μm (b), a0 = 
1223 μm (c), a0 = 1300 μm (d), a0 = 1371 μm (e), propagation distance is z = 0.349z0 (a), z = 
0.284z0 (b), z = 0.240z0 (c), z = 0.208z0 (d), z = 0.183z0 (e)

effect arises. We found the intensity distribution and obtained an approximate expres-
sion [Eqs. (7.19) and (7.20)] for the singularities circle radius, when the intensity in 
the center and on the beam edge is nearly equal. In this case, radius of the maximal 
intensity in the beam edge tends (with increasing number of singularities m) to the  
maximal-intensity radius of the single-ringed Laguerre-Gaussian (LG) beam. When 
the beam propagates, in each transverse plane, the maximal SAM density magni-
tudes are achieved in 2m points (m points of maximal SAM density and m points of 
minimal SAM density) on a ring with a radius independent on the singularities circle 
radius. It turns out that this maximal SAM radius is equal to the half of the Gaussian 
beam radius multiplied by the square root from the number of singularities (i.e., 

√
2 

times smaller than the radius of maximal intensity of a single-ringed mth-order LG 
beam). In each transverse plane, there are 2m C-points with circular polarization (m 
points with left polarization and m points with right polarization). These points reside 
on a circle with a radius proportional to that of the singularities circle. We obtained 
an approximate expression [Eq. (7.33)] for the propagation distance where the SAM 
density achieves maximal magnitudes. It turned out that this distance is independent 
of the singularities circle radius and is shorter than the distance to the first transverse 
plane with linear polarization and polarization singularities. We derived an exact 
expression [Eq. (7.34)] for the singularities circle radius that maximizes the SAM 
density. It turns out that the maximal achievable SAM density decreases with the 
number of singularities m. In addition, for the beam with the maximal SAM density 
and for the beam with equal intensities in the center and in the edge, the singularities 
circle radius is different. The investigated light beam is actually a superposition of 
a LG beam with cylindrical polarization and of a linearly polarized Gaussian beam. 
It turns out that the maximal SAM density can be achieved when the energy of the 
Gaussian beam is equal to the half of the whole beam energy, i.e., to the energy of 
the LG beam. 

We also obtained an expression for the OAM density [Eq. (7.42)]. It is propor-
tional to the SAM density and exceeds it –m/2 times, which is in contrast to the
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conventional vortex beam with circular polarization, whose OAM density exceeds 
the SAM density ± m times. We considered a simple analogy of the investigated 
beams – superpositions of three plane waves. Two waves are tilted and circularly 
polarized, and the third wave is non-tilted and linearly polarized. We found that in 
such simple field, the spin Hall effect also arises, and this reveals its physical mecha-
nism. This effect arises due to the phase delay between the tilted waves and non-tilted 
wave on propagation. The same way, for the studied vector light with multiple polar-
ization singularities, the spin Hall effect arises due to different divergence of the 
cylindrically polarized LG beam and of the linearly polarized Gaussian beam. 

7.2 Spin Hall Effect in Paraxial Vectorial Light Beams 
with an Infinite Number of Polarization Singularities 

Properties of light beams, and, in particular, optical vortices, can differ in near and 
in far field of diffraction. For instance, in [20], fractional-order optical vortices are 
studied in the near field. Such vortices contain chains of alternating ± 1st-order 
vortices, which disappear in the far field. As was demonstrated in [21], an optical 
vortex generated by a refractive spiral phase plate has an asymmetric shape in the 
Fresnel diffraction zone. The work [22] investigated near-field diffraction of a Gaus-
sian beam by fork gratings with different topological charges, and it was found that the 
generated optical vortices reside on spiral lines around the ± 1st diffraction orders. 
In the far field of diffraction, transformation was found of the initially fractional 
topological charge [23, 24]. In addition, in the far field (in the lens focus) of optical 
vortices, spin Hall effect arises [25, 26], i.e., alternating pairs of areas are generated 
in the focus with left and right circular polarization, despite linear polarization of the 
initial beam. This effect was discovered both for homogeneous linear polarization of 
the initial field [27] and for inhomogeneous one (cylindrical) [28]. 

A natural generalization of a vortex light beam is a beam with several vortices. 
A seminal work with multiple vortices [1] investigates Gaussian beams with optical 
vortices located in the transverse plane arbitrarily. These beams are described by 
finite products with the number of multipliers equal to the number of vortices. The 
work [2] describes in a closed form propagation-invariant light fields with an arbitrary 
envelope analytical function, whose zeros define positions of vortices in the beam. 
Based on [1], a light field can be constructed that has phase singularities residing 
on a circle [29]. In our paper [7], we investigated similar field, but with polarization 
singularities on a circle. Recently, we found that the spin Hall effect also arises in 
such fields [19], but even in the Fresnel diffraction zone, rather than in the far field. 

Besides the finite number of optical vortices, the approach from [2] allows 
obtaining a light field with an infinite array of optical vortices, residing on a straight 
line [30]. Such fields have an infinite topological charge [31], can be generated 
by non-coaxial superposition of two-tilted Gaussian beams [32], and identified by
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optical vortices density, rather than by the topological charge, which can be measured 
interferometrically [30]. 

In this section, we study a vectorial Gaussian beam where, instead of phase singu-
larities, an infinite number of polarization singularities resides on a straight line. The 
polarization singularities index (Poincaré-Hopf index) [3, 33] of such a beam is shown 
to be also infinite. We found that the azimuthal angle of the polarization singularities 
[4] increases in the far field by π/2, i.e., initial radial polarization is converted to 
azimuthal and vice versa. It is demonstrated that when such a beam propagates in 
space, two pairs of areas are generated in the Fresnel zone with nonzero density of 
the longitudinal component of the spin angular momentum (SAM), despite linear 
polarization in the initial plane, i.e., the optical spin Hall effect arises. 

7.2.1 Paraxial Light Fields with an Infinite Number of Phase 
or Polarization Singularities 

In [2], the following solution to the paraxial Helmholtz equation has been obtained 
(Eq. (17) in [2]): 

E(r, ϕ,  z) = 
1 

q 
exp

(
− 

r2 

qw2 
0

)
f

(
reiϕ 

qw0

)
, (7.47) 

where (r, ϕ, z) are the cylindrical coordinates, w0 is the waist radius of the Gaussian 
beam, q = 1 + iz/z0, and f (ξ) is an arbitrary entire analytical function. The field (1) 
does not change its intensity structure on propagation in space. It is only widened 
|q| = [1 + (z/z0)]1/2 times and rotated around the optical axis by an angle arg q = 
arctan(z/z0). 

This general expression allows obtaining a solution of the paraxial Helmholtz 
equation with and infinite or with a finite number of optical vortices. For instance, if 
f (ξ) = cos(w0ξ/α0), then the vortices reside evenly along a straight line [30]: 

E(r, ϕ,  z) = 
1 

q 
exp

(
− 

r2 

qw2 
0

)
cos

(
reiϕ 

α0q

)
. (7.48) 

This field is an example of light fields with an infinite topological charge [31]. In 
the initial plane of such a field, optical vortices reside in points with the Cartesian 
coordinates xp = α0(π/2 + πp), y = 0 with p being integer numbers. 

It has long been known [5] that cylindrical polarization can be represented as a 
superposition of ± 1st-order optical vortices with opposite circular polarization. For 
the Jones vectors, such representation can be written as follows:

[
cos(ϕ + δ) 
sin(ϕ + δ)

]
= 

1 

2 
exp(iϕ + iδ)

(
1 
−i

)
+ 

1 

2 
exp(−iϕ − iδ)

(
1 
i

)
. (7.49)
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where δ is the azimuthal angle of cylindrical polarization [4] (if  δ = 0 or if  δ = π/ 
2, polarization is, respectively, radial or azimuthal). Then, if we use the same Jones 
vectors, but instead of the multipliers eiϕ and e–iϕ we substitute the field (7.48) with 
the cosine argument reiϕ and re–iϕ, respectively, we construct a vector field with an 
infinite number of the polarization singularities: 

E(x, y, z) = 1 

2q 
√
W0 

exp

(
−x2 + y2 

qw2 
0

)

×
[
exp(iδ) cos

(
x + iy 
α0q

)(
1 
−i

)
+ exp(−iδ) cos

(
x − iy 
α0q

)(
1 
i

)]
, 

(7.50) 

where (x, y) are the Cartesian coordinates in the transverse plane and W0 is a multiplier 
introduced for normalizing the beam energy (i.e., in order to make it equal to unit). 
This multiplier can be obtained from an expression for the energy of the scalar field 
(7.48) [30]: 

W0 = 
π w2 

0 

2 
cosh

(
w2 
0 

2α2 
0

)
(7.51) 

Superposition (7.50) consists of two beams. Upon propagation in space, one of 
them is rotated clockwise and another—counterclockwise. For a compact description 
of such propagation, we introduce two rotated coordinate systems (Fig. 7.11):

{
x± = (x cos ψ ± y sin ψ)

/
(α0|q|), 

y± = (y cos ψ ∓ x sin ψ)
/

(α0|q|), 
(7.52) 

with ψ = arctan(z/z0) being the Gouy phase.

Fig. 7.11 Coordinate 
systems (x+, y+) and  (x–, y–) 
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Then the complex amplitude (7.50) can be rewritten as follows: 

E(x, y, z) = 1 

2q 
√
W0 

exp

(
− 
x2 + y2 

qw2 
0

)

×
[
exp(iδ) cos(x+ + iy+)

(
1 
−i

)
+ exp(−iδ) cos(x− − iy−)

(
1 
i

)]
, 

(7.53) 

or in a matrix form 

E(x, y, z) = 1 

2q 
√
W0 

exp

(
− 
x2 + y2 

qw2 
0

)[
cos δ − sin δ 
sin δ cos δ

][
1 1  
−i i

][
cos(x+ + iy+) 
cos(x− − iy−)

]

(7.54) 

where the matrix 

S =
[
1 1  
−i i

]
(7.55) 

converts phase singularities (optical vortices) into polarization singularities (radial 
polarization), while the matrix 

R =
[
cos δ − sin δ 
sin δ cos δ

]
(7.56) 

rotates the strength vectors by the azimuthal angle δ. 
As seen from the matrix representation, the azimuthal angle δ of cylindrical polar-

ization does not affect the intensity distribution in an arbitrary transverse plane. In 
the initial plane, polarization is linear in each point. Adopting an approach from [34], 
we can derive the polarization singularities index (Poincaré-Hopf index) [33] of the  
field (7.50). It is equal to the topological charge of the following scalar complex field: 

Ec = Ex + iEy = 
eiδ 

q 
√
W0 

exp

(
−x2 + y2 

qw2 
0

)
cos

(
x + iy 
α0q

)
, (7.57) 

In [30], the topological charge of such scalar fields was shown to be infinite, and 
therefore the Poincaré-Hopf index of the vector field (7.50) is also infinite. 

7.2.2 Intensity Nulls of Light Fields with an Infinite Number 
of Polarization Singularities 

Here we obtain the intensity nulls of the field (7.50). Since the determinants of both 
matrices are nonzero, for the zero intensity in some point, the following conditions
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should be fulfilled:
{
cos(x+ + iy+) = 0, 
cos(x− − iy−) = 0. 

(7.58) 

Both real and imaginary parts should be zero and thus we get 

⎧⎪⎪⎪⎨ 

⎪⎪⎪⎩ 

cos x+ cosh y+ = 0, 
sin x+ sinh y+ = 0, 
cos x− cosh y− = 0, 
sin x− sinh y− = 0. 

(7.59) 

The hyperbolic cosine cannot be zero. Thus, from the 1st and 3rd equation in 
(7.59) we get that cos x+ = cos x– = 0. This means that sin y+ 	= 0 and sin x– 	= 0 
and, therefore, 

⎧⎪⎪⎪⎨ 

⎪⎪⎪⎩ 

cos x+ = 0, 
y+ = 0, 
cos x− = 0, 
y− = 0. 

(7.60) 

Since y+ = y– = 0, we get that y cos ψ = x sin ψ = 0. In the initial plane, ψ = 
0, and thus the intensity nulls reside in points with the coordinates

{
x = α0

(
π
/
2 + πp

)
, 

y = 0. 
(7.61) 

In the far field, ψ → π/2, and the intensity nulls reside on the vertical axis in 
points with the coordinates

{
y = α0|q|

(
π
/
2 + πp

)
, 

x = 0. 
(7.62) 

For finite distances z, cos ψ 	= 0 and sin ψ 	= 0. Therefore, conditions (7.60) cannot 
be fulfilled and the field (7.50) does not have the intensity nulls. 

Now we consider vicinities of the intensity nulls in the far field, i.e., points with 
the coordinates

{
x = ρ cos θ,  
y = α0|q|

(
π
/
2 + πp

) + ρ sin θ,  
(7.63)
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with ρ < <  α0, w0. Since ψ → π/2 in the far field, then in these points the rotated 
coordinates (7.52) read as

{
x± = ±(

π
/
2 + πp

) ± ρ sin θ
/

(α0|q|), 
y± = ∓ρ cos θ

/
(α0|q|). 

(7.64) 

Therefore, x± ± iy± ≈ ±(
π
/
2 + πp

) − iρe±iθ
/

(α0|q|), cos(x± ± iy±) ≈ 
±(−1)p iρe±iθ

/
(α0|q|), and the field amplitude is equal to: 

E(ρ cos θ,  α0|q|(π/2 + πp) + ρ sin θ,  z >> z0) 

≈ (−1)p
1 

2q 
√
W0 

iρ 
α0|q| exp

(
− 

α2 
0 |q|2 
qw2 

0

)[
exp(iδ + iθ )

(
1 
−i

)
− exp(−iδ − iθ )

(
1 
i

)]

= (−1)p
1 

q 
√
W0 

ρ 
α0|q| exp

(
− 

α2 
0 |q|2 
qw2 

0

)(
cos(θ + δ + π/2) 
sin(θ + δ + π/2)

)
. 

(7.65) 

This means that the azimuthal angle δ in the far field increases by π/2, i.e., radial 
polarization is converted to azimuthal and vice versa. 

7.2.3 Intensity and Spin Angular Momentum Density 
Distribution of Light Fields with an Infinite Number 
of Polarization Singularities 

The intensity distribution of the field (7.50) is given by the following: 

I(x, y, z) = |Ex(x, y, z)|2 +
∣∣Ey(x, y, z)

∣∣2 = 

= 1 

4|q|2 W0 
exp

(
−2 

x2 + y2 

|q|2 w2 
0

)
(cos 2x+ + cos 2x− + cosh 2y+ + cosh 2y−), 

(7.66) 

Derivation of the intensity distribution (7.66). Since the azimuthal angle δ of 
cylindrical polarization does not affect the intensity distribution, we suppose for 
simplicity that δ = 0. Then, transverse field components are given by the following: 

⎧⎪⎪⎪⎨ 

⎪⎪⎪⎩ 

Ex(x, y, z) = 1 

2q 
√
W0 

exp

(
− 
x2 + y2 

qw2 
0

)[
cos(x+ + iy+) + cos(x− − iy−)

]
, 

Ey(x, y, z) = 
−i 

2q 
√
W0 

exp

(
− 
x2 + y2 

qw2 
0

)[
cos(x+ + iy+) − cos(x− − iy−)

]
, 

(7.67)
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and the intensity distribution is 

I (x, y, z) = |Ex(x, y, z)|2 +
∣∣Ey(x, y, z)

∣∣2 = 

= 1 

2W0|q|2 
exp

(
−2 

x2 + y2 

|q|2 w2 
0

)[|cos(x+ + iy+)|2 + |cos(x− − iy−)|2]. (7.68) 

Using an identity cos(x + iy) = cos x cosh y − i sin x sinh y, we get 

I(x, y, z) = 1 

2W0|q|2 
exp

(
−2 

x2 + y2 

|q|2 w2 
0

)

×[
cos2 x+ cosh

2 y+ + sin2 x+ sinh
2 y+ + cos2 x− cosh

2 y− + sin2 x− sinh
2 y−

]
. 

(7.69) 

Finally, using the formulae for trigonometric and hyperbolic functions with a 
double argument, we obtain an expression for the intensity distribution (7.66): 

I (x, y, z) = 1 

4W0|q|2 
exp

(
−2 

x2 + y2 

|q|2 w2 
0

)
× 

×[
cos 2x+ + cos 2x− + cosh 2y+ + cosh 2y−

]
. 

(7.70) 

The same way we can derive the distribution of the longitudinal component of 
the SAM density: 

Sz(x, y, z) = 1 

4|q|2 W0 
exp

(
−2 

x2 + y2 

w2 
0|q|2

)
(cos 2x− + cosh 2y− − cos 2x+ − cosh 2y+). 

(7.71) 

Hence, both the SAM density and intensity distributions are independent of the 
azimuthal angle δ of cylindrical polarization. These expressions allow obtaining the 
coordinates of C-points of the field (7.50). For instance, right circular polarization 
appears in points where Sz = I. In these points, cos 2x++cosh 2y+ = 0 and, therefore, 
cos 2x+ = –1 and cosh 2y+ = 1, i.e., y+ = 0 and x+ = (π/2)(2p + 1), with p being 
an integer number. Then the coordinates of the C-points are as follows:

(
xRCP 
yRCP

)
= 

π 
2 

α0|q|(1 + 2p)
(
cos ψ 
sin ψ

)
. (7.72) 

Similarly, left circular polarization appears in points with Sz = –I. Coordinates 
of these points are equal to

(
xLCP 
yLCP

)
= 

π 
2 

α0|q|(1 + 2p)
(

cos ψ 
− sin ψ

)
. (7.73)
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Fig. 7.12 Mechanism of destruction of the polarization singularities after the initial plane and of 
their reconstruction in the far field. In the initial plane, points with left and right circular polarization 
coincide (a). Then, on propagation, they rotate around the optical axis in different directions (b) and  
in the far field they merge again (c) 

The dynamics of the C-points explains destroying the polarization singularities 
after the initial plane and their reconstruction in the far field (Fig. 7.12). Due to 
the splitting of left and right circular polarization, the beam (7.50) acquires nonzero 
SAM density upon propagation, and appearing areas with alternating SAM density 
manifests about the spin Hall effect. 

We failed to derive exact expressions for the points of maximal SAM density. 
However, expressions (7.66) and (7.71) are simplified when w0 
 α0. Indeed, using 
identities for the sums and differences of trigonometric and hyperbolic functions, we 
get 

I(x, y, z) = 1 

2|q|2 W0 
exp

(
−2 

x2 + y2 

|q|2 w2 
0

)

×
[
cos

(
2x cos ψ 

α0|q|
)
cos

(
2y sin ψ 
α0|q|

)
+ cosh

(
2x sin ψ 
α0|q|

)
cosh

(
2y cos ψ 

α0|q|
)]

, 

(7.74) 

Sz(x, y, z) = 1 

2|q|2 W0 
exp

(
−2 

x2 + y2 

w2 
0|q|2

)

×
[
sin

(
2x cos ψ 

α0|q|
)
sin

(
2y sin ψ 
α0|q|

)
+ sinh

(
2x sin ψ 
α0|q|

)
sinh

(
2y cos ψ 

α0|q|
)]

. 

(7.75) 

Products of two trigonometric or hyperbolic functions can be represented as a 
sum of four exponents. Thus, Eqs. (7.66) and (7.71) contain eight exponential terms. 
The first four terms do not exceed the value (8|q|2W0)–1, whereas the other four terms 
describe off-axis Gaussian beams:
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GB±±(x, y, z) = 1 

8|q|2 W0 
exp

(
−2 

x2 + y2 

w2 
0|q|2

)
exp

(
±2x sin ψ 

α0|q| ± 
2y sin ψ 
α0|q|

)
= 

= 1 

8|q|2 W0 
exp

{ −2 

w2 
0|q|2

[
(x − xc,±)2 + (y − yc,±)2

] + 
w2 
0 

2α2 
0

}
, 

(7.76) 

with 

xc,± = ±  
w2 
0|q| 
2α0 

sin ψ, 

yc,± = ±  
w2 
0|q| 
2α0 

cos ψ. 
(7.77) 

These terms achieve values (8|q|2W0)–1exp[(w0/α0)2/2]. Thus, if w0 > >  α0, the  
first four terms can be neglected. Then the intensity and the SAM density (7.47) are  
equal to the intensity of the four Gaussian beams: 

I (x, y, z) = GB++ + GB−− + GB+− + GB−+, (7.78) 

Sz(x, y, z) = GB++ + GB−− − GB+− − GB−+. (7.79) 

If these four beams are far enough from each other (i.e., |xc+ – xc–| >>  w0|q|, |yc+ – 
yc–| >>  w0|q|), then these terms almost do not affect each other and, obviously, the 
points with the maximal SAM density coincide with the points of maximal intensity. 
In this case, the dependence of the maximal SAM density on the propagation distance 
z is given by 

max 
x,y 

Sz(x, y, z) ≈ 1 

8|q|2 W0 
exp

(
w2 
0 

2α2 
0

)
. (7.80) 

Hence, the SAM density decreases with the propagation distance from the initial 
plane in a similar law as does the intensity in the Gaussian beam center. However, 
polarization is everywhere linear in the initial plane, i.e., the maximal SAM density 
is zero. This means that it at first increases near the initial plane and then, when 
the Gaussian beams are split, begins to decrease, i.e., the maximal SAM density is 
achieved in the near field of diffraction.
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7.2.4 Identification of Light Fields with an Infinite Number 
of Polarization Singularities 

In our work [30], we studied an analogy between scalar fields with an infinite topo-
logical charge and conventional circularly symmetric optical vortices. Similarly, we 
can consider circular fields with cylindrical polarization and fields with an infinite 
number of polarization singularities. We suppose that a field with cylindrical polar-
ization is composed of two circularly polarized single-ringed LG beams with opposite 
topological charges: 

E(r, ϕ,  0) =
(

r 

w0

)m 

exp

(
− 

r2 

w2 
0 

+ imϕ

)(
1 
−i

)
+

(
r 

w0

)m 

exp

(
− 

r2 

w2 
0 

− imϕ

)(
1 
i

)

= 2
(

r 

w0

)m 

exp

(
− 

r2 

w2 
0

)[
cos(mϕ) 
sin(mϕ)

]
. 

(7.81) 

where (r, ϕ) are the polar coordinates. Such a field can be easily identified using a 
polarizer. If it transmits only one polarization, then a multi-petal intensity distribu-
tion is obtained, which allows determining the order of cylindrical polarization by 
counting the petals (Fig. 7.13a, b). 

Similarly, registering the intensity of only one transverse component of the field 
(7.50) allows determining the density of polarization singularities. Indeed, in the 
initial plane, the field (7.50) can be written as follows: 

Ex(x, y, 0) = 1 

2 
√
W0 

exp

(
− 

w2 
0 

4α2 
0

)

×
{
exp

[
− 
x2 + (

y + w2 
0

/
(2α0)

)2 
w2 
0

]
+ exp

[
− 
x2 + (

y − w2 
0

/
(2α0)

)2 
w2 
0

]}
cos

(
x 

α0

)
. 

(7.82)

Fig. 7.13 Intensity distribution of the Ex component of two beams with cylindrical polarization 
(7.81) in the initial plane at m = 3 (a) and  at  m = 7 (b), as well of two beams with an infinite number 
of polarization singularities (7.50) at a different singularities density: α0 = w0/5 (c) and  α0 = w0/ 
10 (d) 
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Fig. 7.14 Intensity distributions of two beams (7.50) in the initial plane (a, c) and the logarithm 
of this distribution (b, d), as well as the polarization directions (green arrows) for the following 
parameters: wavelength λ = 532 nm, Gaussian beam waist radius w0 = 1 mm, the distance between 
the polarization singularities πα0 = πw0/2 ≈ 1.57 mm (a, b) and  πα0 = πw0/5 ≈ 0.63 mm (c, d) 

Hence, the intensity distribution of the x-component has vertical zero-intensity 
lines, whose frequency allows determining the density of polarization singularities 
(Fig. 7.13c,d). 

7.2.5 Numerical Simulation 

Shown in Fig. 7.14 are intensity distributions of two beams (7.50) (with a different 
distance between the polarization singularities) in the initial plane in uniform and 
in logarithmic color scale, as well as polarization directions. The intensity distri-
butions were computed as I(r, ϕ, 0)  = |Ex(r, ϕ, 0)|2 + |Ey(r, ϕ, 0)|2 with using 
Eq. (7.50), whereas the logarithmic distribution was computed as ln(10–18 + I(r, ϕ, 0)  
/ max  I(r, ϕ, 0)), where the constant 10–18 was introduced for avoiding the logarithm 
of zero in points with zero intensity. Polarization directions were computed by the 
formula arg(Ex(r, ϕ, 0)  + iEy(r, ϕ, 0)).  

As seen in Fig. 7.14, the intensity distribution has a shape of two light spots located 
symmetrically relative to the horizontal coordinate axis, and there are polarization 
singularities with radial polarization, residing periodically on this axis. Due to the 
low intensity, they are not visible, but they can be seen on the intensity distribution 
in logarithmic color scale. 

Figure 7.15 illustrates the intensity and SAM density distributions of the vector 
beam from Fig. 7.14c, d in several transverse planes.

White dots on the SAM density distributions indicate the positions of maxima, 
obtained by Eq. (7.77). The numbers near the color scales denote the minimal and 
maximal values. According to Fig. 7.15, both light spots split, each into two spots, 
one of which shifts to the left and the other shifts to the right. It is also seen that 
the maximal SAM density decreases upon propagation, which is consistent with 
Eq. (7.80). 

Figure 7.16 depicts the intensity and SAM density distributions of the vector 
beam from Fig. 7.14a, b in several transverse planes. In contrast to Fig. 7.14c, d, 
light spots in Fig. 7.14a, b are closer to each other and, thus, they do not split so
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Fig. 7.15 Intensity (a–e) and SAM density (f–j) distributions of the beam (7.50) from Fig. 7.14c, 
d in several transverse planes for the following parameters: wavelength λ = 532 nm, Gaussian 
beam waist radius w0 = 1 mm, the distance between the polarization singularities πα0 = πw0/5 ≈ 
0.63 mm, propagation distances from the initial plane z = z0/4 (a, f), z = z0/2 (b, g), z = z0 (c, h), 
z = 2z0 (d, i), z = 5z0 (e, j)

fast upon propagation into spots with left and right circular polarization, compared 
to Fig. 7.15. Therefore, maximal SAM density in Fig. 7.15 decreases immediately 
from z = z0/4 till z = 5z0, whereas in Fig. 7.16 it at first increases at distances up to 
z = z0/2 and then decreases. The dependence of the maximal SAM density on the 
propagation distance is illustrated in Fig. 7.17.

Figure 7.17 reveals that the maximal SAM density is achieved closer and close to 
the initial plane, when the distance between the polarization singularities decreases. 
This effect has a physical explanation since, as seen from Eq. (7.50), decreasing 
value α0 leads not only to moving the light spots away from each other, but also 
to increasing space frequency along the axis y. Therefore, with decreasing α0, each 
light spot splits into two spots with opposite circular polarization faster. 

In this section, we have constructed a vector Gaussian beam with an infinite 
number of polarization singularities residing on a straight line [35]. For such a beam, 
the intensity distribution was derived analytically and it turned out that the polariza-
tion singularities appear only in the initial plane and in the far field. We found that the 
polarization singularities index (Poincaré-Hopf index) is infinite. After propagation 
from the initial plane to the far field, the azimuthal angle of polarization singulari-
ties increases by π/2, i.e., initial radial polarization is converted into azimuthal and 
vice versa. We obtained a distribution of the longitudinal component of the spin 
angular momentum density. Similarly to the intensity distribution, it is indepen-
dent of the azimuthal angle of polarization singularities. When such a vectorial field 
propagates in free space, an infinite number of C-points appears, where polariza-
tion is circular. The distance to the transverse plane with the maximal spin angular
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Fig. 7.16 Intensity (a–e) and SAM density (f–j) distributions of the beam (7.50) from Fig.  7.14a, 
b in several transverse planes for the following parameters: wavelength λ = 532 nm, Gaussian 
beam waist radius w0 = 1 mm, the distance between the polarization singularities πα0 = πw0/2 
≈ 1.57 mm, propagation distances from the initial plane z = z0/4 (a, f), z = z0/2 (b, g), z = z0 (c, 
h), z = 2z0 (d, i), z = 5z0 (e, j). White dots in the SAM density distributions denote the positions 
of maxima computed by Eq. (7.77). The numbers near the color scales denote the minimal and 
maximal values 

Fig. 7.17 Dependence of 
the maximal intensity and of 
the maximal SAM density on 
the propagation distance for 
the distance between the 
polarization singularities 
equal to πα0 = πw0/2 ≈ 
1.57 mm (a), πα0 = πw0/5 
≈ 0.63 mm (b), πα0 = πw0/ 
10 ≈ 0.31 mm (c)
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momentum density decreases with decreasing the distance between the polarization 
singularities in the initial plane. Generation of alternating areas with left and right 
circular polarization, despite linear polarization in the initial plane, manifests about 
the optical spin Hall effect. Application areas of the results obtained are designing 
micromachines for optical driving microscopic objects. The SAM causes particles 
to rotate around their centers of mass and engineering the SAM density distribution 
of the studied light field can allow simultaneous manipulating an ensemble of four 
particles. Another application is optical information transmission where the density 
of polarization singularities can be used for encoding the data. 
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Conclusion 

In this book, using the example of some laser beams with inhomogeneous polariza-
tion, it is shown that in a sharp focus (focus size 1–3 microns for visible light), under 
certain conditions, subwavelength regions can form, in some of which the light has 
left elliptical polarization, and in some—right (spin Hall effect). In this case, almost 
in the same areas at the focus, there is a transverse flux of light energy. In some 
of them, the energy rotates clockwise, and in some—counterclockwise (orbital Hall 
effect). Below, for definiteness, we list several specific light fields for which the Hall 
effect takes place. 

With sharp focusing of a Gaussian laser beam with linear polarization in transverse 
planes, four local regions are formed in which the polarization is elliptical before 
and after the focus. Moreover, in two diagonal regions, there is left, and in the other 
two diagonal regions, right elliptical polarization. When passing through the plane 
of focus, the direction of rotation of the polarization vector in these regions changes 
to the opposite. At the focus in these regions, the polarization is linear. 

New types of beams with high-order circular-azimuth polarization can be obtained 
by passing light with cylindrical vector polarization through quarter-wave plates. This 
is a new type of inhomogeneous hybrid polarization that combines the properties of 
m-order cylindrical polarization and circular polarization. The intensity at the focus 
for such beams has 2(m + 1) local maxima located along a closed contour with zero 
intensity at the center (on the optical axis). At the focus, there are 4m vortices of 
the transverse energy flow, the centers of which are located between the local inten-
sity maxima. The transverse energy flux changes the direction of rotation 2(2m + 
1) times when passing in the focus plane around the optical axis, the longitudinal 
projection of the spin angular momentum at the focus changes sign 4m times. In those 
areas of the focus plane where the transverse energy flux rotates counterclockwise, 
the longitudinal projection of the spin angular momentum is positive and the polar-
ization vector also rotates counterclockwise. And vice versa, where the energy flow 
rotates clockwise, there the polarization vector rotates clockwise and the longitudinal 
projection of the spin angular momentum is negative.
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280 Conclusion

With sharp focusing of vector cylindrical laser beams of fractional order, in which 
the linear polarization vector has a different inclination to the horizontal axis in the 
initial plane of each point, local regions are formed in the focus plane in which the 
transverse energy flux rotates and the polarization is circular (elliptical). Such regions 
are formed by pairs with mutually opposite directions of transverse energy rotation. 
In the areas in focus where the energy rotates, at each point the polarization vector 
also rotates in the same direction. The separation of regions in focus with different 
transverse energy flux is a new demonstration of the optical Hall effect. 

The spin Hall effect at the focus can be used to capture dielectric microparticles, 
the size of which is comparable to the size of subwavelength regions in the focus with 
different directions of rotation of the polarization vector, and rotate these particles 
around their center of mass in different directions.
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