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Preface 

In scalar optics, light is described by a complex amplitude, a complex function of 
three Cartesian coordinates. This function must be a solution to the scalar paraxial 
Helmholtz equation, which is equivalent to the Schrödinger equation in quantum 
mechanics. There are not many known exact analytical solutions of this equation in 
the form of special functions, only a few dozen. Each such solution can be associated 
with a certain laser beam, for example, a Bessel, Laguerre-Gaussian or Hermite-
Gaussian beam. Each such analytical solution of the Helmholtz equation allows 
one to fully describe all the features of the light beam before modeling. Find the 
intensity distribution at any distance from the waist, phase distribution, total beam 
power and its other characteristics. Therefore, the search for new analytical solu-
tions describing new laser beams, including helical (vortex) beams, which possess 
orbital angular momentum and topological charge, is relevant. This book describes 
new helical beams that the authors obtained in 2023–2024. These are generalized 
asymmetric Laguerre-Gaussian and Hermite-Gaussian beams, double and square 
Bessel-Gaussian and Laguerre-Gaussian beams, and several types of Bessel-Bessel-
Gaussian beams. The book also discusses helical Ince-Gaussian beams, which are 
presented as series expansions in Hermite-Gaussian modes, and analytical expres-
sions for the orbital angular momentum are obtained for them. Each such new 
analytical solution of the Helmholtz paraxial equation is a significant contribution to 
optics. 

The book will be of interest to a wide range of scientists, engineers working in the 
field of optics, photonics, laser physics, opto-information technologies, and optical 
instrumentation. It can also be useful for bachelors and masters in the specialties 
applied mathematics and physics, applied mathematics and informatics, optics and 
graduate students specializing in these areas. 

Samara, Russia Victor V. Kotlyar 
Eugeny G. Abramochkin 

Alexey A. Kovalev

v



Introduction 

Helical laser beams are light fields that have singularity points in their phase distri-
bution, i.e., points where the phase is undefined. Optical vortices also have screw 
dislocations in their wave front and the energy in such a beam propagates in a spiral 
(helix). There are isolated points of zero intensity in the intensity distribution of 
optical vortices. The topological charge (TC) is one of the main characteristics of 
optical vortices. It is an integer equal to the number of phase jumps by 2π during 
a movement along a circle of infinitely large radius in the beam cross-section. TC 
is positive if the phase increases during the movement counterclockwise, and TC is 
negative otherwise. This definition of topological charge was given by M. V. Berry 
and it shows that the cross-section of a helical beam can contain both a finite and an 
infinite number of singular points (local optical vortices), which can be located on 
the periphery of the laser beam in areas with almost zero intensity. Optical vortices 
can have only an integer or an undefined value of topological charge. The TC is 
conserved during propagation in free space, as is the orbital angular momentum 
(OAM) of helical beams. The orbital angular momentum density of conventional 
helical beams (Laguerre-Gaussian, Bessel-Gaussian) normalized to the beam power 
is equal to TC. Therefore, each photon in such a beam is said to have an OAM equal 
to the topological charge multiplied by Planck’s constant. It is known how to find 
the OAM of an axial (or off-axial) superposition of vortex beams. But it was not 
known how to find the TC of such a superposition until now. In this book, topolog-
ical charges for superposition (coaxial and non-coaxial) of Laguerre-Gaussian and 
Bessel-Gaussian beams are obtained. 

The book also considers new helical beams that are not structurally stable, but are 
Fourier-invariant. These are double Laguerre-Gaussian and Bessel-Gaussian beams, 
squared Laguerre-Gaussian and Bessel-Gaussian beams, autofocusing Laguerre-
Gaussian beams. New families of almost structurally invariant helical beams are 
also considered: generalized asymmetric Laguerre-Gaussian and Hermite-Gaussian 
beams, and several types of Bessel-Bessel-Gaussian beams. The book also discusses 
helical Ince-Gaussian beams, which are presented as series expansions in Hermite-
Gaussian modes, and analytical expressions for the orbital angular momentum are

vii



viii Introduction

obtained for them. For all these beams, explicit complex amplitudes were found at 
any distance from the initial plane. 

The book also examines the superposition of optical vortices in the form of a 
geometric progression and finds the topological charge of such a superposition. In 
the initial plane, it turned out to be half-integer, but when the helical beam propagates 
in free space, the TC becomes integer. 

The results presented in the monograph have been obtained during the research 
supported by the grant of the Russian Science Foundation 23-12-00236.
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Chapter 1 
Asymmetric Laser Beams 

1.1 Generalized Asymmetric Hermite-Gaussian 
and Laguerre-Gaussian Beams 

Laser beams whose complex amplitudes can be described by explicit analytical rela-
tionships that are exact solutions of the paraxial propagation equation have invariably 
been the focus of attention of optical researchers. The fact is that knowledge of the 
complex amplitude of the beams at any distance from the source plane enables the full 
set of their parameters to be predicted, including the intensity distribution, intensity 
moments, total power of the beam, topological charge, orbital angular momentum, 
and beam divergence. When propagated in free space, such beams are normally 
either structurally stable (retaining their intensity pattern up to a scale and rotation) 
or weakly changing, with their complex amplitude expressed by an elegant mathe-
matical relationship. While such beams are abound, the most familiar are Hermite-
Gaussian (HG) and Laguerre-Gaussian (LG) laser beams. For the first time, conven-
tional HG beams were discussed in Ref. [1] and elegant HG beams were studied 
in Ref. [2]. Various forms of generalized HG beams have also been discussed in 
Refs. [3–7]. More specifically, in Ref. [3] the generalized HG beams were defined as 
conventional HG beams with a parameter, whereas in Ref. [7] the generalized beams 
were obtained as superposition of conventional HG beams propagating with the same 
phase velocity. Combined Hermite–Laguerre-Gaussian beams proposed in Ref. [8] 
were shown to transform into conventional HG beams or LG beams depending on 
the specific value of the parameter. A relationship between the HG and LG beams 
was established in Ref. [9] and vortex HG beams constructed as superposition of 
conventional HG beams with phase shifts were studied in Ref. [10]. For the first 
time, the LG beams were analyzed as laser cavity modes in Ref. [11] before being 
shown to propagate in an ABCD system [12]. Issues relating to the study of LG modes 
included their transformation and focusing with the aid of an axicon [13, 14] and 
their representation through Wigner functions [15]. Non-paraxial variants of the HG 
and LG beams have also been analyzed [16], as well as studying double-frequency

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2025 
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2 1 Asymmetric Laser Beams

LG beams and their transformation into conventional LG beams [17]. Other types 
of beams studied, included asymmetric LG beams [18] and laser-aided intra-cavity 
shaping of asymmetric HG beams [19], which were then transformed into asym-
metric LG beams using a mode converter [9]. A technique for generating vector 
laser beams with the aid of LG beams has been proposed [20]. Generation of LG 
beams in a wide frequency band by second harmonic generation has been reported 
[21], whereas conventional LG beams can be realized using a standard spatial light 
modulator (SLM) [22]. 

In this work, we discuss variants of generalized HG and LG beams, using which 
we generate asymmetric generalized HG and LG beams, with the former obtained in 
two different variants. Asymmetric Bessel-Gaussian and LG beams have been known 
to show high stability upon propagation in a turbulent medium [23, 24], prompting the 
exploration of other types of asymmetric HG and LG beams as promising candidates 
for monitoring the atmospheric turbulences. 

1.1.1 Generalized Hermite-Gaussian and Laguerre-Gaussian 
Beams 

The complex amplitude of conventional HG and LG beams is well known: 

HGm,n(x, y, z) = 
Cw0 

w(z) 
exp

(
− 
x2 + y2 

w2(z) 
− ik 

x2 + y2 

2R(z) 

−i(n + m + 1) arctan
(
z 

z0

))

× Hm

(√
2x 

w(z)

)
Hn

(√
2y 

w(z)

)
, 

C = 1 

2(n+m)/2 

√
2 

π n!m! , (1.1) 

LGp,l(r, ϕ,  z) = 
C1w0 

w(z) 
exp

(
− 

r2 

w2(z) 
− ik 

r2 

2R(z) 

−i(2p + |l| + 1) arctan
(
z 

z0

))

×
(√

2r 

w(z)

)|l| 
L|l| 
p

(
2r2 

w2(z)

)
exp(ilϕ), 

C1 =
√

2p! 
π(p + |l|)! . (1.2)



1.1 Generalized Asymmetric Hermite-Gaussian and Laguerre-Gaussian … 3

In (1.1) and (1.2), (x, y, z) and (r, φ, z) are, respectively, Cartesian and cylindrical 
coordinates, z0 = kw2 

0/2 is the Rayleigh range, k is the wavenumber, w0 is the waist 
radius of the Gaussian beam, m, n, p, l are integer numbers, w(z) = w0(1 + z/z0)1/2 , 
R(z) = z

(
1 + z2 0/z2

)
is the beam radius at distance z from the waist and the radius 

of the Gaussian beam wavefront, and Hm(ξ ), Lm n (ξ ) are Hermite polynomial and 
adjoined Laguerre polynomials. 

An elegant form of the HG and LG beams is written as: 

eHGm,n(x, y, z) = 1 

q(m+n+2)/2(z) 
exp

(
− 
x2 + y2 

w2 
0q(z)

)

Hm

(
x 

w0q(z)

)
Hn

(
y 

w0q(z)

)
, (1.3) 

eLGp,l(r, ϕ,  z) = 
1 

qp+1(z) 
exp

(
− r2 

w2 
0q(z) 

+ ilϕ
)

(
r 

w0q(z)

)|l| 
L|l| 
p

(
r2 

w2 
0q(z)

)
, (1.4) 

where q = 1 + iz/z0. 
A generalized elegant version of HG and LG beams looks as follows: 

gHGm,n(x, y, z|a, b ) = 
1 

q(z) 
exp

(
− 
x2 + y2 

w2 
0q(z)

)(
1 − aq(z) 

q(z)

)m/2 

×
(
1 − bq(z) 

q(z)

)n/2 

Hm

(
x 

w0 

√
q(z)(1 − aq(z))

)

Hn

(
y 

w0 

√
q(z)(1 − bq(z))

)
, (1.5) 

gLGn,m(r, ϕ,  z|a ) = 
1 

q(z) 
exp

(
− 

r2 

w2 
0q(z) 

+ imϕ

)

×
(
1 − aq(z) 

q(z)

)(
r 

w0q(z)

)|m| 

L|m| 
n

(
r2 

w2 
0q(z)(1 − aq(z))

)
. (1.6) 

In (1.5) and (1.6), a and b are dimensionless parameters. Putting a = b = 0, the 
generalized beams in (1.5) and (1.6) is converted to the elegant beams in (1.3) and 
(1.4). If a = b = 1/2, generalized beams from Eqs. (1.5) and (1.6) reduce respectively 
to the conventional propagation-invariant HG and LG beams from Eqs. (1.1) and 
(1.2). Other forms of generalized Gaussian beams can also be found [5].
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1.1.2 Asymmetric Generalized Hermite-Gaussian 
and Laguerre-Gaussian Beams 

Asymmetric LG beams obtained by shifting the argument of the complex amplitude 
function into the complex domain have earlier been reported [18]. Laser-generated 
asymmetric LG beams that were then converted into asymmetric LG modes using a 
mode converter [9] have been realized [19]. The asymmetric LG modes have been 
used to steer microparticles along an arc [25] as well as for non-invasively capturing 
and moving biological microobjects [26]. We note that it is also possible to realize 
asymmetric HG beams from asymmetric LG beams using a mode converter [9]. In 
this work we demonstrate that asymmetric HG and LG beams are composed of a 
finite set of conventional generalized HG and LG beams of Eqs. (1.5) and (1.6). 
Actually, arguments of the Hermite and Laguerre polynomials can be shifted using 
the well-known finite series [27, 28]: 

n∑
s=0 

n! 
s!(n − s)! (2t)

n−s Hs(x) = Hn(x + t), 

n∑
s=0 

ts 

s! L
m+s 
n−s (x) = Lm n (x − t). (1.7) 

Making use of the expressions in (1.7), the following relationships for complex 
amplitudes of LG and HG beams can be shown to hold: 

n∑
s=0 

ts 

s!gLGn−s,m+s(r, z|a ) = 
1 

q(z) 
exp

(
− r2 

w2 
0q(z)

)

× 
n∑

s=0 

ts 

s!
(
1 − aq(z) 

q(z)

)n−s( reiϕ 

w0q(z)

)m+s 

Lm+s 
n−s

(
r2 

w2 
0q(z)(1 − aq(z))

)

= 
1 

q(z) 
exp

(
− 

r2 

w2 
0q(z)

)(
1 − aq(z) 

q(z)

)n( reiϕ 

w0q(z)

)m 

× Lm n
(

r2 − tq(z)w0reiϕ 

w2 
0q(z)(1 − aq(z))

)
= gLGn,m(r, z|a, t ). (1.8) 

m∑
s=0 

n∑
p=0

(
m 

s

)(
n 

p

)
(2τ)m−s (2t)n−p gHGs,p(x, y, z|a, b ) 

= 
1 

q(z) 
exp

(
− 
x2 + y2 

w2 
0q(z)

) m∑
s=0

(
m 

s

)
(2τ)m−s

(
1 − aq(z) 

q(z)

)s/2 

Hs

(
x 

w0 

√
q(z) 

√
1 − aq(z)

)
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× 
n∑

p=0

(
n 

p

)
(2t)n−p

(
1 − bq(z) 

q(z)

)p/2 

Hp

(
y 

w0 

√
q(z) 

√
1 − bq(z)

)

= 
1 

q(z) 
exp

(
− 
x2 + y2 

w2 
0q(z)

)(
1 − aq(z) 

q(z)

)m/2 

×
(
1 − bq(z) 

q(z)

)n/2 

Hm

(
x + τ w0q(z) 

w0 

√
q(z) 

√
1 − aq(z)

)

Hn

(
y + tw0q(z) 

w0 

√
q(z) 

√
1 − bq(z)

)

= gHGm,n(x, y, z|a, b, τ,  t ). (1.9) 

In (1.8), the parameter a defines the ratio of widths of the Gaussian function 
and Laguerre polynomial whereas the complex parameter t defines the degree of LG 
beam asymmetry. Actually, it is the absolute value of t that affects the asymmetry. As 
seen from Eq. (1.8), the argument of t only rotates the transverse pattern clockwise 
by the angle of arg t. In a similar way, in (1.9) the parameters a and b define the 
relative width of the Hermite polynomial along the x- and y-axes compared to the 
Gaussian function width, whereas the complex parameters τ and t define the degree 
of HG beam asymmetry along the x- and y-axes. We note that the asymmetric LG 
beam in (1.8) is different from the similar asymmetric beam discussed in Ref. [11], 
because in the latter case the argument was shifted into the complex domain for 
both the Gaussian beam and the Laguerre polynomials, unlike Eq. (1.8) in which the 
argument shift into the complex plane took place only for the Laguerre polynomial. 

Using generalized HG beam in (1.5), it is possible to create elliptical vortex HG 
beams different from those discussed in Ref. [10]. As a starting point, we use the 
familiar formula for the summation of Hermite polynomials [27]: 

n∑
s=0

(
n 

s

)
ts Hn−s(x)Hs(y) =

(
1 + t2

)n/2 
Hn

(
x + ty √
1 + t2

)
. (1.10) 

Using Eqs. (1.10) and (1.5) for superposition of generalized Hermite beams, the 
elliptic vortex HG beams can be derived in the form: 

n∑
s=0

(
n 

s

)
ts gHGn−s,s(x, y, z|a, b ) 

= (
1 + t2

)n/2 
q−1 (z) exp

(
− 
x2 + y2 

w2 
0q(z)

)(
1 − Tq(z) 

q(z)

)n/2 

Hn

(
x + ty 

w0 

√
1 + t2 

1 √
q(z)(1 − Tq(z))

)
, (1.11)
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where T = (a + bt2)/(1 + t2). 
In (1.11), substituting t = iα—where α is a real constant—we obtain an elliptical 

optical vortex x + iαy in the right-hand side in the argument of the Hermite poly-
nomial. Hence, near every real root of the Hermite polynomial, which are found on 
the horizontal axis (a and b are real parameters), there is an optical vortex with the 
topological charge of +1 (α > 0) or  −1 (α < 0). The modulus of the total topological 
charge of beam (1.11) equals n. At  α = ±1, the vortex Hermite beam in (1.11) is  
converted into a single-ring LG beam. 

1.1.3 Non-Orthogonality and Power of Generalized 
Laguerre-Gaussian Beams 

With the parameter a being complex, the LG beams in (1.6) are not mutually orthog-
onal. Considering that the dot product of two solutions of a paraxial equation remains 
unchanged at any z, non-orthogonality of the generalized LG beams can be proven 
in the source plane (at the Gaussian beam waist). Actually, it can be shown that in 
the source plane, the dot product of two generalized LG beams of (1.6) is given by 

∞∫
0 

2π∫
0 

gLG∗ 
n,m(r, ϕ)gLGp.q(r, ϕ)rdrd ϕ 

= 
πw2 

0(n + m)! 
2(n+m+p+1)n!

(
n 

p

)
δm,q 

× (1 − 2a)n−p
(
Rea − |a|2)p 

2F1

(
n + m + 1, −p 

n + 1 − p

∣∣∣∣− 
(1 − 2a)(1 − 2a∗) 
2(Rea − |a|2 )

)
, (1.12) 

where δm,q is the Kronecker symbol and 2F1(a, b; c |x ) is a hypergeometric function. 
From (1.12), the generalized LG beams are seen to be orthogonal with respect to the 
azimuthal index because at m �= q, the right-hand side of (1.12) vanishes. Meanwhile 
at different-valued radial indices, n �= p, the right-hand side of (1.12) is non-zero. It is 
only at a = 0 that generalized LG beams are converted into conventional LG beams, 
becoming orthogonal with respect to both radial and azimuthal indices. Notably, 
from (1.12) follows an expression for the power W of a generalized LG beam: 

W = 
∞∫
0 

2π∫
0

∣∣gLGn,m(r, ϕ)
∣∣2 rdrd ϕ = 

π w2 
0(n + m)! 

2(m+2n+1)n!
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× 
n∑

s=0 

2s
(
n 

s

)
(1 − 2a)n−s

(
1 − 2a∗)n−s

(
Rea − |a|2)s

(
2n + m − s 
n + m

)
. (1.13) 

At a = 0, Eq. (1.13) is seen to describe the power of conventional LG beams: 

Wa=0 = 22n 
∞∫
0 

2π∫
0

∣∣gLGn,m(r, ϕ|a = 0 )
∣∣2 rdrdϕ 

= 
πw2 

0(n + m)! 
2(m+1)n! . (1.14) 

1.1.4 Topological Charge of Generalized Laguerre-Gaussian 
Beams and Their Anomalous Rotation Upon 
Propagation 

For an arbitrary light field, its topological charge is defined by Berry’s formula [29]: 

TC = 
1 

2π 
lim 
r→∞ 

2π∫
0 

arg E(r, ϕ)d ϕ (1.15) 

with E(r, φ) being the complex amplitude in the transverse plane and (r, φ) being the 
cylindrical coordinates in this plane. 

The superposition (1.8) is described by a Laguerre polynomial of n-th degree. 
Thus, at r → ∞, it is mostly determined by its highest-degree term and we can 
suppose that the right part of Eq. (1.8) reads as 

gLGn,m(r, z|a, t << r) = 
q−1(z) 
n! exp

(
− r2 

w2 
0q(z)

)(
1 − aq(z) 

q(z)

)n 

×
(

reiϕ 

w0q(z)

)m( −r2 

w2 
0q(z)(1 − aq(z))

)n 

(1.16) 

As seen from Eq. (1.16), the TC of the whole superposition is thus equal to m. It is  
seen from Eq. (1.8) that if m > 0 then, upon propagation in free space, the transverse 
shape of the light beam should be rotated counterclockwise, as it typically happens 
for most light beams.
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However, the asymmetry of the intensity distribution is affected only by the 
Laguerre polynomial, since the absolute values of all other multipliers in Eq. (1.8) 
are rotationally symmetric. For simplicity, we consider a simple case a = 1/2, since 
the denominator of the argument of the Laguerre polynomial becomes real-valued. 
The argument ξ is thus equal to 

ξ = 2 
r2 − tw(z)reiϕ+iη 

w2(z) 
(1.17) 

with η = arctan(z/z0) being the Gouy phase and with w(z) = w0|q(z)|. Expression 
(1.17) can be rewritten in the Cartesian coordinates: 

ξ = 2 
x2 + y2 

w2(z) 
− 2t 

x + iy 
w(z) 

eiη 

= 2
(

x 

w(z) 
− 

t cos η 
2

)2 

+ 2
(

y 

w(z) 
+ 

t sin η 
2

)2 

− 
t2 

2 
− 2it 

y cos η + x sin η 
w(z) 

. (1.18) 

We see that the real part of the argument is, up to the constant −t2/2, a distance 
from the point (x, y) to the point with coordinates 

xc = 
t 

2 
w(z) cos η, 

yc = −  
t 

2 
w(z) sin η. (1.19) 

To determine the transformation of the beam transverse shape on propagation, 
we should choose some characteristic points whose evolution we are able to trace. 
Equation (1.18) indicates that we can choose zero-intensity points. Since all the roots 
of the Laguerre polynomials are real [30], then Im ξ = 0 in these points. Actually, 
these points reside on intersections of several concentric light rings (roots of the 
Laguerre polynomial) with the center given by Eq. (1.19), and of a straight line y 
cos η + x sin η = 0. In the initial plane (z = 0), the Gouy phase shift is zero (η = 
0) and thus ξ is real at y = 0. The ring center is in the point (t/2, 0). Thus, if t > 0,  
the considered zero-intensity points are to the right from the origin (Fig. 1.1a). Then, 
after propagation over some distance z: the rings center moves to the point given by 
Eq. (1.19), i.e. becomes rotated clockwise by the angle −η with respect to the origin. 
The value ξ is real at y = −x tan η = −xz/z0, i.e. the straight line with real values ξ 
is also rotated clockwise by the angle η (Fig. 1.1b). In the far field, z � z0 and η = 
π/2, the ring center is in the point (0, −t/2) and ξ is real at x = 0 (Fig. 1.1c).

Thus, the beam (1.8), consisting of the LG beams with positive topological charges 
m + s, nevertheless, is rotated clockwise on propagation. Spiral beams with such
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Fig. 1.1 Schematic evolution of the asymmetric generalized Laguerre-Gaussian beam from 
Eq. (1.8) shown as positions of zero-intensity points: in the initial plane (a), after propagation 
over some distance (b), in the far field (c). Blue color means the rotationally symmetric part of 
the beam (Gaussian envelope with an optical vortex), whereas pink rings denote the rings where 
the Laguerre polynomial is zero (if the imaginary part of its argument is neglected). Red dots thus 
denote the points where the beam intensity is zero

anomalous rotation have been investigated in [31], but the beams (1.8) are different 
since 2(n − s) + |m + s| + θ (m + s) is not a constant at θ = −1 and depends on s. 

1.1.5 Numerical Modeling of Generalized 
Laguerre-Gaussian Beams 

In this section, we describe the computation results of the asymmetric LG beams from 
Eq. (1.8). All distributions are obtained by two ways: by using the numerical Fresnel 
transform, implemented as a convolution with adopting the fast Fourier transform, 
and by the theoretical expression. All intensity distributions, obtained by these two 
ways, are visually indistinguishable, while the phase distributions are different only 
in low-intensity areas. This confirms the correctness of the formulae (1.8) for  the  
complex amplitudes on space propagation. 

Shown in Fig. 1.2 are intensity and phase distributions of the symmetric and asym-
metric generalized Laguerre-Gaussian beams from Eq. (1.8) in several transverse 
planes.

As seen in Fig. 1.2, if  a = 1/2 and t = 0, the asymmetric generalized Laguerre-
Gaussian beam reduces to the conventional shape-invariant Laguerre-Gaussian beam. 
When t = 0.25, the beam becomes asymmetric and, as is predicted by the above 
theory, is rotated clockwise on propagation in space. We computed the topological 
charge in each plane. The obtained values are 3.0000 (Fig. 1.2m), 2.9981 (Fig. 1.2n), 
2.9971 (Fig. 1.2o), 2.9982 (Fig. 1.2p), i.e. the theoretical value of 3 is confirmed. 

Now we will see what happens when the asymmetry parameter is further increased. 
Figure 1.3 illustrates the intensity and phase distributions of the symmetric and asym-
metric generalized Laguerre-Gaussian beams from Eq. (1.8) in several transverse 
planes when, instead of t = 0 and t = 0.25, we used the values t = 1 and t = 2.
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Fig. 1.2 Intensity (a–d, i–l) and phase (e–h, m–p) distributions of the asymmetric generalized 
Laguerre-Gaussian beams from Eq. (1.8) in several transverse planes for the following computation 
parameters: wavelength λ = 532 nm, Gaussian beam waist radius w0 = 1 mm, lower index of the LG 
beam n = 4, upper index (topological charge) m = 3, scaling factor a = 1/2, asymmetry parameter 
t = 0 (a–h) and  t = 0.25 (i–p), propagation distances z = 0 (a, e, i, m), z = z0/2 (b, f, j, n), z = z0 
(c, g, k, o), z = 2z0 (d, h, l, p). Dashed circles on the phase distributions denote the circles of the 
TC computation. Scale mark in each figure is 1 mm

According to Fig. 1.3, when the asymmetry parameter is increased, only the 
central and the outermost rings become bright while the other rings become pale. It 
is also seen that the intensity distribution tends to attain a shape of a single light ring 
(Fig. 1.3i–l). This is explainable since, when the asymmetry parameter t in Eq. (1.8) 
grows, the most significant weight in this superposition finally acquires the last LG 
beam, i.e. the beam with s = n. This is exactly a single-ringed LG beam (with the 
upper index of m + n). 

The computed topological charge values in each plane are respectively as follows: 
3.0000 (Fig. 1.3e), 2.9982 (Fig. 1.3f), 2.9972 (Fig. 1.3g), 2.9985 (Fig. 1.3h), 3.0000
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Fig. 1.3 Intensity (a–d, i–l) and phase (e–h, m–p) distributions of the asymmetric generalized 
Laguerre-Gaussian beams from Eq. (1.8) in several transverse planes for the following computation 
parameters: wavelength λ = 532 nm, Gaussian beam waist radius w0 = 1 mm, lower index of the LG 
beam n = 4, upper index (topological charge) m = 3, scaling factor a = 1/2, asymmetryy parameter 
t = 1 (a–h) and  t = 2 (i–p), propagation distances z = 0 (a, e, i, m), z = z0/2 (b, f, j, n), z = z0 (c, 
g, k, o), z = 2z0 (d, h, l, p). Dashed circles on the phase distributions denote the circles of the TC 
computation. Scale mark in each figure is 1 mm

(Fig. 1.3m), 2.9982 (Fig. 1.3n), 2.9972 (Fig. 1.3o), 2.9988 (Fig. 1.3p), i.e. the 
theoretical value of 3 is confirmed. 

When the asymmetry parameter t becomes large enough, the single-ringed LG 
beam completely overwhelms in the superposition and the intensity distribution looks 
like a homogeneous ring (Fig. 1.4). It may seem from Eq. (1.8) that this overwhelming 
leads to the change of the topological charge to m + n. However, Fig. 1.4 demonstrates 
that it remains equal to m, since there are additional n peripheral optical vortices with 
the charge of −1 (insets in Fig. 1.4i–l). For instance, when the topological charge is 
computed over a circle of radius 9 mm (circles in Fig. 1.4e–h), the obtained values are
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Fig. 1.4 Intensity (a–d) and phase (e–l) distributions of the asymmetric generalized Laguerre-
Gaussian beams from Eq. (1.8) in several transverse planes for the following computation parame-
ters: wavelength λ = 532 nm, Gaussian beam waist radius w0 = 1 mm, lower index of the LG beam 
n = 4, upper index (topological charge) m = 3, scaling factor a = 1/2, asymmetryy parameter t = 
10, propagation distances z = 0 (a, e, i), z = z0/2 (b, f, j), z = z0 (c, g, k), z = 2z0 (d, h, l). Dashed 
circles on the phase distributions denote the circles of the TC computation. Phase distributions in 
the bottom row correspond to those from the middle row, but shown for larger areas. The insets 
(i–l) show the fourfold zoomed regions with additional vortices 

7.0017 (Fig. 1.4e), 6.9980 (Fig. 1.4f), 6.9946 (Fig. 1.4g), 6.9968 (Fig. 1.4h). When 
the computation radius is increased twofold (Fig. 1.4i–k) or threefold (Fig. 1.4l), the 
obtained values are 3.0000 (Fig. 1.4i), 2.9704 (Fig. 1.4j), 2.9534 (Fig. 1.4k), 2.9625 
(Fig. 1.4l). 

1.1.6 Numerical Modeling of Generalized Hermite-Gaussian 
Beams 

At first, we compare propagation-invariant and elegant HG beams. Figure 1.5 illus-
trates the intensity and phase distributions of the conventional HG beams from 
Eq. (1.1) whose shape is conserved upon propagation in both transverse directions 
(a–h), of elegant HG beams from Eq. (1.3) whose shape is changed, and of the hybrid
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generalized HG beams from Eq. (1.5) whose shape is conserved in one transverse 
direction and is changed in another direction.

As seen in Fig. 1.5, all three beams are symmetric with respect to the Cartesian 
axes. Now we will apply some asymmetry to the hybrid beam from Fig. 1.5q–x. 
Since the beam is different in different transverse directions along the axes x and y, 
for the changes to be more prominent, we apply a different asymmetry along these 
axes (Fig. 1.6).

As it was expected, nonzero parameter τ breaks the intensity asymmetry with 
respect to the axis y. Similarly, nonzero parameter t breaks the intensity asymmetry 
with respect to the axis x. When both the parameters t and τ are nonzero, both 
asymmetries become broken. 

Summing up, we have derived novel exact solutions of the paraxial propagation 
equation [32]. Relationships have also been deduced for complex amplitudes that 
describe the propagation of generalized asymmetric HG and LG beams in (1.8) 
and (1.9). The derived relationships contain parameter sets, with an amplitude of a 
generalized asymmetric LG beam described by two complex parameters, namely, the 
scale parameter and the asymmetry degree parameter. The amplitude of a generalized 
asymmetric HG beam contains four parameters, a pair for each Cartesian axis. With 
the original generalized elegant HG (1.5) and LG (1.6) beams not retaining their 
intensity pattern upon free-space propagation, the derivative generalized asymmetric 
HG and LG beams also do not retain their intensity pattern in the course of their 
propagation evolution. The generalized LG beams of Eq. (1.9) are not orthogonal with 
regard to the radial indices, meaning that the asymmetric LG beams of Eq. (1.10) are  
also non-orthogonal with regard to the radial indices. For the generalized LG beams, 
we have proved that their topological charge is independent on the asymmetry and 
equals the upper index of the Laguerre polynomial. We have also found that the 
asymmetric LG beam is anomalously rotated upon propagation in free space, i.e. it 
is rotated clockwise when the vortex factor has a positive topological charge. 

Another finding of this work, is a relationship for the complex amplitude of a 
family of generalized vortex HG beams in Eq. (1.11), which is characterized by three 
parameters, with two parameters defining the beam scale and a complex parameter 
defining the asymmetry degree of elliptical optical vortices of unit topological charge, 
with the vortices centered at zeros of a Hermite polynomial. 

The proposed generalized asymmetrical laser beams can be realized using an SLM 
and utilized for data transmission through atmospheric turbulence. The scale param-
eters and the parameter controlling the asymmetry degree offer additional degrees 
of freedom enabling creating a beam least prone to distortion due to turbulence.
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Fig. 1.5 Intensity (a–d, i–l, q–t) and phase (e–h, m–p, u–x) distributions of generalized Hermite-
Gaussian beams from Eq. (1.5) (i.e. without the asymmetry) in several transverse planes for the 
following computation parameters: wavelength λ = 532 nm, Gaussian beam waist radius w0 = 
1 mm, orders of the HG beams m = 5 and  n = 5, scaling factors a = 1/2 and b = 1/2 (a–h), a = 0 
and b = 0 (i–p), a = 0 and  b = 1/2 (q–x), propagation distances z = 0 (a, e, i, m), z = z0/2 (b, f, j, 
n), z = z0 (c, g, k, o), z = 2z0 (d, h, l, p). Scale mark in each figure is 1 mm
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Fig. 1.6 Intensity (a–d, i–l, q–t) and phase (e–h, m–p, u–x) distributions of generalized asymmetric 
Hermite-Gaussian beams from Eq. (1.9) in several transverse planes for the following computation 
parameters: wavelength λ = 532 nm, Gaussian beam waist radius w0 = 1 mm, orders of the HG 
beams m = 5 and  n = 5, scaling factors a = 0 and  b = 1/2, asymmetry parameters t = 0 and  τ = 
1/2 (a–h), t = 1/4 and τ = 0 (i–p), t = 1/4 and τ = 1/2 (q–x), propagation distances z = 0 (a, e, i, 
m), z = z0/2 (b, f, j, n), z = z0 (c, g, k, o), z = 2z0 (d, h, l, p). Scale mark in each figure is 1 mm
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1.2 Topological Charge of Propagation-Invariant Laser 
Beams 

Under propagation-invariant beams, we mean laser beams that conserve their inten-
sity structure in the transverse section upon propagation in free space. An example 
of such beams is the Hermite–Laguerre-Gaussian (HLG) beams family. The HLG 
beams were first studied in [8] and found wide applications in modern optics. In 
[33], generalized HLG beams were obtained as well as their astigmatic transform. 
In [34], HLG beams were investigated in nonlinear medium. In [35], propagation of 
the HLG beams was studied in uniaxial crystals. In [36], propagation of the HLG 
beams was considered in a paraxial ABCD-system bounded by a square aperture. 
In [37], elegant HLG beams were obtained and the first three terms were given— 
nonparaxial corrections into the complex amplitude of such beams. In [38], a closed 
expression was given for incoherent HLG beams. In [38], the mutual intensity of the 
HLG beams was derived in the Shell model. In [39], the HLG beams were gener-
ated by using a metasurface. The HLG beams are a parametric beams family whose 
properties depend on the parameter. At a specific value of this parameter, the HLG 
beam reduces into the conventional Hermite-Gaussian (HG) beam. At another value 
of this parameter, the HLG beam reduces into the conventional Laguerre-Gaussian 
(LG) beam. It is known that the HG beams have zero topological charge (TC) and 
orbital angular momentum (OAM), whereas the LG beams have nonzero TC and 
OAM. However, it is still unknown which TC has the LG beam at an arbitrary value 
of the parameter. 

The HLG beams are an example of propagation-invariant laser beams [40, 41]. 
Propagation-invariant beams can be represented as an axial superposition of the HG 
beams (or LG beams) with different weight amplitudes and phase delays. Mathe-
matically, the complex amplitude of the HLG beams is equal to the sum of the HG 
beams with arbitrary complex coefficients. The sum of the indices of the Hermite 
polynomials in the HG beam should be constant. Then, all the HG beams in the super-
position propagate with the same phase velocity and the transverse intensity distribu-
tion of the whole superposition change only in scale. The general expression for the 
OAM of a propagation-invariant superposition of the HG beams was derived in [42]. 
Propagation-invariant, including diffraction-free, beams found wide applications in 
optics [43, 44]. They are used in fundamental physics [45], telecommunications 
[46–48], optical cryptography [49–51], micromachines [52, 53], imaging systems 
[54–57], and for manipulating biological objects (cells) [58, 59]. Interesting studies 
were conducted in the works [60–62], studying the propagation-invariant beams, 
which are different from the HLG beams since each coefficient in the superposition 
of the HG beams was multiplied by a respective power of a complex number. At a 
certain value of this complex number, the OAM of such beams becomes zero, while 
at a small change of this complex number, the OAM changes abruptly. In the works 
[60–62], the expressions for the OAM were derived, but the TC of such generalized 
HLG beams was not considered in these works.
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Obtaining the TC of propagation-invariant beams represented as a superposition 
of the HG beams with uncertain complex weights is generally a problem, equivalent 
by complexity to finding all zeros of a certain polynomial, given by its coefficients. 
The TC of such a superposition can be found for certain parametric laser beam 
families. In this work, we analytically derive the TC of the parametric family of the 
HLG beams at an arbitrary value of the parameter. In addition, we obtain the TC 
of several other propagation-invariant beams, for instance, two-parametric vortex 
Hermite-Gaussian beam, which is different from the single-parametric beam [10]. 

For convenience, we define here several terms important for this work. Vortices are 
screw wavefront dislocations of a laser beam. They are also called phase singularities. 
In the center of each vortex, the phase is undetermined and the intensity is therefore 
zero in these points. Thus, the vortices in the beam section can be detected by isolated 
intensity nulls. The topological charge of an optical vortex is an integer number of 
phase jumps by 2π along a closed contour of a large radius in the laser beam section. 
Thus, to obtain the TC, the phase distribution of the beam should be known. Orbital 
angular momentum density in each point of the beam section is defined as a product 
of conjugated complex amplitude E*(r, φ) and of its azimuthal angle derivative dE(r, 
φ)/dφ, where (r, φ) are the polar coordinates in the beam section. Physically, a nonzero 
OAM of a light beam means that the energy flow in the beam is propagating along a 
spiral. 

1.2.1 Propagation-Invariant Vortex Fields with Multiple 
Phase Singularities 

As was shown in [40, 41], a field given by 

E±(x, y, z) = 
1 

q 
exp

(
− 
x2 + y2 

qw2

)
f

(
x ± iy 
qw

)
, (1.20) 

where (x, y, z) are the Cartesian coordinates, w is the waist radius of the Gaussian 
beam, q = 1 + iz/z0, z0 = πw2

/
λ is the Rayleigh distance, λ is the wavelength, 

and f (x ± iy) is an arbitrary integer analytical function, is a solution to the paraxial 
Helmholtz equation (k is the wavenumber): 

2ik 
∂E 

∂z 
+ 

∂2E 

∂x2 
+ 

∂2E 

∂y2 
= 0. (1.21) 

Formula (1.20) describes propagation-invariant light fields with their intensity distri-
bution conserving upon propagation in space (up to a scale and rotation around the 
optical axis). The rotation direction (clockwise or counter-clockwise) is defined by 
choosing the sign in the argument of the function f . Below, without loss of generality, 
we consider light fields with the sign “+”. Formula (1.20) allows for an analytical
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description of light fields with arbitrary locations of optical vortices [40, 41] in the  
initial plane (z = 0) in the points with the Cartesian coordinates (ak , bk) (k = 1, …, 
M): 

E(x, y, z) = 
1 

q 
exp

(
− 
x2 + y2 

qw2

) M∏
k=1

(
x + iy 
q 

− (ak + ibk )
)

. (1.22) 

The topological charge (TC) of a light field can be evaluated with the Berry’s 
formula [29]: 

TC = 
1 

2π 
lim 
r→∞ 

Im 

⎧⎨ 

⎩ 

2π∫
0 

1 

E(r, ϕ,  z) 
· ∂E(r, ϕ,  z) 

∂ϕ 
dϕ 

⎫⎬ 

⎭, (1.23) 

applying to the field complex amplitude in the polar coordinates x = r cos φ, y = r 
sin φ. 

Formula (1.23) makes it possible to obtain the TC of an even more general beam, 
that instead of the Gaussian function in Eq. (1.22) is described by an arbitrary (even 
complex) radially symmetric multiplier A(r). If the isolated intensity zeros of a 
propagation-invariant beam in the initial plane are in point with the coordinates 
ak + ibk = rk exp(iϕk ), then the complex amplitude of such a beam is given by 

E(r, ϕ,  0) = A(r) 
M∏
k=1

(
reiϕ − rkeiϕk

)mk 
, (1.24) 

where mk are integer numbers equal to multiplicities of the intensity nulls. 
Substituting Eq. (1.24) into Eq. (1.23), we obtain 

TC = 
1 

2π 
lim 
r→∞ 

Im 

⎧⎨ 

⎩ 

2π∫
0 

ireiϕ 
M∑
k=1 

mk 

reiϕ − rkeiϕk 
d ϕ 

⎫⎬ 

⎭ = 
M∑
k=1 

mk . (1.25) 

Thus, the TC of a propagation-invariant beam with M intensity zeros, each with 
a multiplicity mk , is equal to the sum of these multiplicities. If the beam has optical 
vortices with both positive TCs and negative TCs, then its complex amplitude reads 
as 

E(r, ϕ,  0) = A(r) 
M∏
k=1

(
reiϕ − rkeiϕk

)mk 

N∏
�=1

(
re−iϕ − r�e−iϕ�

)n�
. (1.26) 

Similarly to Eq.  (1.25), the TC of the beam (1.26) can be obtained as
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TC = 
M∑
k=1 

mk − 
N∑

�=1 

n�. (1.27) 

The result (1.27) is almost obvious, since it means that the TC of a beam with M 
positive intensity zeros and with N negative zeros is equal to the algebraic sum of 
multiplicities of all the zeros in the beam section. We note that the beam (1.26) is no  
longer propagation-invariant. 

1.2.2 Topological Charge of the Hermite–Laguerre-Gaussian 
Beams 

In practice, the positions of the intensity zeros and their multiplicity are not known, 
and in the experiment they can be found only by generating a interference pattern 
with forks. Instead of explicitly defining a light field by its intensity zeros (1.22) or  
(1.24), a light field can be represented by polynomials or their linear combinations. 
Since the Hermite-Gaussian (HG) beams and the Laguerre-Gaussian (LG) beams 
are propagation-invariant beams themselves, then a large amount of propagation-
invariant beams can be represented as a finite superposition of HG or LG beams, for 
instance, by HG beams with their indices yielding the constant Gouy phase. Thus, 
below we study paraxial beams with complex amplitude being equal to a finite sum 
of the HG beams with the indices, the sum of which is a constant: 

E(x, y, 0) = 
N∑

k=0 

ckHGN −k,k (x, y) 

= exp
(

− 
r2 

w2

) N∑
k=0 

ckHN −k

(√
2x 

w

)
Hk

(√
2y 

w

)
. (1.28) 

Here, ck are arbitrary complex coefficients and Hk(x) are the Hermite polynomials 
defined by the following recurrent relation: 

Hn+1(x) = 2xHn(x) − 2nHn−1(x) (1.29) 

with the first two polynomials equal to H0(x) = 1, H1(x) = 2x. 
Mathematically, the propagation invariance of the HG beams upon propagation 

can be expressed by via the Fresnel transform: 

HGn,m(x, y, z) 

= 
1 

λiz 

∞∫
−∞ 

∞∫
−∞ 

exp

[
iπ 
λz

([x − ξ ]2 + [y − η]2)
]
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HGn,m(ξ, η)d ξdη 

= 
1 

|q| exp
[

izr2 

z0w2|q|2 − i(n + m + 1) arctan
(
z 

z0

)]

HGn,m

(
x 

|q| , 
y 

|q|
)

, (1.30) 

where q = q(z) = 1+ iz
/
z0, z0 = πw2/λ is the Rayleigh distance, λ is the wavelength 

of light, (ξ, η) and (x, y) are the transverse Cartesian coordinates in the initial plane 
and at a distance z, z is the third Cartesian coordinate directed along the optical 
axis of the beam, and (n + m + 1) arctan(z

/
z0) is the Gouy phase. As seen from 

Eq. (1.30), the HG beams with a constant sum of indices, i.e., with n + m = N, 
propagate with the same phase velocity, and therefore a superposition (1.28) of such 
beams is propagation-invariant. Below, we use dimensionless coordinates x = x/w, 
y = y/w for brevity. 

In a general case, if the complex coefficients ck are arbitrary, the TC of the field 
(1.28) cannot be found. Below, we obtain the TC for two families of propagation-
invariant fields: for vortex Hermite beams and for Hermite–Laguerre-Gaussian 
(HLG) beams. 

We start with the latter ones. The complex amplitude of the HLG beams in the 
initial plane can be represented as a superposition of the HG beams [1]: 

HLGn,m(x, y|θ ) = 
n+m∑
k=0 

ik c(n,m) 
k (θ )HGn+m−k,k (x, y). (1.31) 

The vertical line in the left part is a separator between the arguments (x, y) and 
the parameter θ, coefficients c(n,m) 

k (θ ) are pure real trigonometric polynomials of θ 
and are expressed via the Jacobi polynomials: 

c(n,m) 
k (θ ) = (cos θ)n−k (sin θ)m−k P(n−k,m−k) 

k (− cos 2θ). (1.32) 

The orbital angular momentum (OAM) of the beams (1.31) is known [8] and 
equals OAM = (n − m) sin 2θ , but the TC was not yet derived theoretically. It is 
seen that if θ = 0 then, since sin 0 = 0, only one term with k = m remains in the 
expansion (1.31). In this case, c(n,m) 

m (0) = (−1)m and the HLG beam reduces to an 
HG beam: 

HLGn,m(x, y|0 ) = (−i)m HGn,m(x, y). (1.33) 

The topological charge of the HG beams is zero. It is easy to note that the HLG 
beam reduces to the HG beam also at other values of the parameter θ: π/2, π, 3π/2, 
2π, since in these cases also only one term remains in the sum (1.31). Thus, for these 
values of the parameter θ, the TC of the beam (1.31) is also equal to zero. However, 
at θ = π/4, the HLG beam reduces to an LG beam:
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HLGn,m
(
x, y

∣∣π/
4
)

=
{

(−1)m2nm!e−r2 (reiϕ )n−mLn−m 
m (2r2), (n ≥ m), 

(−1)n2mn!e−r2 (re−iϕ )m−nLm−n 
n (2r2), (n ≤ m). 

(1.34) 

with Lα 
k (·) being the associated Laguerre polynomial. Evidently, the TC of the HLG 

beam in this case is equal to TC = n − m. Thus, a question arises: if the TC of the 
beam (1.31) is equal to zero at θ = 0, π/2, and is equal to n− m at θ = π/4, then what 
is the TC value at other values θ from the interval (0, π/2)? For obtaining the TC of 
the HLG beams in the general case, we use the generating function of the coefficients 
c(n,m) 
k (θ ) [8]: 

n+m∑
k=0 

ik c(n,m) 
k (θ )xn+m−k yk = (x cos θ + iy sin θ)n 

(x sin θ − iy cos θ)m . (1.35) 

According to Eq. (1.23), the TC of a light field is obtained for the values x and 
y tending to infinity. Using an asymptotic expression of the Hermite polynomials, 
Hn(x � 1) ≈ (2x)n, we obtain for the beam (1.31): 

HLGn,m(x � 1, y � 1|θ ) = exp(−r2 ) 
n+m∑
k=0 

ik c(n,m) 
k (θ )Hn+m−k

(√
2x

)
Hk

(√
2y

)

≈ exp(−r2 ) 
n+m∑
k=0 

ik c(n,m) 
k (θ )(2 

√
2x)n+m−k (2 

√
2y)k 

= exp(−r2 )(2 
√
2)n+m (x cos θ + iy sin θ )n 

(x sin θ − iy cos θ )m . (1.36) 

It is seen from Eq. (1.36) that two elliptic optical vortices with the topological 
charges n and −m interact in the origin (x = y = 0). Thus, according to Eq. (1.27), 
the TC of the whole field equals n − m. Therefore, the TC of the beam (1.31) is  
equal to n − m at an arbitrary value θ from the interval (0, π/2). The right part of 
the Formula (1.36) reveals that if θ is equal to π/2, π, 3π/2, or 2π, then the optical 
vortices disappear. In addition, if m = n and θ = π/4, the central optical vortex in the 
origin is also absent: 

(x cos θ + iy sin θ )n (x sin θ − iy cos θ )m
∣∣m=n 
θ=π/ 4 

= 2−n (x + iy)n (x − iy)n = 2−n (x2 + y2 )n . (1.37) 

From Eq. (1.36) follows that, in the second quarter of the angle θ variation period, 
i.e., in the interval (π/2, π), there are optical vortices with the topological charges − 
n and m in the origin. Thus, the TC of the beam (1.31) is equal to −(n − m), i.e.,
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changing the parameter θ makes it possible to change the TC sign of the HLG beam. 
It is interesting to compare the OAM of the HLG beam, OAM = (n − m) sin 2θ , 
and its TC, TC = n − m. It is seen that the TC is independent of the parameter θ 
while it is, for instance, in the interval (0, π/4), whereas the OAM for different θ 
changes from zero to maximum. We note that multiplying all the coefficients (1.31) 
by a respective power of a real-valued parameter α, Ck ′ =  akCk , can only change the 
sign of the TC of the HLG beam, since in this case we obtain instead of Eq. (1.37): 

(x cos θ + iαy sin θ )n (x sin θ − iαy cos θ )m . (1.38) 

1.2.3 Topological Charge of a Two-Parametric Vortex 
Hermite Beam 

Propagation-invariant vortex Hermite beams were introduced and investigated in 
[33]. They are yet another example of the beam (1.28), whose coefficients allow the 
sum (1.28) to be written in a closed form and thus the TC can be obtained. To do 
this, we use the summation formula of the Hermite polynomials [27]: 

n+m∑
k=0 

tn+m−k τ k 

(n + m − k)!k! Hn+m−k (x)Hk (y) =
(
t2 + τ 2

)(n+m)/2 

(n + m)! 

Hn+m

(
tx + τ y √
t2 + τ 2

)
. (1.39) 

Then, for applying the summation Formula (1.39) for simplifying the sum (1.28), 
the coefficients in Eq. (1.28) should be chosen as follows: 

Ck (t, τ  ) = tn+m−k τ k 

(n + m − k)!k! . (1.40) 

Thus, the beam (1.28) with the coefficients (1.40) reads as 

En+m(x, y) = exp
(−x2 − y2

) N∑
p=0 

tn+m−k (iτ)k 

(n + m − k)!k! Hn+m−k

(√
2x

)
Hk

(√
2y

)

= exp
(−x2 − y2

)(
t2 − τ 2

)(n+m)/2 

(n + m)! 
Hn+m

(√
2 
tx + iτ y √
t2 − τ 2

)
(1.41)
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According to Eq. (1.41), if the beam parameters t and τ are real and not equal 
to each other, then all zeros of the Hermite polynomial, each being real-valued 
and residing on the horizontal axis y = 0, generate elliptic optical vortices (screw 
dislocations) with a unit TC if tτ > 0 and with the TC of −1 if  tτ < 0. The topological 
charge of the whole beam (1.41) is equal to the number of roots, i.e., n + m if tτ 
> 0 and −(n + m) if  tτ < 0. Thus, in the second case of Eq. (1.41), the TC of a 
propagation-invariant beam (1.28) is greater by magnitude than the TC of the beam 
(1.31). If t = τ, the vortex Hermite beam (1.41) reduces to a single-ringed Laguerre-
Gaussian beam and all elliptic optical vortices merge into a single standard circular 
optical vortex at the origin, whose topological charge is still equal either to n + m 
or to −(n + m). It is interesting that the TC of the beam (1.41) is not changed with 
changing parameters if these parameters t and τ do not change their sign. 

1.2.4 Simple Optical Vortices 

If we substitute the following binomial coefficients 

Ck = (n + m)! 
(n + m − k)!k! , (1.42) 

into Eq. (1.28), then we derive an asymptotic expression for large values of the 
arguments, similar to the sum (1.36): 

En+m(x >> 1, y >> 1) = e−(x2+y2) 
n+m∑
k=0 

ik
(n + m)! 

k!(n + m − k)! 
× Hn+m−k

(√
2x

)
Hk

(√
2y

)

≈ e−(x2+y2) (2 
√
2)n+m 

× 
n+m∑
k=0 

ik
(n + m)! 

k!(n + m − k)! x
n+m−k yk 

= e−(x2+y2) (2 
√
2)n+m (x + iy)n+m . (1.43) 

As seen from Eq. (1.43), the asymptotic argument is equal to (n + m)φ, where φ is 
the polar angle in the beam cross-section. Therefore, the TC of the field (1.28) with 
the coefficients (1.42) equals n + m. For deriving Eq. (1.43), the Newton’s binomial 
theorem [27] was used: 

n∑
k=0 

n! 
k!(n − k)! x

k = (1 + x)n . (1.44)
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Another example of determining the topological charge of a superposition of 
optical vortices can be given by using the following finite sum [63]: 

n∑
k=0 

1 

(2k)![(n − k)!]2 x
k = 

(x − 4)n 

(2n)! P2n

(√
x 

x − 4

)
, (1.45) 

where P2n(x) are the Legendre polynomials, orthogonal in the interval [−1, 1], and 
having n simple real-valued zeros in this interval. Then, the asymptotic expression 
for large argument values for the beam (1.28) is given  by  

En+m(x >> 1, y >> 1) = e−(x2+y2) 
n+m∑
k=0 

ik
1 

(2k)![(n + m − k)!]2 

× Hn+m−k

(√
2x

)
Hk

(√
2y

)

≈ e−(x2+y2) (2 
√
2)n+m 

× 
n+m∑
k=0 

ik
1 

(2k)![(n + m − k)!]2 x
n+m−k yk 

= e−(x2+y2) (2 
√
2)n+m 

× 
(−4x + iy)n+m 

(2(n + m))! P2(n+m)

(√
y(y − ix) 
y2 + 4x2

)
. (1.46) 

For deriving Eq. (1.46), the summation coefficients in Eq. (1.28) were chosen as 
follows: 

Ck = 1 

(2k)![(n + m − k)!]2 . (1.47) 

According to Eq. (1.46), the TC of the beam (1.28) with the coefficients (1.47) 
is equal to −(n + m), since there is an elliptic optical vortex in the center of the 
beam section, whose amplitude is proportional to an expression, (−4x + iy)n+m . 
The Legendre polynomial does not have additional zeros since the real value of the 
Legendre polynomial argument in Eq. (1.46) equals 1. We note that if the coefficients 
(1.42) and (1.47) are multiplied by a real-valued parameter α, i.e., C ′

k = akCk , then 
such change in the coefficients changes the intensity distribution of the propagation-
invariant beam (1.28) and changes its OAM, but does not change its TC.
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1.2.5 Propagation-Invariant Beams 
in the Laguerre-Gaussian Basis 

Instead of the HG basis, the complex amplitude of propagation-invariant light fields 
can be written in the Laguerre-Gaussian (LG) basis: 

E±(x, y, 0) = 
[ N 2 ]∑
k=0 

ckLGk,±(N −2k)(x, y) 

= exp
(

− 
r2 

w2

)

[ N 2 ]∑
k=0 

ck

(
x ± iy 
w

)N−2k 

LN −2k 
k

(
2r2 

w2

)
, (1.48) 

In Eq. (1.48), there are Laguerre polynomials in the sum, (r, φ) are the polar 
coordinates in the waist plane of the LG beam. The square brackets in Eq. (1.48) 
denote the integer part of a number. Below, we use a dimensionless radial variable 
r instead of the ratio r/w and limit our study by considering only positive-charge 
optical vortices, i.e., we choose the sign “+” in Eq. (1.48). The topological charge of 
the optical vortices superposition (1.48) can be determined by obtaining the argument 
(phase) of an asymptotic expression (1.48) when x and y tend to infinity. For this 
purpose, we apply an asymptotic expression for the Laguerre polynomials (r >> 1): 

LN −2k 
k (2r2 ) ≈ 

(−2r2)k 

k! . (1.49) 

Then, instead of Eq. (1.48), we write an asymptotic expression for the amplitude 
of beams (1.48): 

E(r >> 1) = e−r2+iN ϕ rN 
[ N 2 ]∑
k=0 

ck 
(−2)k 

k! exp(−2ikϕ). (1.50) 

It is difficult to obtain the TC of the superposition (1.50) for arbitrary real 
coefficients ck . Therefore, we consider only several partial cases that allow for a 
closed-form representation of the sum in Eq. (1.50). We note that at certain coeffi-
cients values, the superposition of optical vortices (1.50) reduces to the geometrical 
sequence. The TC in the geometrical sequence of optical vortices was obtained in 
[64]. Therefore, we consider other examples of choosing the coefficients in Eq. (1.48). 
We use the well-known sum following from Newton’s binomial theorem [63]: 

N∑
k=0 

N ! 
k!(N − k)! exp(−ikϕ) =2N

(
cos 

ϕ 
2

)N 
exp

(
−i 

N 

2 
ϕ

)
. (1.51)
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Then, choosing in Eq. (1.50) the following coefficients: 

ck =
(
N

/
2
)! 

(−2)k
(
N

/
2 − k

)! , (1.52) 

we obtain instead of Eq. (1.50) the following expression: 

E(r >> 1) = e−r2+iN ϕ rN 
[N / 2]∑
k=0

(
N

/
2
)! 

k!(N/
2 − k

)!exp(−2ikϕ) 

= 2N / 2 (cos ϕ)N / 2 e−r2 rN exp

(
i 
N 

2 
ϕ

)
. (1.53) 

As seen from Eq. (1.53), the argument of the asymptotic expression is equal to 
(Nφ)/2, and the TC of the superposition (1.48) with the coefficients (1.52) is thus 
equal to N /2. As was shown in [36], the half-integer TC in the initial plane becomes 
integer and equal to N upon propagation of the beam (1.48). Similarly, other examples 
of the sums (1.51) can be considered, many of which were given in [63]. 

1.2.6 Numerical Simulation 

A numerical simulation of the propagation of all the beams in this work was conducted 
by the Fresnel transform implemented as the convolution by using the fast Fourier 
transform. The obtained distributions we compared with the respective theoretical 
formulae for the complex amplitudes. Numerical and theoretical intensity distribu-
tions were visually indistinguishable, whereas the phase distributions were different 
only in the areas of negligible low intensity. The topological charge of all the consid-
ered beams was computed as a sum of the phase (argument of the complex amplitude) 
derivatives by the azimuthal angle, computed over a circle of a “large” radius with 
small light intensity, and divided by the complete angle of 2π. As seen in all the figures 
below, the beams are propagation-invariant, i.e., conserve their intensity structure and 
change only in scale. 

Figure 1.7 illustrates the intensity and phase distributions of the HLG beams (1.31) 
at (n, m) = (5, 3) for different values of the parameter θ: 0,  π/16, π/8, 3π/16, π/4 in 
the initial plane z = 0 and at the Rayleigh distance z = z0. Shown in Fig. 1.8 are also 
the intensity and phase distributions of the HLG beams (1.31) for the same values of 
the parameter θ and for the same propagation distances z, but at (n, m) = (2, 7). Both 
these figures confirm that, when θ changes from 0 till π/4, the HG beam with (n + 1) 
× (m + 1) light spots is converted into an LG beam with min(n, m) + 1 light rings. 
Computation of the topological charge over the phase distributions from Fig. 1.7 
yielded the following values: 0.000000 (Fig. 1.7f), 1.999466 (Fig. 1.7g), 1.999875 
(Fig. 1.7h), 1.999973 (Fig. 1.7i), 1.999995 (Fig. 1.7j), 0.000001 (Fig. 1.7p), 1.994684
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(Fig. 1.7q), 1.993242 (Fig. 1.7r), 1.992495 (Fig. 1.7s), 1.992265 (Fig. 1.7t). Thus, 
computation confirms that the TC is zero at θ = 0 and the TC is equal to 2 (n − m = 
5 − 3 = 2) for all other values of θ. Phase distributions in the initial plane, shown in 
Fig. 1.7, clearly indicate the TC values. On the dashed red circle in Fig. 1.7f, there are 
only phase jumps by +π (when black color is changed to white, counter-clockwise) 
and by −π (when white color is changed to black). In total, all these jumps yield zero. 
Thus, the TC of a beam from Fig. 1.7a, f is zero. As is clearly seen in Fig. 1.7g–i, 
there are four nonhorizontal rays, where the phase on the dashed circle is changed 
by +2π, and two horizontal rays, where the phase on the circle jumps by −2π. Thus, 
the TC of the beams from Fig. 1.7g–i equals 4 − 2 = 2. Finally, in Fig. 1.7j, the 
dashed circle is intersected by two horizontal rays, where the phase is changed by 
2π. Thus, the TC of the beam from Fig. 1.7j is equal to 2. The same way, the TC can 
be simply computed for all other figures in this work. 

Fig. 1.7 Intensity (a–e, k–o) and phase (f–j, p–t) distributions of the Hermite–Laguerre-Gaussian 
beams (1.31) in the initial plane z = 0 (a–j) and at the Rayleigh distance z = z0 (k–t) for different θ 
values. Computation parameters: wavelength λ = 532 nm, waist radius of the Gaussian beam w0 = 
1 mm, the beam order (orders of the Hermite polynomials) (n, m) = (5, 3), values of the parameter 
θ: 0 (a, f, k, p), π/16 (b, g, l, q), π/8 (c, h, m, r), 3π/16 (d, i, n, s), π/4 (e, j, o, t). Scale mark in each 
figure denotes 1 mm. The red dashed circles in the phase distributions are the circles over which 
the topological charge was computed. Black and white colors denote, respectively, the phase of 0 
and π (f), or 0 and 2π (g–j, p–t)
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For Fig. 1.8, the computed TC values are 0.000000 (Fig. 1.8f), −4.998308 
(Fig. 1.8g), −4.999542 (Fig. 1.8h), −4.999854 (Fig. 1.8i), −4.999926 (Fig. 1.8j), 
−0.000001 (Fig. 1.8p), −4.986253 (Fig. 1.8q), −4.982896 (Fig. 1.8r), −4.981142 
(Fig. 1.8s), and −4.980602 (Fig. 1.8t). This confirms that the TC is zero at θ = 0 and 
the TC is −5 (n − m = 2 − 7 = −5) for all other θ values. 

Combining the TC computation results found in Fig. 1.7 and Fig. 1.8, we obtain 
that the TC of the beam from Eq. (1.31) is equal to n − m for an arbitrary value θ 
from the interval (0, π/2), which is consistent with the above theory. 

Figure 1.9 depicts the intensity and phase distributions of an HLG beam (1.38) 
from Fig. 1.7c, h, m, r (n = 5, m = 3, θ = π/8) for different values of the parameter 
α (1, 0.8, 0.6, 0.4, 0.2) in the initial plane z = 0 and at the Rayleigh distance z = z0. 
According to Fig. 1.9, with a decreasing value of the parameter α, the HLG beam of 
the order (n, m) reduces into a Hermite beam of the order (n + m, 0). Computation of

Fig. 1.8 Intensity (a–e, k–o) and phase (f–j, p–t) distributions of the Hermite–Laguerre-Gaussian 
beams (1.31) in the initial plane z = 0 (a–j) and at the Rayleigh distance z = z0 (k–t) for different 
values θ. Computation parameters: wavelength λ = 532 nm, waist radius of the Gaussian beam w0 
= 1 mm, beam order (orders of the Hermite polynomials) (n, m) = (2, 7), values of the parameter 
θ: 0 (a, f, k, p), π/16 (b, g, l, q), π/8 (c, h, m, r), 3π/16 (d, i, n, s), π/4 (e, j, o, t). Scale mark in each 
figure denotes 1 mm. The red dashed circles in the phase distributions are the circles over which 
the topological charge was computed. Black and white colors denote, respectively, the phase of 0 
and π (f), or 0 and 2π (g–j, p–t) 
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the topological charge over the phase distributions from Fig. 1.9 yielded the following 
values: 1.999871 (Fig. 1.9f), 1.999796 (Fig. 1.9g), 1.999654 (Fig. 1.9h), 1.999347 
(Fig. 1.9i), 1.998661 (Fig. 1.9j), 1.993265 (Fig. 1.9p), 1.995472 (Fig. 1.9q), 1.998142 
(Fig. 1.9r), 2.001121 (Fig. 1.9s), and 2.003653 (Fig. 1.9t). Thus, the computation 
confirms that the TC is equal to n − m = 5 − 3 = 2 at arbitrary values of α. 

Shown in Fig. 1.10 are the intensity and phase distributions of a two-parametric 
vortex Hermite beam (1.41) at (n, m) = (2, 7) for different values t and τ ((0.7, 
0.7), (0.7, 0.4), (0.7, −0.3), (0.7, 0.2), (0.7, −0.1)) in the initial plane z = 0 and at 
the Rayleigh distance z = z0. According to Eq. (1.41), when the magnitude of the 
parameter τ decreases, the beam should tend to the Hermite-Gaussian beam of the 
order (n + m, 0). Figure 1.10 confirms this. Computation of the topological charge 
over the phase distributions from Fig. 1.10 yielded the following values: 8.999570 
(Fig. 1.10f), 8.999303 (Fig. 1.10g), −8.998908 (Fig. 1.10h), 8.997925 (Fig. 1.10i), 
−8.994937 (Fig. 1.10j), 8.964787 (Fig. 1.10p), 8.966616 (Fig. 1.10q), −8.968667

Fig. 1.9 Intensity (a–e, k–o) and phase (f–j, p–t) distributions of the Hermite–Laguerre-Gaussian 
beams (1.31) in the initial plane z = 0 (a–j) and at the Rayleigh distance z = z0 (k–t) for different 
values of the parameter α. Computation parameters: wavelength λ = 532 nm, waist radius of the 
Gaussian beam w0 = 1 mm, beam order (orders of the Hermite polynomials) (n, m) = (5, 3), value 
of the parameter θ: θ = π/8, values of the parameter α: 1 (a, f, k, p), 0.8 (b, g, l, q), 0.6 (c, h, m, r), 
0.4 (d, i, n, s), 0.2 (e, j, o, t). Scale mark in each figure denotes 1 mm. The red dashed circles in the 
phase distributions are the circles over which the topological charge was 
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(Fig. 1.10r), 8.972072 (Fig. 1.10s), and −8.977350 (Fig. 1.10t). Thus, computation 
confirms that the TC is equal to n + m = 2 + 7 = 9 if  tτ > 0 and − (n + m) = −(2 
+ 7) = −9 if  tτ < 0.  

Figure 1.11 illustrates the intensity and phase distributions of propagation-
invariant superpositions of the Laguerre-Gaussian beams (1.48) for different orders 
N (4, 6, 8, 10, 12) in the initial plane z = 0 and at the Rayleigh distance z = z0. 
Computation of the topological charge over the phase distributions from Fig. 1.11 
yielded the following values: 3.999935 (Fig. 1.11f), 5.999776 (Fig. 1.11g), 7.999475 
(Fig. 1.11h), 9.998990 (Fig. 1.11i), 11.998284 (Fig. 1.11j), 3.986310 (Fig. 1.11p), 
5.979236 (Fig. 1.11q), 7.971959 (Fig. 1.11r), 9.964446 (Fig. 1.11s), and 11.956664 
(Fig. 1.11t). Thus, computation confirms that the TC is equal to N.

In this section, the following results have been obtained. For the known family 
of propagation-invariant vortex Hermite–Laguerre-Gaussian laser beams, which are

Fig. 1.10 Intensity (a–e, k–o) and phase (f–j, p–t) distributions of the two-parametric vortex 
Hermite beams (1.41) in the initial plane z = 0 (a–j) and at the Rayleigh distance z = z0 (k–t) for  
different values of the parameters t and τ. Computation parameters: wavelength λ = 532 nm, waist 
radius of the Gaussian beam w0 = 1 mm, beam order (orders of the Hermite polynomials) (n, m) = 
(2, 7), values of the parameters (t, τ): (0.7, 0.7) (a, f, k, p), (0.7, 0.4) (b, g, l, q), (0.7, −0.3) (c, h, 
m, r), (0.7, 0.2) (d, i, n, s), (0.7, −0.1) (e, j, o, t). Scale mark in each figure denotes 1 mm. The 
red dashed circles in the phase distributions are the circles over which the topological charge was 
computed. Black and white colors denote, respectively, the phase of 0 and 2π (f–j, p–t) 
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Fig. 1.11 Intensity (a–e, k–o) and phase (f–j, p–t) distributions of propagation-invariant superpo-
sitions of the Laguerre-Gaussian beams (1.48) in the initial plane z = 0 (a–j) and at the Rayleigh 
distance z = z0 (k–t) for different beam orders N. Computation parameters: wavelength λ= 532 nm, 
waist radius of the Gaussian beam w0 = 1 mm, beam order N = 4 (a, f, k, p), 6 (b, g, l, q), 8 (c, h, 
m, r), 10 (d, i, n, s), 12 (e, j, o, t). Scale mark in each figure denotes 1 mm. The red dashed circles 
in the phase distributions are the circles over which the topological charge was computed

finite superpositions of Hermite-Gaussian beams with a constant sum of indices of 
the Hermite polynomials n + m and whose intensity shape depends on the parameter 
θ, we have demonstrated theoretically and numerically that, for an arbitrary value θ 
from the half-interval (0, π/4], the topological charge of these beams is equal to n − 
m [65]. If θ = 0, the topological charge of the Hermite–Laguerre-Gaussian beam is 
zero. For another type of propagation-invariant beams, called two-parametric vortex 
Hermite beams, which are also finite superpositions of the Hermite beams with a 
constant sum of indices n + m and with the partial amplitudes given by the binomial 
coefficients, we have shown theoretically and numerically that the topological charge 
is equal to the sum of indices n + m if both parameters are of the same sign, and 
equal to −(n + m) if the parameters are of different signs. We have also shown that 
if a propagation-invariant beam is a finite superposition of the Laguerre-Gaussian 
beams with the radial index p and with the azimuthal index l > 0, such that their 
combination 2p + l is constant, and if the amplitude multipliers are chosen as the 
binomial coefficients, then the topological charge of these beams is equal to 2p + l.
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This study has also revealed that the topological charge, which is one of the impor-
tant characteristics of optical vortices along with the orbital angular momentum, 
is a quantity resistant to changing parameters of propagation-invariant beams. For 
instance, when the parameters θ and α of the Hermite–Laguerre-Gaussian beams 
are changed, the topological charge remains constant. The topological charge also 
remains unchanged upon the free-space propagation of beams. The obtained results 
will be useful for probing a weak-turbulence atmosphere by propagation-invariant 
vortex laser beams and for beam identification by measuring the beam topological 
charge, rather than the orbital angular momentum, since it remains constant at small 
beam distortions. The topological charge of vortex laser beams can be measured by 
using the Hartmann wavefront sensor. The simplest way to obtain the OAM of a laser 
beam is using a cylindrical lens. 
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Chapter 2 
Ince-Gaussian Beams 

2.1 Structurally Invariant Higher-Order Ince-Gaussian 
Beams and Their Expansions 
into the Hermite-Gaussian or Laguerre-Gaussian 
Beams 

When using light for steering micromachine components and generating multiple 
optical traps for microscopic particles, laser beam modes offer a convenient tool as 
they conserve their structure both upon free-space propagation and at the focus of 
a spherical lens. Another benefit is that mode symmetry can be adjusted by varying 
certain parameters and passing from symmetry in the Cartesian coordinates to circular 
symmetry via elliptical symmetry. For this purpose, Ince-Gaussian (IG) modes can 
be utilized, as they are transformed into either Hermite-Gaussian (HG) beams or 
Laguerre-Gaussian (LG) beams when the ellipticity parameter is changed. 

A solution of the Whittaker equation in the form of IG functions was obtained for 
the first time by Arscott [1, 2]. In the book by Miller [3], this solution was obtained in 
separated variables in elliptical coordinates. In optics, IG beams were considered in 
[4]. In [5], expressions for the amplitudes of the IG beams have been obtained for p 
= 0, 1, 2 when the IG beams have no dependence of the ellipticity parameter. In [6], 
elegant IG beams were investigated. These works have given an impetus for a wide 
use of IG beams in optics, along with other well known laser modes (LG and HG). 
In [7], IG beams were generated with a digital hologram. In [8], vector (classically 
entangled) IG beams were generated as superposition of a right-handed circularly 
polarized even IG beam with a left-handed circularly polarized odd IG beam. The 
IG beams with quantum entanglement were generated in [9]. Besides, nonlinear 
transformation of the IG beams by spontaneous parametric down-conversion was 
investigated in [10, 11]. In [12], IG beams were generated also parametrically, but 
without conversion. In [13], elegant IG beams were studied in a parabolic medium. 
Propagation of the IG beams in uniaxial crystals was studied in [14]. The IG beams
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are used for underwater data transmission [15]. Propagation of the IG beams in a 
turbulent atmosphere was considered in [16]. 

As seen from the above brief review of works dealing with the IG beams, they have 
been actively studied in optics. However, no analytical representation of these beams 
via the LG or HG modes with an explicit dependence on the ellipticity parameter 
has yet been proposed. In this section, in an effort to fill in this gap, we derive a 
number of particular analytical formulae for even and odd IG modes with the index 
p = 3, 4, 5, 6, which are expressed via the LG and HG modes and contain explicit 
dependence on the ellipticity parameter ε. This explicit dependence of the expansion 
coefficients on the ellipticity parameter allows controlling the intensity pattern of 
the IG beams by continuously varying this parameter. In this work, for the first time 
in optics we consider a situation when the ellipticity parameter ε can be not only 
positive, but negative as well. We analyze in which way the IG beam changes with 
changing sign of this parameter. Simultaneous representation of the IG modes via 
several LG modes and several HG modes proposed herein, suggests that when the 
ellipticity parameter ε tends to zero, any IG mode is converted into a certain LG 
mode (more exactly, to its real or imaginary part), and when the ellipticity parameter 
ε tends to infinity, the IG mode coincides with a certain HG mode. 

2.1.1 Solution of the Paraxial Equation in Elliptic 
Coordinates 

The paraxial Helmholtz equation is given by [3]:

(
∂2 

∂x2 
+ 

∂2 

∂y2 
+ 2ik 

∂ 
∂z

)
E(r, z) = 0, (2.1) 

where (x, y, z) are the Cartesian coordinates, r = (x, y) = (r cos ϕ, r sin ϕ) is a 
2D vector, z is the coordinate along the optical axis, k is the wavenumber of light, 
E(r, z) is the complex amplitude of a monochromatic light field. Below, we use 
dimensionless coordinates: x := x

/
w0, y := y

/
w0, z := 2z

/
(kw2 

0), with w0 being 
the waist radius of the Gaussian beam. Then, in dimensionless variables, Eq. (2.1) 
reads as

(
∂2 

∂x2 
+ 

∂2 

∂y2 
+ 4i 

∂ 
∂z

)
E(r, z) = 0. (2.2) 

Its simplest solution with a finite energy is a conventional Gaussian beam: 

G(r, z) = 1 

1 + iz 
exp

(
− 

r2 

1 + iz

)
. (2.3)
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It is known that separation of variables in the Eq. (2.2) in the Cartesian and polar 
coordinates allows obtaining two solution families—HG and LG beams, respectively 
[17]: 

Hn,m(r, z) = G(r, z)
(
1 − iz 
1 + iz

) n+m 
2 

Hn

(
x 
√
2 √

1 + z2

)
Hm

(
y 
√
2 √

1 + z2

)
, 

Ln,±m(r, z) = G(r, z)
(
1 − iz 
1 + iz

)n+ m 
2 

Lm n

(
2r2 

1 + z2

)
rm e±imϕ , (2.4) 

with n, m = 0, 1, 2, . . .. 
Both families are examples of structurally stable light fields, i.e. at any propagation 

distance z, the transverse intensity pattern of such fields coincides—up to scale—with 
that in the initial plane z = 0: 

Hn,m(r, z) = 1 √
1 + z2 

Hn,m

(
r √

1 + z2 
, 0

)
exp

(
izr2 

1 + z2 
− i(n + m + 1) arctan z

)
, 

Ln,±m(r, z) = 1 √
1 + z2 

Ln,±m

(
r √

1 + z2 
, 0

)
exp

(
izr2 

1 + z2 
− i(2n + m + 1) arctan z

)
. 

(2.5) 

Thus, it will suffice to study both families at z = 0, omitting the last argument for 
brevity: Hn,m(r, 0) = Hn,m(r) and Ln,±m(r, 0) = Ln,±m(r). 

We also introduce normalized variants of each solutions family: 

HGn,m(r) = 
Hn,m(r)∥∥Hn,m(r)

∥∥ ,
∥∥Hn,m(r)

∥∥ =
√

π 
2 

· 2n+mn!m!, 

LGn,±m(r) = 
Ln,±m(r)∥∥Ln,±m(r)

∥∥ ,
∥∥Ln,±m(r)

∥∥ =
√

π 
2 

· (n + m)! 
2mn! . (2.6) 

When solving the Eq. (2.2), the variables are separated in the elliptic coordinates 
(ξ, η) [3], then a family of IG beams is obtained, which are also structurally stable: 

I(r, z) = G(r, z)
(
1 − iz 
1 + iz

)p/2 

P(ξ )Q(η). (2.7) 

Here, 

x 

σ 
√
1 + z2 

= cosh ξ cos η, 
y 

σ 
√
1 + z2 

= sinhξ sin η, (2.8) 

and the parameter σ is supposed to be arbitrary yet. Substitution of Eq. (2.7) into  
Eq. (2.2) yields equations for the functions P(ξ ) and Q(η):
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(
∂2 

∂ξ 2 
− 2σ 2 sinh 2ξ 

∂ 
∂ξ 

− (λ − 2pσ 2 cosh 2ξ)

)
P(ξ ) = 0,

(
∂2 

∂η2 
+ 2σ 2 sin 2η 

∂ 
∂η 

+ (λ − 2pσ 2 cos 2η)

)
Q(η) = 0. (2.9) 

Both Eq. (2.9) reduce to the Ince equation, with its canonical form being given 
by [1–3]:

(
∂2 

∂t2 
+ ε sin 2t 

∂ 
∂t 

+ (λ − pε cos 2t)
)
N (t) = 0, (2.10) 

where p is an integer nonnegative number, ε is a positive ellipticity parameter, 
mentioned in the Introduction, and λ = λ(p, ε)  is some constant. In works [1–3], it 
is supposed that ε > 0. This is also seen from comparison of Eqs. (2.9) and (2.10) 
since ε = 2σ2 > 0. Below in the current work, we show that the parameter ε in the 
solution (2.10) can be selected of any sign. In Eq. (2.9), on separating the variables 
ξ and η in Eq. (2.2) there appears a constant. For Eq. (2.10), the constant is a real 
number, introduced for the existence of solution N (t) in the form of a trigonometric 
polynomial of degree p (called the Ince polynomial). Once the form of the solution is 
restricted in this way, we find that λ should be a root of a certain polynomial of degree 
(p + 1), whose coefficients depend on ε (i.e. root of a characteristic equation). Thus, 
in total, (p + 1) roots appear: λ0, λ1, . . . , λp, and they are all real-valued. In addition, 
if these roots are sorted ascending at ε = 0, they are not mixing with increasing ε, 
i.e. their ascending order does not change (for any positive ε, the characteristic equa-
tion has no multiple roots). Thus, by choosing a root λq(p, ε)  and by constructing a 
trigonometric Ince polynomial N (t) = Np,q(t, ε), the solution (2.7) can be written 
via the solutions of the Eq. (2.10) as follows:  

Ip,q(r, z) = G(r, z)
(
1 − iz 
1 + iz

)p/2 

Np,q(iξ,  ε)Np,q(η, ε), (2.11) 

with ε = 2σ 2. It can be shown that the characteristic equation is factorized and splits 
into two equations. If p is even then there are p/2 odd Ince polynomials (they are 
written via the sines of multifold angles and usually indexed as q = 2, 4, . . . ,  p) and 
p/2 + 1 even Ince polynomials (they are written via the cosines of multifold angles 
and indexed as q = 0, 2, 4, . . .  ,  p). If p is odd, there are equally (p + 1)/2 even and 
odd Ince polynomials (indexed as q = 1, 3, . . . ,  p). Thus, even and odd IG modes 
(2.11) are usually written as: 

IGe 
p,q(r, z) = G(r, z)

(
1 − iz 
1 + iz

)p/2 

C(q) 
p (iξ,  ε)C(q) 

p (η, ε), 

IGo 
p,q(r, z) = G(r, z)

(
1 − iz 
1 + iz

)p/2 

S(q) 
p (iξ,  ε)S(q) 

p (η, ε), (2.12)
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where C(q) 
p (t, ε)  and S(q) 

p (t, ε)  are even and odd Ince polynomials, respectively, and 
indices p and q are nonnegative integer numbers (q ≤ p). 

Unfortunately, a tradition to write down the even and odd IG modes differently 
and study them separately leads to unjustified complications in the designations: the 
index q is chosen of the same parity as p, i.e. q = {p, p − 2, p − 4, . . .}. If  p is odd 
then this list stops at q = 1, but  if  p is even then it stops at q = 0 for modes IGe 

and at q = 2 for modes IGo . This separation is probably related with the initial form 
of the Ince polynomials N (t) expressed via sin kt or coskt. If, instead of the sines 
and cosines, exponentials eikt were used and if the IG modes were not separated into 
even and odd, then, for any fixed p, the index q would range from 0 till p, respective 
numbers λq(p, ε)  would be sorted ascending, and this would allow investigating the 
IG modes in a unified way, similarly to the Hermite-Gaussian modes, for which, 
despite the Hermite polynomials being both even and odd, the family of the HG 
modes is not split into the even and odd subfamilies. However, at this point, we will 
adhere to the commonly used designations. 

Since the IG modes are structurally stable, below we write them at z = 0, omitting 
the argument z for brevity, but specifying explicitly the dependence on the parameter 
ε: IG(e,o) 

p,q (r, z) → IG(e,o) 
p,q (r) → IG(e,o) 

p,q (r, ε). Such a notation is convenient when 
studying limiting cases ε = 0 and ε = ∞, when the IG modes reduce to the LG 
and HG modes, respectively. In addition, similarly to Eq. (2.6), we use the IG modes 
with and without normalization: 

IG(e,o) 
p,q (r, ε)  = 

I(e,o) 
p,q (r, ε)∥∥∥I(e,o) 
p,q (r, ε)

∥∥∥ , (2.13) 

preferring the non-normalized variant in cumbersome cases, I(e,o) 
p,q (r, ε), since for 

the IG modes, it is generally much simpler than the normalized one. 

2.1.2 Expansions of the IG Modes by the HG and LG Modes 
at Small Values of P 

The simplest case is when p = 0. Then, q = 0 and the even IG mode reduces to the 
conventional Gaussian beam: 

IGe 
0,0(r, ε)  = HG0,0(r) = LG0,0(r). (2.14) 

The following three modes are also independent of the parameter ε and were given 
in [4, 5]: 

IGe 
1,1(r, ε)  = HG1,0(r) =

√
2ReLG0,1(r), 

IGo 
1,1(r, ε)  = HG0,1(r) =

√
2ImLG0,1(r),
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IGo 
2,2(r, ε)  = HG1,1(r) =

√
2ImLG0,2(r). (2.15) 

Cases with the Characteristic Polynomial of Degree 2 

Below, without derivation, we give explicit analytical expressions for those IG modes, 
for which the characteristic polynomial reduces to a quadratic polynomial and the 
respective roots λq(p, ε)  can be expressed in square radicals. 

It is worth noting that if the initial definition ε = 2σ 2 is dropped. the parameter 
ε (ellipticity parameter) can be considered to be a negative number (as noticed by 
Edward Ince [18]). Therefore, in addition to the limiting cases of the IG modes with 
ε = 0 and ε = ∞, we also consider a case when ε = −∞. 

In Table 2.1 (and in Tables 2.3 and 2.7 below), the following designations are 
used: HGn,m(r) and LGp,l(r) are the normalized Hermite-Gaussian and Laguerre-
Gaussian modes (2.6), and IG(e,o) 

p,q (r, ε)  are the normalized Ince-Gaussian modes 
(2.13).

The coefficients a, b, c, d here are positive, monotonically increasing functions 
of ε: 

a = ε +
√

ε2 + 1, b = ε − 1 +
√

(ε − 1)2 + 3, 

c = ε + 1 +
√

(ε + 1)2 + 3, d = (ε +
√

ε2 + 9)
/
3. (2.16) 

We should note a similarity of the IG modes with equal indices p and parity flags 
(e, o). For instance, for obtaining the mode IGo 

4,4(r, ε)  from the mode IGo 
4,2(r, ε), 

it is sufficient to swap the superposition coefficients and change the sign of one of 
them. It turns out that a similar property is valid in a more general case. Namely, if for 
fixed values p and (e, o) the whole set of IG modes is known, excepting one mode, 
then this unknown mode can be obtained by manipulating the expansion coefficients 
of the modes from the set. When the characteristic polynomial is quadratic, there are 
only two modes and the “manipulation” is just a swapping of the coefficients with 
a sign change. For more complicated cases, manipulations are also more compli-
cated. However, they are incomparably simpler than obtaining the dependence of the 
superposition coefficients on the ellipticity parameter. 

Cases with the Characteristic Polynomial of Degree 3 

For the mode IGe 
4,2m(r, ε)  with m = 0, 1, 2, we get the following characteristic 

equation: 

χ e 4 (λ, ε) = λ3 − 20λ2 + 16(4 − ε2 )λ + 192ε2 = 0, (2.17) 

whose roots λe 
m(ε) can be found by using the Cardano formula. In the ascending 

order they read as 

λe 
0 = 20 3 − 2c4, λe 

1 = 20 3 + c4 − s4 
√
3, λe 

2 = 20 3 + c4 + s4 
√
3 (2.18)
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Table 2.1 Normalized IG beams expressed as superpositions of two HG beams or two LG beams, 
and their limiting cases 

ε → −∞ ε = 0 ε → +∞  

IGe 
2,0(r, ε)  = −  

HG2,0(r) + a · HG0,2(r) √
1 + a2 

= 
(a − 1)ReLG0,2(r) + (a + 1)LG1,0(r) √

2 · √
1 + a2 

−HG2,0(r) LG1,0(r) −HG0,2(r) 

IGe 
2,2(r, ε)  = +  

a · HG2,0(r) − HG0,2(r) √
1 + a2 

= 
(a + 1) 

√
2ReLG0,2(r) − (a − 1)LG1,0(r) √

2 · √
1 + a2 

−HG0,2(r)
√
2ReLG0,2(r) +HG2,0(r) 

IGe 
3,1(r, ε)  = −

√
3 · HG3,0(r) + b · HG1,2(r) √

3 + b2 

=
√
3(b − 1)ReLG0,3(r) + (b + 3)ReLG1,1(r) √

2 · √
3 + b2 

−HG3,0(r)
√
2ReLG1,1(r) −HG1,2(r) 

IGe 
3,3(r, ε)  = +  

b · HG3,0(r) −
√
3 · HG1,2(r) √

3 + b2 

= 
(b + 3)ReLG0,3(r) −

√
3(b − 1)ReLG1,1(r) √

2 · √
3 + b2 

−HG1,2(r)
√
2ReLG0,3(r) +HG3,0(r) 

IGo 
3,1(r, ε)  = −

√
3 · HG2,1(r) + c · HG0,3(r) √

3 + c2 

= 
(c − 3)ImLG0,3(r) +

√
3(c + 1)ImLG1,1(r) √

2 · √
3 + c2 

−HG2,1(r)
√
2ImLG1,1(r) −HG0,3(r) 

IGo 
3,3(r, ε)  = +  

c · HG2,1(r) −
√
3 · HG0,3(r) √

3 + c2 

=
√
3(c + 1)ImLG0,3(r) − (c − 3)ImLG1,1(r) √

2 · √
3 + c2 

−HG0,3(r)
√
2ImLG0,3(r) +HG2,1(r) 

IGo 
4,2(r, ε)  = −  

HG3,1(r) + d · HG1,3(r) √
1 + d2 

= 
(d − 1)ImLG0,4(r) + (d + 1)ImLG1,2(r) √

1 + d2 

−HG3,1(r)
√
2ImLG1,2(r) −HG1,3(r) 

IGo 
4,4(r, ε)  = +  

d · HG3,1(r) − HG1,3(r) √
1 + d2 

= 
(d + 1)ImLG0,4(r) + (d − 1)ImLG1,2(r) √

1 + d2 

−HG1,3(r)
√
2ImLG0,4(r) +HG3,1(r)

with 

c4 = 4 3 
√
13 + 3ε2 cos φ, s4 = 4 3 

√
13 + 3ε2 sin φ, 

φ = 1 3 arccos
(

− 
35 − 18ε2 

(13 + 3ε2)3/ 2

)
. 

Asymptotic expansions of all three roots at small and large values of ε are written 
in Table 2.2
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Table 2.2 Asymptotic 
expansions of the roots (2.18) ε ≈ 0 ε → ∞  

λe 0 −3ε2 + 33 16 ε
4 − . . . −4ε + 4 − 6 

ε + 12 
ε2 

− . . .  

λe 1 4 + 8ε2 3 − 56ε4 27 + . . . 12 − 24 
ε2 

− 24 
ε4 

+ . . .  

λe 2 16 + ε2 3 − 5ε4 432 + . . . 4ε + 4 + 6 
ε + 12 

ε2 
+ . . .  

Table 2.3 Limiting cases of 
the normalized even IG 
modes at p = 4 

ε → −∞ ε = 0 ε → +∞  
IGe 

4,0(r, ε)  +HG4,0(r) LG2,0(r) +HG0,4(r) 

IGe 
4,2(r, ε)  +HG2,2(r)

√
2ReLG1,2(r) −HG2,2(r) 

IGe 
4,4(r, ε)  +HG0,4(r)

√
2ReLG0,4(r) +HG4,0(r) 

These formulae are very useful for investigating the limiting cases ε → 0 and 
ε → ∞. 

For p = 4, the even, non-normalized IG modes are given by 

Ie 
4,2m(r, ε)  = 32

{
2ReL0,4(r) − A1ReL1,2(r) + A0L2,0(r)

}
= (A0 + A1 + 1)H4,0(r) + (2A0 − 6)H2,2(r) 

+ (A0 − A1 + 1)H0,4(r), (2.19) 

with m = 0, 1, 2 and 

A0 = A0(m, ε)  = 
(λe 

m − 4)(λe 
m − 16) 

4ε2
− 1, 

A1 = A1(m, ε)  = 
λe 
m − 16 

ε 
. (2.20) 

We do not present the normalized version in order to avoid cumbersome fractions, 
and give the normalized IG modes only in the limiting cases (Table 2.3). 

For numerical computation of the IG modes, when the ellipticity parameter is 
not very small and not very large, the Cardano formula along with expansions 
(2.19) should be employed, with adding the normalizing multiplier if necessary. 
If, however, the ellipticity parameter is close to the limiting values, then the asymp-
totic expressions of the characteristic roots are more convenient. For instance, if 
m = 2 and ε → 0, we get A0 = −  1 144 ε

2 + O(ε4), A1 = 1 
3 ε + O(ε3), and, thus, 

Ie 
4,4(r, ε)  = 64ReL0,4(r) − 32 3 εReL1,2(r) + O(ε2). 
For many values of ε, the roots of the Eq. (2.17) can be easily found without using 

the Cardano formula, for example, for ε =
{
1 
2 

√
5, 2, 6 5 

√
5, 3 2 

√
5,

√
10, 2 

√
5
}
. It is  

enough to choose some integer λ as a root and find which ε it corresponds to (relative 
to ε, Eq. (2.17) is quadratic). In particular, for ε = 2 we get λe 

0 = 6 − 2 
√
33, λe 

1 = 8, 
λe 
2 = 6 + 2 

√
33.
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In addition, it can be shown that a simple interrelation exists between the IG 
modes constructed for the parameters ε and –ε: 

IGe 
p,2m(x, y, −ε) = (−1)m IGe 

p,2m(y, x, ε),  
IGo 

p,2m(x, y, −ε) = (−1)m+1 IGo 
p,2m(y, x, ε),  

IGo 
p,2m+1(x, y, −ε) = (−1)m IGe 

p,2m+1(y, x, ε). (2.21) 

The first two formulae here are written for the even value of p, whereas the last 
one—for an odd p. This demonstrates once again that the case of negative ε is no 
less important in investigating the IG modes as the case of positive ε. In particular, 
Eq. (2.21) indicate that the IG modes with the negative parameter ε are also orthogonal 
to each other, similarly to the modes with the positive ε. 

The proof of the relations (2.21) is based upon the following property of the 
characteristic polynomials: 

χ (e,o) p (λ, ε) = χ (e,o) p (λ, −ε), if p is even, 
χ o p (λ, ε) = χ e p (λ, −ε), if p is odd. (2.22) 

Now we consider the case p = 5. For the even IG modes, the characteristic 
equation is given by 

χ e 5 (λ, ε) = λ3 − (35 + 3ε)λ2 + (259 + 102ε − 13ε2 )λ 
− 225 − 675ε + 205ε2 + 15ε3 = 0. (2.23) 

We again apply the variant of the Cardano formula when the cubic equation has 
three real-valued roots, and these roots in the ascending order read as 

λe 
0 =

(
35 
3 + ε

) − 2c5, λe 
1 =

(
35 
3 + ε

) + c5 − s5 
√
3, 

λe 
2 =

(
35 
3 + ε

) + c5 + s5 
√
3, (2.24) 

where 

c5 = 4 3 
√
28 − 6ε + 3ε2 cos φ, s5 = 4 3 

√
28 − 6ε + 3ε2 sin φ, 

φ = 1 3 arccos
(

− 
80 + 9ε − 18ε2 

(28 − 6ε + 3ε2)3/ 2

)

Asymptotic expansions of all three roots at small and large ε are given in Table 2.4.
For p = 5, even IG modes (without normalization) are given by 

Ie 
5,2m+1(r, ε)  = 64 

√
2
{
2ReL0,5(r) − A1ReL1,3(r) + A0ReL2,1(r)

}
= (A0 + A1 + 1)H5,0(r) + 2(A0 − A1 − 5)H3,2(r) 

+ (A0 − 3A1 + 5)H1,4(r), (2.25)
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Table 2.4 Asymptotic 
expansions of the roots (2.24) ε ≈ 0 ε → ∞  

λe 0 1 + 3ε − ε2 + . . . −3ε + 13 − 18 
ε + 18 

ε2 
+ . . .  

λe 1 9 + 11ε2 16 + 3ε3 8 + . . . ε + 17 + 8 
ε − 48 

ε2 
+ . . .  

λe 2 25 + 5ε2 16 + . . . 5ε + 5 + 10 
ε + 30 

ε2 
+ . . .

with m = 0, 1, 2 and 

A0 = A0(m, ε)  = 
(λe 

m − 9)(λe 
m − 25) 

2ε2
− 

5 

2 
, 

A1 = A1(m, ε)  = 
λe 
m − 25 

ε 
. 

In the limiting cases, the normalized IG modes are shown in Table 2.5. 
Equation (2.22) leads to relations between the roots of the characteristic polyno-

mials: λo 
m(ε) = λe 

m(−ε). Therefore, due to Eq. (2.21), odd IG modes are obtained 
from the even IG modes by swapping the indices of the HG modes, replacing ε by 
−ε, and adding a multiplier (−1)m: 

Io 
5,2m+1(r, ε)  = 64 

√
2
{
2ImL0,5(r) − B1ImL1,3(r) + B0ImL2,1(r)

}
= (B0 + 3B1 + 5)H4,1(r) + 2(B0 + B1 − 5)H2,3(r) 

+ (B0 − B1 + 1)H0,5(r), (2.26) 

with m = 0, 1, 2 and 

B0 = B0(m, ε)  = 
(λo 

m − 9)(λo 
m − 25) 

2ε2
− 

5 

2 
, 

B1 = B1(m, ε)  = 
λo 
m − 25 

ε 
. 

Similarly to the above considered case p = 4, for many values of ε, the  
roots of the characteristic polynomials can be found without using the Cardano 
formula. For instance, for the even IG modes, the following values can be 
chosen: ε = {

1, 3 2 , 3, 5, 
21 
4 , 8

}
, whereas for the odd IG modes—the values 

ε = {
3 
4 , 

7 
5 , 

7 
3 , 3, 

88 
15 , 

45 
4

}
. In particular, for ε = 3, we get the roots λe 

m = {0, 16, 28}

Table 2.5 Limiting cases of 
normalized even IG modes at 
p = 5 

ε → −∞ ε = 0 ε → +∞  

IGe 
5,1(r, ε)  +HG5,0(r)

√
2ReLG2,1(r) +HG1,4(r) 

IGe 
5,3(r, ε)  +HG3,2(r)

√
2ReLG1,3(r) −HG3,2(r) 

IGe 
5,5(r, ε)  +HG1,4(r)

√
2ReLG0,5(r) +HG5,0(r) 
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and λo 
m =

{
8 − 2 

√
97, 10, 8 + 2 

√
97

}
. Therefore, for example, 

Ie 
5,1(r, 3) = 48

{H5,0(r) + 10H3,2(r) + 15H1,4(r)
}
, 

Io 
5,3(r, 3) = 48

{−H0,5(r) + 10H2,3(r) + 5H4,1(r)
}
. (2.27) 

There is one more case left with the cubic characteristic equation. This is the case 
p = 6 for the odd IG modes: 

χ o 6 (λ, ε) = λ3 − 56λ2 + 16(49 − ε2 )λ − 384(6 − ε2 ) = 0. (2.28) 

Then 

λe 
0 = 56 3 − 2c6, λe 

1 = 56 3 + c6 −
√
3s6, 

λe 
2 = 56 3 + c6 +

√
3s6, (2.29) 

with 

c6 = 4 3 
√
49 + 3ε2 cos φ, s6 = 4 3 

√
49 + 3ε2 sin φ, 

φ = 1 3 arccos
(

− 
143 − 18ε2 

(49 + 3ε2)3/ 2

)
. 

Correspondingly, the odd, non-normalized IG modes are given by 

Io 
6,2m+2(r, ε)  = 128

{
4ImL0,6(r) − 2B2ImL1,4(r) + 2B1ImL2,2(r)

}
= 2(B1 + 2B2 + 3)H5,1(r) + 4(B1 − 5)H3,3(r) 

+ 2(B1 − 2B2 + 3)H1,5(r), (2.30) 

with m = 0, 1, 2 and 

B1 = 
(λe 

m − 16)(λe 
m − 36) 

2ε2
− 3, B2 = 

λe 
m − 36 

ε 
. 

Cubic Eq. (2.28) can be solved without using the Cardano formula, for instance, 

for ε =
{
2 
3 

√
10,

√
6, 3 2 

√
6, 4, 3 2 

√
11, 2 

√
7, 2 

√
11

}
. In particular, for ε = 

√
6, we  

get the roots λo 
m =

{
0, 28 − 4 

√
6, 28 + 4 

√
6
}
. Therefore, 

Io 
6,2(r,

√
6) = 24

{
(4 − √

6)H5,1(r) + 20 3 H3,3(r) + (4 + 
√
6)H1,5(r)

}
, 

Io 
6,4(r,

√
6) = 8 3 (6 + 

√
6)

{
− 1 

5 (3 + 2 
√
6)H5,1(r) − 2H3,3(r) + H1,5(r)

}
, 

Io 
6,6(r,

√
6) = 8 3 (6 − 

√
6)

{
H5,1(r) − 2H3,3(r) − 1 5 (3 − 2 

√
6)H1,5(r)

}
. (2.31)
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Even IG Modes at P = 6 
Now we consider the case p = 6 for the even IG modes. The characteristic polynomial 
is quartic: 

χ e 6 (λ, ε) = λ4 − 56λ3 + 8(98 − 5ε2 )λ2 

− 96(24 − 17ε2 )λ − 144ε2 (96 − ε2 ) = 0. (2.32) 

Its roots λe 
m(ε) can be obtained by the Ferrari formula. We use the variant of this 

formula presented in [19]. Let us introduce an auxiliary variable h = 4 3 (49 + 5ε2) + 
C6 + S6 

√
3 with 

C6 = 4 3 
√
889 + 178ε2 + 13ε4 cos φ, 

S6 = 4 3 
√
889 + 178ε2 + 13ε4 sin φ, 

φ = 1 3 arccos
(

− 
24013 − 6033ε2 + 1317ε4 + 35ε6 

(889 + 178ε2 + 13ε4)3/ 2

)
. 

Then four roots of Eq. (2.32) in the ascending order are expressed via h as follows: 

λe 
0 = 14 − √

h −
√
4(49 + 5ε2) − h − 

64(9 − 2ε2) √
h 

, 

λe 
1 = 14 − √

h +
√
4(49 + 5ε2) − h − 

64(9 − 2ε2) √
h 

, 

λe 
2 = 14 + √

h −
√
4(49 + 5ε2) − h + 

64(9 − 2ε2) √
h 

, 

λe 
3 = 14 + √

h +
√
4(49 + 5ε2) − h + 

64(9 − 2ε2) √
h 

. (2.33) 

Asymptotic expansions of all roots at small and large ε are written in Table 2.6. 
Then the non-normalized IG modes are expressed via the LG and HG modes in 

the following way:

Table 2.6 Asymptotic 
expansions of the roots (2.33) ε ≈ 0 ε → ∞  

λe 0 −6ε2 + 129ε4 16 − . . . −6ε + 6 − 15 
ε + 60 

ε2 
− . . .  

λe 1 4 + 31ε2 6 − 28069ε4 3456 + . . .  −2ε + 22 − 21 
ε − 60 

ε2 
+ . . .  

λe 2 16 + 8ε2 15 + 3193ε4 54000 − . . . 2ε + 22 + 21 
ε − 60 

ε2 
− . . .  

λe 3 36 + 3ε2 10 + 3ε4 
16000 + . . . 6ε + 6 + 15 

ε + 60 
ε2 

+ . . .
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Table 2.7 Limiting cases of 
normalized even IG modes at 
p = 6 

ε → −∞ ε = 0 ε → +∞  
IGe 

6,0(r, ε)  −HG6,0(r) LG3,0(r) −HG0,6(r) 

IGe 
6,2(r, ε)  −HG4,2(r)

√
2ReLG2,2(r) +HG2,4(r) 

IGe 
6,4(r, ε)  −HG2,4(r)

√
2ReLG1,4(r) −HG4,2(r) 

IGe 
6,6(r, ε)  −HG0,6(r)

√
2ReLG0,6(r) +HG6,0(r)

Ie 
6,2m(r, ε)  = 128

{
4ReL0,6(r) − 2A2ReL1,4(r) 

+2A1ReL2,2(r) − 3A0L3,0(r)
}

= (A0 + A1 + A2 + 1)H6,0(r) 
+ (3A0 + A1 − 5A2 − 15)H4,2(r) 
+ (3A0 − A1 − 5A2 + 15)H2,4(r) 
+ (A0 − A1 + A2 − 1)H0,6(r), (2.34) 

with m = 0, 1, 2, 3 and 

A0 = 
(λe 

m − 4)(λe 
m − 16)(λe 

m − 36) 
12ε3

− 
4(λe 

m − 24) 
3ε 

, 

A1 = 
(λe 

m − 16)(λe 
m − 36) 

2ε2
− 3, A2 = 

λe 
m − 36 

ε 
. 

In the limiting cases, the normalized IG modes are shown in Table 2.7. 
It is obvious that when the index p and, respectively, degree of the char-

acteristic polynomial, increase, finding all its roots in a simple form and 
without numerical methods becomes less and less possible. Nevertheless, it 
is easy to check that for the value ε = √

19 one gets the roots λe 
m ={

−22, 18 − 4 
√
6, 18 + 4 

√
6, 42

}
, whereas the value ε = 3 

√
3 leads to the roots 

λe 
m =

{
2 − 8 

√
13, 26 − 4 

√
22, 2 + 8 

√
13, 26 + 4 

√
22

}
. Thus, for example, 

Ie 
6,0(r,

√
19) = 8

{(
7 − 

31 √
19

)
H6,0(r) +

(
5 − 

35 √
19

)
H4,2(r) 

−
(
5 + 

35 √
19

)
H2,4(r) −

(
7 + 

31 √
19

)
H0,6(r)

}
. (2.35) 

2.1.3 Numerical Methods and IG Modes 

It is known that for all characteristic polynomials χ (e,o) p (λ, ε), regardless the index 
p and the parity flag (e, o), the coefficient at any term of the form λν εμ is an integer
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number. Therefore, the series expansions of the roots λ(e,o) 
m (ε) by powers of ε (both at 

ε → 0 and at ε → ±∞) have the expansion coefficients which are rational numbers 
(see the above formulae as examples of such expansions). Consequently, asymptotic 
expansions of the IG modes by the LG and HG modes have the coefficients that can 
be represented as series of the powers of ε (if ε → 0, then by powers ε, ε2, …; if  
ε → ±∞, then by the negative powers), and the coefficients in these series are also 
rational ones. 

For instance, let us consider the mode IGe 
3,1(r, ε), writing it in the following form: 

IGe 
3,1(r, ε)  = 1 

2 
√
2π 

· (A0 + 1)H3,0(r) + (A0 − 3)H1,2(r) √
(A0 + 1)23 + (A0 − 3)2 

. (2.36) 

Here, 2 
√
2π = ∥∥H1,2(r)

∥∥ = 4
∥∥L1,1(r)

∥∥ and 

A0 = 
λe 
0 − 9 
ε 

= 
−4 + ε − 2 

√
4 − 2ε + ε2 

ε 
. 

If in the expansion coefficients at ε → 0 and ε → +∞  we retain only terms up 
to ε3 and ε–4 respectively, then we get the following asymptotics. 

If ε → 0 then 

IGe 
3,1(r, ε)  = 1 

2 
√
2π 

·
{(

− 
1 

2 
+ 

ε 
16 

+ 
7ε2 

256 
+ 

11ε3 

2048 
− . . .

)
H3,0(r) 

+
(

− 
1 

2 
− 

3ε 
16 

− 
9ε2 

256 
+ 

15ε3 

2048 
+ . . .

)
H1,2(r)

}
. (2.37) 

In particular, since − 1 
2

{H3,0(r) + H1,2(r)
} = 4 

√
2ReL1,1(r), then, as a limiting 

case, we get an identity that is already well known: IGe 
3,1(r, 0) =

√
2ReLG1,1(r). 

If ε → +∞  then 

IGe 
3,1(r, ε)  = 

1 

2 
√
2π

{(
− 

1 

2ε 
− 

1 

2ε2 
+ 1 

16ε3 
+ 

19 

16ε4 
+ . . .

)
H3,0(r) 

+
(

−1 + 
3 

8ε2 
+ 

3 

4ε3 
+ 45 

128ε4 
+ . . .

)
H1,2(r)

}
. (2.38) 

Here, in the limiting case, we get a HG mode: IGe 
3,1(r, ∞) = −HG1,2(r).
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2.1.4 Applying the Padé Approximants for Approximate 
Computation of IG Modes 

In this Section, we demonstrate on a concrete example how the Padé approximants 
can be employed for computing the IG modes. In the limiting case, IG mode reduces 
to a HG mode: IGe 

3,1(r, ∞) = −HG1,2(r) (third row in Table 2.1). To obtain an 
approximate expansion of the mode IGe 

3,1(r, ε)  by the HG modes, which is suitable 
for the whole range ε ∈ [0, ∞), we use the Padé approximants [20]. The Padé 
approximant of some function f (z) is given by the expression 

f (z
∣∣[L/

M ] ) = 
a0 + a1z +  · · ·  +  aLzL 

1 + b1z +  · · ·  +  bM zM 
, (2.39) 

where the coefficients ak and bk are chosen so that at small values z, it has  several  
first terms of the Taylor expansion by the powers of z, exactly the same as those of 
the function f (z), whereas at large z, several first terms of the asymptotic expansion 
by the powers (1

/
z) are the same as those of the function f (z). 

Combining both formulae (2.37) and (2.38) into the one, we get 

IGe 
3,1(r, ε)  = 1 

2 
√
2π 

· {
C3,0(ε)H3,0(r) + C1,2(ε)H1,2(r)

}
, (2.40) 

where exact representations of the functions of ε are given by Eq. (2.36), whereas 
their approximations in the form of Eq. (2.39) depend on the choice of the parameters 
L and M. Since 

C3,0(0) = C1,2(0) = −  
1 

2 
, C3,0(ε) ≈

ε→∞ − 
1 

2ε 
, C1,2(∞) = −1, 

then the Padé approximants of the functions C3,0(ε) and C1,2(ε) should have the 
following form: 

C3,0(ε
∣∣[L/

(L + 1)] ) = − 1 
2 + a1ε +  · · ·  +  aLεL 

1 + b1ε +  · · ·  +  bLεL − 2aLεL+1 
, 

C1,2(ε
∣∣[L/

L] ) = − 1 
2 + ã1ε +  · · ·  +  ̃aLεL 

1 + b̃1ε +  · · ·  +  ̃bL−1εL−1 − ãLεL 
. (2.41) 

For each fixed value of the parameter L, the coefficients of the rational functions 
in Eq. (2.41) can be found by solving systems of equations. These equations are 
obtained if we expand functions (2.41) into series in powers of ε at ε → 0 and 
in powers of 1

/
ε at ε → +∞, and then make equal these expansions to those 

already known from formulae (2.37) and (2.38). This approach is easy to implement 
in modern computer algebra systems. We here give only the simplest results when 
the obtained fractions are not very cumbersome yet:
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C3,0(ε
∣∣[2/3] ) = − 1 

2 − 1711 6176 ε − 20 
193 ε

2 

1 + 2097 3088 ε + 1071 3088 ε
2 + 40 

193 ε
3 
, 

C1,2(ε
∣∣[2/2] ) = 

− 1 
2 − 3 8 ε − 27 

128 ε
2 

1 + 3 8 ε + 27 
128 ε

2 
, 

C1,2(ε
∣∣[3/3] ) = 

− 1 
2 − 2865 6896 ε − 13311 55168 ε

2 − 93 
862 ε

3 

1 + 393 862 ε + 13311 55168 ε
2 + 93 

862 ε
3 

. (2.42) 

Differences between the exact functions C3,0(ε) and C1,2(ε) and their Padé 
approximants are depicted in Fig. 2.1. In particular, the maximal difference∣∣C3,0(ε) − C3,0(ε

∣∣[L/
(L + 1)] )∣∣ is 0.0187 for L = 2 and 0.0063 for L = 3; while 

the maximal difference
∣∣C1,2(ε) − C1,2(ε

∣∣[L/
L] )∣∣ is 0.0631 for L = 2 and 0.0224 

for L = 3. Here, the expansions C3,0(ε
∣∣[L/

(L + 1)] ) coincide with the expansions 
C3,0(ε) up to the terms εL and 1

/
εL+1, inclusively, whereas for C1,2(ε

∣∣[L/
L] ) and for 

C1,2(ε) the coincidence is up to the terms εL and 1
/

εL−1. Increasing the parameter L 
makes it possible to obtain more and more accurate approximations of the IG mode, 
although it is accompanied by more cumbersome fractional rational expressions for 
the coefficients. 

It is worth noting that using the Padé approximants does not require knowing the 
exact expressions for the functions C3,0(ε) and C1,2(ε). Instead, it quite suffices to 
know the first few terms of the series expansions of these functions (in powers of ε at 
ε → 0 and in powers of 1

/
ε at ε → +∞). These expansions are obtained from the 

expansions of the roots of the characteristic equation, and for expanding the roots by 
the powers of ε or 1

/
ε, well known conventional methods are used. 

In this Section, the use of the Padé approximants is demonstrated for the mode 
IGe 

3,1(r, ε), expanded into the series of HG modes. It is easy to see that this approach 
is suitable for any other IG modes. Its value for numerical computations of the modes 
IG(e,o) 

p,q (r, ε)  becomes obvious for large values of the index p because in this case 
roots of the characteristic equation cannot be expressed in radicals explicitly.

Fig. 2.1 The curves indicating the errors between the exact and approximate functions from 
Eq. (2.40): C3,0(ε) − C3,0(ε

∣∣[L/
(L + 1)] ) (continuous) and C1,2(ε

∣∣[L/
L] ) − C1,2(ε) (dashed) 

for L = 2 and L = 3. We intentionally took different signs for both expressions so that the curves 
locate on opposite sides of the x-axis 
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2.1.5 Numerical Simulation 

In this Section, we obtain intensity distributions of the IG beams of different orders 
and with different values of the parameter ε, computed by solving the characteristic 
equation and by expansion into the LG modes. For computations, expressions (2.19), 
(2.25), (2.26), (2.30) and (2.34) are used, as well as Table 2.1. 

Computation of the Ince-Gaussian Beams at P = 3 
Figure 2.2 illustrates intensity distributions of the IG modes at p = 3 for several 
values of the parameter ε. 

Figure 2.2 confirms that if the parameter ε is small (ε ≈ 0), the mode IGe 
3,3 

reduces to ReLG0,3 with the amplitude being proportional to cos 3φ, i.e. the intensity 
contains six petals, residing on a single light ring. In addition, Fig. 2.2 confirms that 
the intensity of the odd mode IGo 

3,3 also contains six petals, but rotated by the angle 
of π/6. 

As is also seen in Fig. 2.2, the intensity pattern of the even IG beam IGe 
3,1 with 

a small parameter ε has two petals and a ring split into two arcs elongated along 
the vertical axis. Correspondingly, the intensity of the odd beam IGo 

3,1 with a small 
parameter (ε ≈ 0) has also two petals that divide two light rings, but directed along 
the horizontal axis. 

At large values of the parameter ε (ε � 1), IG modes are defined by the HG 
modes and have Cartesian symmetry. It is seen that at ε � 1, the even mode IGo 

3,1

20� �� 3� �� 1� �� 0� � 1� � 3� � 20� �

Fig. 2.2 Intensity distributions of the IG modes IGe 
3,1(r, ε), IG

e 
3,3(r, ε), IG

o 
3,1(r, ε), and  

IGo 
3,3(r, ε)  (from top to bottom) for some values of the parameter ε. Other parameters are the 

following: wavelength λ = 532 nm, Gaussian beam wais radius w0 = 1 mm  
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coincides by the intensity with the HG mode HG1,2 and has 6 local maxima, whereas 
the mode IGe 

3,3 coincides with the HG mode HG3,0 and has 4 petals, residing on 
the horizontal axis. On the contrary, for the odd modes at ε � 1, the mode IGo 

3,1 
has 4 petals on the vertical axis, while the mode IGo 

3,3 has 6 petals separated by two 
vertical and one horizontal zero-intensity lines. 

Computation of the IG Beams at P = 4 
Shown in Fig. 2.3 are intensity distributions of the IG beams with p = 4 for  several  
values of the parameter ε. 

As seen in Fig. 2.3, indeed, when the parameter ε is small, IG modes coincide with 
corresponding LG modes: the beam IGe 

4,0 has the intensity with one central light spot 
and two surrounding light rings, the beam IGe 

4,2 has the intensity with four petals on 
each of these two rings. The intensity of the beam IGe 

4,4 has 8 petals residing on a 
ring, whereas the intensity of the beam IGo 

4,2 also contains 8 petals, but they reside 
by 4 petals on each of the two rings. The beam IGo 

4,4 has the intensity with 8 petals 
residing on a single ring. 

Besides, Fig. 2.3 confirms that for the large values of the parameter ε, IG beams 
coincide with the HG beams. Therefore, intensity patterns of the IG beams at ε � 1 
coincide with respective HG beams. The intensity of the beam IGe 

4,0 has 5 petals,

20� �� 3� �� 1� �� 0� � 1� � 3� � 20� �

Fig. 2.3 Intensity distributions of the IG modes IGe 
4,0(r, ε), IG

e 
4,2(r, ε), IG

e 
4,4(r, ε), IG

o 
4,2(r, ε), 

and IGo 
4,4(r, ε)  (from top to bottom) for some values of the parameter ε. Other parameters are the 

following: wavelength λ = 532 nm, Gaussian beam wais radius w0 = 1 mm  
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residing on the vertical axis and separated by four horizontal zero-intensity lines; 
the intensity of the beam IGe 

4,2 has 9 petals, separated by two horizontal and two 
vertical zero-intensity lines; the intensity of the beam IGe 

4,4 has 5 petals, residing 
on the horizontal axis and separated by four vertical zero-intensity lines; the beam 
IGo 

4,2 has the intensity with 8 petals, separated by one vertical and three horizontal 
zero-intensity lines, and the beam IGo 

4,4 has the same intensity as that of the beam 
IGo 

4,2, but rotated by π/2. 
A comparison of Fig. 2.2 for p = 3 and Fig. 2.3 for p = 4 reveals that if p is even then 

changing the sign of the parameter ε leads to rotation of the intensity pattern (Fig. 2.3), 
whereas if p is odd then changing the sign of ε leads not only to rotation of the 
intensity pattern, but it is also changed (Fig. 2.2). This follows from Eq. (2.21). This 
equation indicates that for even value p, the IG functions are not changed themselves. 
Instead, only their arguments are swapped: IGe 

p,2m(x, y, −ε) = (−1)mIGe 
p,2m(y, x, ε)  

or IGo 
p,2m(x, y, −ε) = (−1)m+1IGo 

p,2m(y, x, ε). Due to this arguments interchange, 
the intensity rotates by π/2 (Fig. 2.3). On the contrary, for odd values p, when ε 
changes sign, not only the arguments are swapped, but the functions are changed (an 
even to an odd, or vice versa): IGo 

p,2m+1(x, y, −ε) = (−1)mIGe 
p,2m+1(y, x, ε). 

Computation of the IG Beams at P = 5 
Figure 2.4 depicts the intensity distributions of the IG beams with p = 5 for several 
values of the parameter ε.

Similarly to the smaller values p, Fig.  2.4 demonstrates that if the parameter ε is 
small then the IG modes coincide with the real and imaginary parts of the LG modes, 
and, on the contrary, if the parameter ε is large by modulus, the IG modes reduce to 
one of the HG modes. 

Computation of the IG Beams at P = 6 
Figure 2.5 illustrates the intensity distributions of the IG beams with p = 6 for several 
values of the parameter ε.

Figure 2.5 confirms that if the ellipticity parameter ε is small then the mode IGe 
6,0 

has the intensity with a shape of a central spot surrounded by three light rings, the 
mode IGe 

6,2 has the intensity with 4 petals on each of three light rings, the mode 
IGe 

6,4 has the intensity with 8 petals on two light rings, and the mode IGe 
6,6 has the 

intensity with 12 petals on a single light ring. The intensity pattern of the mode IGo 
6,2 

coincides with that of the mode IGe 
6,2, rotated by π/4, intensity pattern of the mode 

IGo 
6,4 coincides with that of the mode IGe 

6,4, rotated by π/8, and intensity pattern of 
the mode IGo 

6,6 coincides with that of the mode IGe 
6,6, rotated by π/12. 

It is also seen in Fig. 2.5 that when the parameter ε is large and positive, IG modes 
coincide with corresponding HG modes. Thus, intensity distribution of the mode 
IGe 

6,0 has 6 horizontal zero-intensity lines, the mode IGe 
6,2 has two vertical and four 

horizontal zero-intensity lines, the mode IGe 
6,4 has, vice versa, four vertical and two 

horizontal zero-intensity lines. The intensity of the mode IGe 
6,6 is the same as that 

of the mode IGe 
6,0, but rotated by π/2. The mode IGo 

6,2 has the intensity with one 
vertical and five horizontal zero-intensity lines, the mode IGo 

6,4 has the intensity with
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20� � � 3� � � 1� � � 0� � 1� � 3� � 20� �

Fig. 2.4 Intensity distributions of the IG modes IGe 
5,1(r, ε), IG

e 
5,3(r, ε), IG

e 
5,5(r, ε)  (rows 1–3), 

IGo 
5,1(r, ε), IG

o 
5,3(r, ε), IG

o 
5,5(r, ε)  (rows 4–6) for some values of the parameter ε. Other  parameters  

are the following: wavelength λ = 532 nm, Gaussian beam wais radius w0 = 1 mm

three horizontal and three vertical zero-intensity lines, and, finally, the intensity of 
the mode IGo 

6,6 coincides with that of the mode IGo 
6,2, but rotated by π/2. 

In this section, we derived analytical expressions for 24 IG modes with the indices 
p = 3, 4, 5, 6 via 2, 3 or 4 LG modes (more exactly, via their real or imaginary parts) 
and HG modes (see Eqs. (2.19), (2.25), (2.26), (2.30), (2.34) and Table 2.1). The 
expansion coefficients of the IG modes by the LG and HG modes are expressed 
via the ellipticity parameter ε. Using the expressions obtained, one can immediately 
derive expressions for the IG modes when the parameter ε either equals zero or 
tends to plus (or minus) infinity. Explicit dependence of the IG modes on the ellip-
ticity parameter allows controlling their intensity by varying this parameter. We have 
derived the symmetry properties for the even and odd IG modes [21]. In particular, 
we demonstrated how these modes are interrelated when the ellipticity parameter 
changes its sign. The obtained representations of the IG modes via the HG and LG 
modes are not only convenient from the theoretical point of view, since they reveal 
the properties of these beams without simulation, but also from the practical point
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20� � � 3� � � 1� � � 0� � 1� � 3� � 20� �

Fig. 2.5 Intensity distributions of the IG modes IGe 
6,0(r, ε), IG

e 
6,2(r, ε), IG

e 
6,4(r, ε), IG

e 
6,6(r, ε)  

(rows 1–4), IGo 
6,2(r, ε), IG

o 
6,4(r, ε), IG

o 
6,6(r, ε)  (rows 5–7) for some values of the parameter ε. 

Other parameters are the following: wavelength λ = 532 nm, Gaussian beam wais radius w0 = 
1 mm

of view, since they allow rather easily programming complex amplitudes of the IG 
modes for their numerical simulation or generation by using a spatial light modu-
lator. For large-distance atmosphere probing with using the IG beams, high-power 
laser beams should be generated [22]. The Ince-Gaussian beams can be effectively 
used for encoding (or protecting) data in wireless information transmission, when the 
same beam IG(e,o) 

p,q (r, ε)  with the same numbers p, q is transmitted, but the parameter 
ε is randomly changed.
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2.2 Helical Ince-Gaussian Laser Beams as Superposition 
of Hermite-Gaussian Beams 

It has been known [3, 4, 23] that even and odd Ince-Gaussian (IG) modes are real-
valued, which means that they are non-vortical beams and carry no orbital angular 
momentum (OAM). Meanwhile, helical IG (hIG) modes [4, 11], hIGp,q(x, y, ε), where 
p and q are nonnegative integers and ε is a real number (the ellipticity parameter) 
are complex-valued as on-axis superposition of normalized even and odd IG modes 
with a phase shift of π/2. Although the OAM of these modes has been numerically 
shown to be  ε-dependent [11], no relevant analytical relationship was derived. A 
problem of evaluation of the topological charge (TC) of the hIG modes has not been 
analyzed also. For example, it is interesting to examine would be whether or not the 
TC conserves with varying ε. Although an attempt to represent the hIG modes as 
superposition of Laguerre-Gaussian (LG) modes has been reported [24], an explicit 
form of the expansion coefficients has not been found. In [21], we derived an explicit 
form of coefficients of an expansion of IG modes in terms of Hermite-Gaussian (HG) 
and LG modes at p ≤ 6. 

Both non-helical and helical IG modes have found many uses in optics. For 
instance, polarization structure of IG beams has been analyzed in [25]. The IG modes 
can be experimentally realized using a variety of techniques, including a metasurface-
aided element [26], a dynamic approach based on a computer-controlled adaptive 
mirror with a microcell array [27], and spontaneous parametric conversion [9]. The 
conversion-based technique [9] has been reported to enable generating entangled 
two-photon hIG modes, which show promise for quantum informatics [11]. Helical 
IG modes can also be created using a Dove prism and a Mach-Zahnder interferom-
eter [28], or a laser-diode-pumped microchip solid-state laser [29] and other types 
of lasers [30]. Second-harmonic IG beams can also be generated upon nonlinear 
conversion of light in a crystal [31]. Classically entangled IG modes were discussed 
in [8], where Poincaré beams were generated from hIG modes instead of LG modes. 
The propagation of IG beams through a turbulent atmosphere has also been studied 
[32]. Alongside quantum informatics and atmospheric sensing, IG beams have paved 
their way into an area of micromanipulation [33]. The IG beams have been revealed 
to exhibit a diversity of interesting properties as they propagate in various media, 
including strongly nonlocal nonlinear media [34] and elliptical core few-mode fibers 
[35]. The use of IG modes for the effective interatomic interaction has also been 
reported [36]. 

For completeness sake, we note that in terms of both their properties and an inten-
sity pattern structure, IG beams are similar to Hermite–Laguerre-Gaussian beams 
[37–40], as the latter also depend on a real parameter of astigmatism degree and are 
converted from HG beams into LG beams with parameter variations. 

It is interesting enough that although hIG modes have long been around in optics, 
a number of related theoretical issues has remained unaddressed so far. It has not 
been clarified yet whether or not the TC of helical IG modes depends on the ellipticity 
parameter ε. Whether or not, in the general case, the OAM of a hIG mode has any kind
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of symmetry relative to the parameter ε. Why is the OAM increasing with increasing 
ε at some values of q while decreasing at other values of q. This work is an attempt 
to address some of the above-listed questions. We obtain specific relationships for 
the OAM of some hIG modes, which include the ε-dependence and can be analyzed 
prior to numerically modeling. We also prove that the OAM carried by an arbitrary 
hIG mode is an even function of ε and show that the TC at ε = 0 can be different 
from that at ε = ∞. 

2.2.1 Conventional Normalized Ince-Gaussian Modes 

Ince-Gaussian (IG) modes [3, 4, 23] present structurally stable solutions of a paraxial 
Helmholtz equation, {∂2 

x +∂2 
y +4i∂z}F(r, z) = 0, which are separable in the parabolic 

coordinates (ξ, η) and given by 

IGp,q(r, z) = G(r, z)
(
1 − iz 
1 + iz

)p/2 

Np,q(iξ,  ε)Np,q(η, ε), (2.43) 

where r = (x, y) is a 2D vector, G(r, z) = 1 
1+iz exp

(
− r2 

1+iz

)
is the standard Gaus-

sian solution of the paraxial equation and Np,q(t, ε)  is a trigonometric Ince poly-
nomial. Hereinafter, all light fields are analyzed in dimensionless variables, using 
the following substitutions: x := x

/
w0, y := y

/
w0, z := 2z

/
(kw2 

0), where w0 is 
the Gaussian beam waist radius. Besides, we use HG, LG, and IG modes in both 
normalized (in bold face) and unnormalized notation (in italics). In particular, 

IG(e,o) 
p,q (r, ε)  = 

IG(e,o) 
p,q (r, ε)∥∥∥IG(e,o) 
p,q (r, ε)

∥∥∥ . (2.44) 

(If the propagation variable, z, is not specified, it is assumed to be zero, i.e. the 
beam is considered in the waist plane.) The superscript (e or o) denotes the parity of 
the IG mode, even or odd. The ellipticity parameter ε is real. Its variation from −∞ 
to +∞ makes it possible to change the IG mode intensity pattern. 

We recall the expressions of HG and LG modes in terms of Hermite and Laguerre 
polynomials, respectively: 

HGn,m(r, z) = G(r, z)
(
1 − iz 
1 + iz

) n+m 
2 

Hn

(
x 
√
2 √

1 + z2

)
Hm

(
y 
√
2 √

1 + z2

)
, 

LGn,±m(r, z) = G(r, z)
(
1 − iz 
1 + iz

)n+ m 
2 

Lm n

(
2r2 

1 + z2

)
rm e±imϕ , (2.45)
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HGn,m(r) = 
HGn,m(r)∥∥HGn,m(r)

∥∥ ,

∥∥HGn,m(r)
∥∥ =

√
π 
2 

· 2n+mn!m!, 

LGn,±m(r) = 
LGn,±m(r)∥∥LGn,±m(r)

∥∥ ,

∥∥LGn,±m(r)
∥∥ =

√
π 
2 

· (n + m)! 
2mn! . (2.46) 

It is well known [see Eq. (2.45)] that the HG mode indices n, m determine the 
number of horizontal and vertical zero-intensity lines, while the radial and azimuthal 
indices, n, ±m of the LG modes are for the number of zero-intensity rings and the 
topological charge of the optical vortex at center. For IG modes, the indices p, q are 
also related to the number of zero-intensity lines—which may be infinite (hyperbolas 
and straight lines, the index q) or finite (ellipses, the value (p − q)

/
2). A presence 

of the straight line y = 0 among the zero intensity lines clearly indicate that this is 
an odd IG mode. 

In the limiting cases of ε = 0 and ε = ±∞, the IG modes are reduced to LG and 
HG modes. If ε = 0, then 

IGe 
p,q(r, 0) =

√
2ReLG(p−q)/ 2,q(r), 

IGo 
p,q(r, 0) =

√
2ImLG(p−q)/ 2,q(r), (2.47) 

except for the case (p, q) = (2n, 0), when IGe 
2n,0(r, 0) = LGn,0(r) and there is no 

an odd IG mode. If ε = +∞, then 

IGe 
p,q(r, +∞) = (−1)(p−q)/ 2 HGq,p−q(r), 

IGo 
p,q(r, +∞) = (−1)(p−q)/ 2 HGq−1,p+1−q(r). (2.48) 

If ε = −∞, then 

IGe 
p,q(r, −∞) =

{
(−1)p/ 2HGp−q,q(r), p = 2k, 
(−1)(p−1)/ 2HGp+1−q,q−1(r), p = 2k + 1, 

IGo 
p,q(r, −∞) =

{
(−1)p/ 2+1HGp+1−q,q−1(r), p = 2k, 
(−1)(p−1)/ 2HGp−q,q(r), p = 2k + 1. 

(2.49) 

For all other values of ε, the IG modes are no longer reduced to a single LG or HG 
mode but to a superposition of such modes. If we choose the basis of LG modes, 
then IGe 

p,q(r, ε)  and IGo 
p,q(r, ε)  modes are, respectively, expanded in terms of real 

and imaginary parts of the modes LGk,p−2k (r), where the summation index k runs 
through values from 0 to [p/2]. When the basis of HG modes is selected, IGe 

p,q(r, ε)  
and IGo 

p,q(r, ε)  are expanded into series of modes HGp−k,k (r), where 0 ≤ k ≤ p;
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however, for even IG modes, the summation index k runs through even values only, 
while for odd IG modes it runs through odd values. 

For p ≤ 6, we have found such expansions in our paper [21]. In particular, for even 
and odd IG modes with the indices (p, q) = {(2, 2), (3, 1), (3, 3)}, the formulae are 
as follows: 

IGe 
2,2(r, ε)  = 

a · HG2,0(r) − HG0,2(r) √
1 + a2 

, 

IGo 
2,2(r, ε)  = HG1,1(r). (2.50) 

IGe 
3,1(r, ε)  = −  

√
3 · HG3,0(r) + b · HG1,2(r) √

3 + b2 

= 
√
3(b − 1)ReLG0,3(r) + (b + 3)ReLG1,1(r) √

2 · √
3 + b2 

, (2.51) 

IGo 
3,1(r, ε)  = −  

√
3 · HG2,1(r) + c · HG0,3(r) √

3 + c2 

= 
(c − 3)ImLG0,3(r) +

√
3(c + 1)ImLG1,1(r) √

2 · √
3 + c2 

, (2.52) 

IGe 
3,3(r, ε)  = +b · HG3,0(r) − 

√
3 · HG1,2(r) √

3 + b2 

= 
(b + 3)ReLG0,3(r) −

√
3(b − 1)ReLG1,1(r) √

2 · √
3 + b2 

, (2.53) 

IGo 
3,3(r, ε)  = +  

c · HG2,1(r) −
√
3 · HG0,3(r) √

3 + c2 

=
√
3(c + 1)ImLG0,3(r) − (c − 3)ImLG1,1(r) √

2 · √3 + c2 
, (2.54) 

where 

a = a(ε) = ε +
√

ε2 + 1, 

b = b(ε) = ε − 1 +
√

(ε − 1)2 + 3, 

c = c(ε) = ε + 1 + 
√

(ε + 1)2 + 3. (2.55) 

Since a(ε)a(−ε) = 1 and b(ε)c(−ε) = 3, we can easily check the symmetry 
properties of IG modes (2.50)–(2.54), when the sign of the ellipticity parameter is 
reversed: 

IGe 
2n,2m(x, y, −ε) = (−1)m IGe 

2n,2m(y, x, ε),
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IGo 
2n,2m(x, y, −ε) = (−1)m+1 IGo 

2n,2m(y, x, ε),  
IGo 

2n+1,2m+1(x, y, −ε) = (−1)m IGe 
2n+1,2m+1(y, x, ε). (2.56) 

It can be proven, that this property is valid in general case of indices. The IG 
modes are real-valued and have no orbital angular momentum (OAM). In the next 
section, using the expansions (2.50)–(2.54) and similar others with different values 
of (p, q), we derive expressions of helical IG (hIG) modes. 

2.2.2 Expansion of Helical IG Modes into HG Modes 

Following Refs. [4, 11], we construct hIG modes as superposition of normalized 
even and odd IG modes shifted in phase by π/2: 

hIG± 
p,q(r, ε)  = 

IGe 
p,q(r, ε)  ± iIGo 

p,q(r, ε)  √
2 

. (2.57) 

Without lost of generality, in (2.57) it would suffice to analyze just the sum of the 
hIG modes. At (p, q) = {(2, 2), (3, 1), (3, 3)}, in view of Eqs. (2.50)–(2.54), the 
hIG modes take the form: 

hIG+ 
2,2(r, ε)  = 

IGe 
2,2(r, ε)  + iIGo 

2,2(r, ε)  √
2 

= 
1 √
2

(
a · HG2,0(r) − HG1,2(r) √

1 + a2
+ iHG1,1(r)

)
, (2.58) 

hIG+ 
3,1(r, ε)  = 

IGe 
3,1(r, ε)  + iIGo 

3,1(r, ε)  √
2 

= −  
1 √
2

(√
3 · HG3,0(r) + b · HG1,2(r) √

3 + b2 

+i 

√
3 · HG2,1(r) + c · HG0,3(r) √

3 + c2

)
, (2.59) 

hIG+ 
3,3(r, ε)  = 

IGe 
3,3(r, ε)  + iIGo 

3,3(r, ε)  √
2 

= 
1 √
2

(
b · HG3,0(r) − 

√
3 · HG1,2(r) √

3 + b2 

+i 
cHG2,1(r) −

√
3 · HG0,3(r) √

3 + c2

)
. (2.60)
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With the beams under study being structurally stable modes, their transverse 
intensity pattern conserves upon free-space propagation, changing only in scale. 

2.2.3 Orbital Angular Momentum of hIG Modes 

Expanding the hIG modes into a series in terms of HG modes enables their orbital 
angular momentum (OAM) to be derived at any value of the parameter ε. It has been 
known [41] that for any structurally stable field defined in the waist plane by a series 
in terms of HG modes, E(r) = ∑

0≤m≤N CmHGN−m,m(r), its OAM can be found 
from 

OAM[E(r)] = 
2

∑
1≤m≤N Im(C∗

m−1Cm)(N + 1 − m)!m!∑
0≤m≤N |Cm|2 (N − m)!m! . (2.61) 

For a normalized version of the field, E(r) = ∑
0≤m≤N C̃mHGN −m,m(r), Eq.  (2.61) 

is rearranged to 

OAM[E(r)] = 2
∑

1≤m≤N 

Im( ̃C∗ 
m−1 C̃m)

√
(N + 1 − m)m. (2.62) 

Applying Eq. (2.62) to hIG modes in (2.58)–(2.60) yields: 

OAM
[
hIG+ 

2,2(r, ε)
] = 

(1 + a)
√
2 √

1 + a2 
, 

OAM
[
hIG+ 

3,1(r, ε)
] = 

(3 − 2b + bc) 
√
3 √

(3 + b2)(3 + c2) 
, 

OAM
[
hIG+ 

3,3(r, ε)
] = 

(3 + 2c + bc) 
√
3 √

(3 + b2)(3 + c2) 
, (2.63) 

where the parameters a, b, c are defined in (2.55). 
At the limiting cases, ε = 0 and ε = ±∞, the hIG modes are, respectively, 

described by a single standard LG mode and a complex sum of two HG modes, 
owing to Eqs. (2.47)–(2.49): 

hIG+ 
p,q(r, 0) = LG(p−q)/ 2,q(r), 

hIG+ 
p,q(r, +∞) = 

(−1)(p−q)/2 

√
2

{
HGq,p−q(r) + iHGq−1,p+1−q(r)

}
, 

hIG+ 
p,q(r, −∞) = 

ip−1 

√
2

{
HGp+1−q,q−1(r) + iHGp−q,q(r)

}
. (2.64)
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At ε = 0, the OAM of an hIG mode equals the topological charge of an LG mode: 
OAM = q. The cases ε = ±∞  are simple also, since the series in (2.62) reduces to 
a single term, namely, m = p + 1 − q at ε = +∞  and m = q at ε = −∞. So, for 
the beams in (2.64) we find that 

OAM
[
hIG+ 

p,q(r, 0)
]

= q, 

OAM
[
hIG+ 

p,q(r, ±∞)
]

= √
q(p + 1 − q). (2.65) 

In particular, Eq. (2.65) suggests that at p = 7 and q = 1, 3, 5, 7, an hIG mode, 
respectively, carries an OAM of 1, 3, 5, 7 at ε = 0, and

√
7,

√
15,

√
15,

√
7 at 

ε = ±∞. Hence, for the hIG modes, a plot for the OAM as a function of ε drawn 
at q = 7 should have two intersections (at ε >  0 and ε <  0) with similar plots 
drawn at q = 3 and 5. As result, Eq. (2.65) provide a theoretical background and 
generalization of the numerical result of Ref. [11]. 

It can be checked easily that Eq. (2.63) are compatible with the general formulae 
(2.65) by substituting a(0) = 1, b(0) = 1, and c(0) = 3 into (2.63) and using 
asymptotics a(ε) ∼ 2ε, b(ε) ∼ 2ε, c(ε) ∼ 2ε at ε → +∞. 

Equations (2.63)–(2.65) are one of the main results of this section, since they 
provide analytical ties between the OAM and the parameter ε of hIG modes at small 
values of the indices (p, q). It should be noted that using a technique described in 
Ref. [21] analytical relationships for the OAM of the hIG modes at higher values 
of p, p > 3, can also be deduced, but when p grows, they become more and more 
cumbersome. Below, relationships for the OAM of hIG modes at p = 4 and 5 are 
given without a proof. 

2.2.4 Topological Charge of hIG Modes 

Using a decomposition of hIG modes into LG modes in (2.51)–(2.54) and others 
bases [21], we can determine a topological charge (TC) of the hIG modes at ε = 0, 
TC = q. For the hIG modes in (2.58)–(2.60), this result can be verified directly by 
putting ε = 0 and changing to the LG modes in (2.51)–(2.54). 

It would be interesting to reveal whether or not the TC of hIG modes varies with 
varying parameter ε. From (2.64) it is seen that at ε = +∞, any hIG mode can be 
expressed as superposition of two HG modes, meaning that, in view of (2.45), it has 
zeroes at zeroes of a polynomial of two variables: 

Hq(X )Hp−q(Y ) + i · Hq−1(X )Hp+1−q(Y ), (2.66) 

where we use a substitution X = x 
√
2 and Y = y 

√
2 for brevity. The sum in (2.66) 

vanishes in two cases:
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1. Hq(X ) = Hp+1−q(Y ) = 0, 
2. Hq−1(X ) = Hp−q(Y ) = 0. 

Since any Hermite polynomial Hn(t) has n simple (nondegenerate) real zeroes, 
which we denote as tn,k , where k = 1, 2, . . . ,  n, then for the case (1), there is an array 
of q(p + 1 − q) isolated zeroes (X0, Y0) = (tq,ν , tp+1−q,μ), where 1 ≤ ν ≤ q and 
1 ≤ μ ≤ p+1 − q, while for the case (2), there is an array of (q−1)(p − q) isolated 
zeroes (X0, Y0) = (tq−1,ν , tp−q,μ), where 1 ≤ ν ≤ q−1 and 1 ≤ μ ≤ p− q. It can be 
proven that in the case (1), all zeroes are of type (X +iY ), i.e. have TC = +1, whereas 
in the case (2) they are all of type (X − iY ), i.e. TC = −1. Actually, an analysis of 
relationships H ′

n(t) = 2nHn−1(t) and Hn+1(t) = 2tHn(t) − 2nHn−1(t) shows that at 
fixed values of n and k, the expressions Hn−1(tn,k ), Hn+1(tn,k ), and H ′

n(tn,k ) are non-
zero. Moreover, Hn−1(tn,k ) and H ′

n(tn,k ) have the same sign, but Hn+1(tn,k ), H ′
n(tn,k ) 

have opposite signs. Then expanding the expression (2.66) into a Taylor series up to 
linear terms in the vicinity of each isolated zero (X0, Y0), we find that for the case 
(1) coefficients by (X − X0) and i(Y − Y0) are of the same sign and for the case (2) 
coefficients by (Y − Y0) and i(X − X0) are of the same sign. So, we can deduce that 
at ε = +∞, the mode hIG+ 

p,q has TC = q(p + 1 − q) − (q − 1)(p − q) = p. At  
ε = −∞, the TC is derived in a similar manner and equals TC = p. 

Thus, we obtain that the TC of the mode hIG+ 
p,q is ε-independent at q = p. 

However, if q < p, then the TC increases with increasing |ε| from q at ε = 0 to 
p at ε = ±∞. It is not surprising that the TC increases with increasing |ε|. As an  
example, the series expansion of hIG+ 

3,1 in terms of LG modes 

hIG+ 
3,1(r, ε)  =

√
3(b − 1)ReLG0,3(r) + (b + 3)ReLG1,1(r) 

2 
√
3 + b2 

+ i · (c − 3)ImLG0,3(r) +
√
3(c + 1)ImLG1,1(r) 

2 
√
3 + c2 

, (2.67) 

shows that when the polar radius r and parameter ε both tend to infinity, Eq. (2.67) is  
rearranged to an expression which depends only on the azimuthal angle ϕ (neglecting 
a common Gaussian factor): 

hIG+ 
3,1(r, +∞)

∣∣
r→∞ ∼ ( 

√
3 cos 3ϕ + i sin 3ϕ) + (cos ϕ + i 

√
3 sin  ϕ). (2.68) 

According to Ref. [42], the TC of the sum of two optical vortices with different 
coefficients equals that of the constituent vortex with the larger coefficient, and in 
the case of equal coefficients, equals the larger TC of the two constituent vortices. 
Thus, the mode in (2.68) has the TC = 3, notwithstanding that at ε = 0 the TC = 1.
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2.2.5 Parity of the OAM Function in Terms of the Parameter 
ε 

Since both even and odd IG components in the definition (2.57) of the hIG mode 
are real-valued, the reverse of the sign between the components leads to a complex 
conjugated mode, also resulting in the change of the OAM: 

OAM
[
hIG− 

p,q(r, ε)
]

= −OAM
[
hIG+ 

p,q(r, ε)
]
. (2.69) 

On the other hand, it is seen from (2.56) that the reverse of the parameter ε sign 
leads to a conjugated hIG mode, with x and y being interchanged: 

hIG± 
p,q(x, y, −ε) = (−1)m

{
hIG∓ 

p,q(y, x, ε), (p, q) = (2n, 2m), 
±i · hIG∓ 

p,q(y, x, ε),  (p, q) = (2n + 1, 2m + 1). 
(2.70) 

Interchanging the variables x and y leads to the change of sign of the rotation 
operator, x∂y − y∂x, whereas the replacement of ε by −ε leads to a conjugation of 
the hIG mode. As result, when ε is replaced by −ε, the OAM of the original hIG 
mode remains unchanged. So, the OAM of any hIG mode is an even function of the 
parameter ε: 

OAM
[
hIG+ 

p,q(r, −ε)
]

= OAM
[
hIG+ 

p,q(r, ε)
]
. (2.71) 

It would be interesting to figure out if the OAM of the hIG mode achieves its 
maximum at ε = 0. The question is not unfounded as at ε = 0, any hIG mode can 
be reduced to a single LG mode, Eq. (2.64). We note that at ε > 0, an expansion of 
the hIG mode always contains several LG modes with different topological charges, 
which may be expected to result in a decrease in the OAM due to a redistribution 
between several constituent modes. From (2.65) it follows that at q < (p + 1)

/
2, 

the OAM is higher at ε = ±∞  than at ε = 0, and, vice versa, at q > (p + 1)
/
2, the  

OAM is lower at infinity than at ε = 0. 

2.2.6 Relationships for the OAM of hIG Modes at P = 4 and  5  

Here, we present relationships for the OAM of hIG modes at p = 4 and 5. In both 
cases, we need to find characteristic values as roots of certain cubic equations (see 
below). Since the expressions of the roots themselves and of the corresponding even 
and odd IG modes are quite cumbersome (all of them can be found in our work [21]), 
we do not give the formulae below, writing down only relationships for the OAM.
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Let p = 4. Then, q = 2m = 0, 2, 4. At  q = 0, the mode hIG+ 
4,0(r, ε)  is real-

valued, meaning that the OAM = 0. At q = 2 and q = 4, we obtain: 

OAM
[
hIG+ 

4,2(r, ε)
] = 

4ε(d − 1) − (λe 
1 − 16)(d + 1) √

D(λe 
1, ε)  · √

1 + d2
· ε 

√
6, 

OAM
[
hIG+ 

4,4(r, ε)
] = 

4ε(d + 1) + (λe 
2 − 16)(d − 1) √

D(λe 
2, ε)  · √

1 + d2
· ε 

√
6. (2.72) 

Here, d = d (ε) = (ε + √
ε2 + 9)

/
3, 

D(λ, ε) = (16 + 5ε2 )λ2 − 8(40 + 23ε2 )λ + 16(64 + 100ε2 + ε4 ) 

and λe 
m(ε)(m = 0, 1, 2) are roots of a characteristic equation for even IG modes: 

λ3 − 20λ2 + (64 − 16ε2 )λ + 192ε2 = 0, (2.73) 

enumerated in ascending order, λe 
0 < λe 

1 < λe 
2. In particular, λ

e 
0(0) = 0, λe 

1(0) = 4, 
λe 
2(0) = 16. 
Let p = 5. Then, q = 2m + 1 = 1, 3, 5 and relationships for the OAM get even 

more cumbersome: 

OAM
[
hIG+ 

5,2m+1(r, ε)
] = Q 

4 
√
D(λe 

m(ε), ε) · √
D(λo 

m(ε), −ε) 
. (2.74) 

Here, 

Q = {
(λe 

m − 9)(λe 
m − 25) − 5ε2

}{
(λo 

m − 9)(λo 
m − 25) − 5ε2

}
+ 24ε2 (λe 

m − 25)(λo 
m − 25) + 200ε4 , 

D(λ, ε) = (48 − 24ε + 5ε2 )λ2 − 2(816 − 408ε + 125ε2 − 3ε3 )λ 
+ 5(2160 − 1080ε + 577ε2 − 6ε3 + ε4 ), 

λe 
m(ε)(m = 0, 1, 2) are roots of the characteristic equation for even IG modes: 

λ3 − (35 + 3ε)λ2 + (259 + 102ε − 13ε2 )λ 
− (225 + 675ε − 205ε2 − 15ε3 ) = 0, (2.75) 

and λo 
m(ε)(m = 0, 1, 2) are roots of the characteristic equation for odd IG modes, 

which is obtained from (A4) by substituting ε → −ε. As usual, the roots are 
numbered in ascending order. In particular, λ (e,o) 0 (0) = 1, λ (e,o) 1 (0) = 9, λ (e,o) 2 (0) = 
25. 

We note that for the limiting cases, ε = 0 and ε = ±∞, the OAM evaluation from 
(2.72) and (2.74) requires to resolve the indeterminacy 0

/
0 or ∞/∞. For instance,
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at (p, q) = (4, 2), if  ε ∼ 0, then, d ∼ 1 + ε
/
3, λ1 ∼ 4 + 8ε2

/
3 − 56ε4

/
27, 

D(λ1, ε)  ∼ 432ε2 − 2288ε4
/
9. Hence, OAM[hIG+ 

4,2(r, ε)] ∼  2 + 221ε2
/
972. In  

particular, at ε = 0, we obtain a well-known result, OAM[hIG+ 
4,2(r, 0)] =  2, since 

hIG+ 
4,2(r, 0) = LG1,2(r). 

2.2.7 Numerical Modeling 

Figure 2.6 depicts intensity patterns for the hIG modes numerically simulated using 
Eq. (2.57) for the indices p = 7 and q = 1, 3, 5, 7. The intensity patterns are seen 
to be symmetrical relative to the y = x line for the cases of ε and −ε, which follows 
from (2.56).

Figure 2.7 depicts patterns of intensity (a–d) and phase (e–h) for modes 
hIG+ 

7,q(r, +∞) at q = 1, 3, 5, 7. The numerical simulation is conducted using (2.64). 
The waist radius is 1 mm and the frame size is –R ≤ x, y ≤ R, where R = 10 mm. The 
TC carried by the modes in Fig. 2.7 is calculated using the formula by Berry [43]: 

TC[E(r, ϕ)] = 
1 

2π 
lim 
r→∞ 

Im 

2π∫
0 

∂ϕE(r, ϕ)  
E(r, ϕ)  

d ϕ, (2.76)

where E(r, φ) is the complex amplitude of the hIG mode in the polar coordinates in 
the waist plane. In our numerical simulation, the TC is calculated on a circle of a 
radius equal to half the frame size in Fig. 2.7. At different values of the index q, the  
numerically simulated TC is found to be TC = 6.9966237 (q = 1), TC = 6.9973487 
(q = 3), TC = 6.9973487 (q = 5), TC = 6.9966237 (q = 7). Hence, for all q 
analyzed, the TC is seen to be the same and equal to p = 7, which is in compliance 
with the theoretical prediction. Phase distribution patterns in Fig. 2.7 demonstrate

-80 -10 -5 -2 -1 ε = 0 1 2 5 10 80 

Fig. 2.6 Intensity patterns at the waist of hIG modes (2.57) at  p = 7 and q = 1, 3, 5, 7 (top to 
bottom) and some values of ε 
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Fig. 2.7 Patterns of intensity (a–d) and phase (e–h) for the hIG modes in the original plane at ε = 
+∞ for p = 7 and  q: 1 (a, e), 3 (d, f), 5 (c, g), and 7 (d, h)

seven lines of phase jump by 2π, with their initial points being located on the vertical 
axis (q = 1), the horizontal axis (q = 7), two vertical (q = 3) and two horizontal 
(q = 5) lines. 

Figures 2.8, 2.9, and 2.10 depict patterns of intensity and phase of the original 
hIG mode for (p, q) = (2, 2), (3, 1), and (3, 3) at different ε. The Gaussian beam 
waist radius is w0 = 1 mm and the frame size is –R ≤ x, y ≤ R = 3 mm. 

From Figs. 2.8, 2.9, and 2.10, the theoretically predicted and numerically calcu-
lated values of the OAM are seen to coincide up to 3 decimal places. Phase patterns 
suggest that at different values of q < p (Fig. 2.9), the TC does not conserve, increasing 
from q = 1 to  p = 3 as the parameter ε is increasing from 0 to +20 or decreasing 
from 0 to −20.

Intensity 

Phase 

ε –20 –3 –1 0 1 3 20 

OAM,theor. 1.449095 1.622484 1.847759 2.000000 1.847759 1.622484 1.449095 

OAM, num 1.449085 1.622474 1.847747 1.999962 1.847747 1.622474 1.449085 

Fig. 2.8 Patterns of intensity and phase for the hIG mode (p, q) = (2, 2)
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Intensity 

Phase 

ε –20 –3 –1 0 1 3 20 

OAM,theor. 1.649851 1.331704 1.081395 1.000000 1.081395 1.331704 1.649851 

OAM, num. 1.649836 1.331690 1.081385 0.999992 1.081385 1.331690 1.649836 

Fig. 2.9 Patterns of intensity and phase for the hIG mode (p, q) = (3, 1) 

Intensity 

Phase 

ε –20 –3 –1 0 1 3 20 

OAM, theor. 1.822836 2.396077 2.900545 3.000000 2.900545 2.396077 1.822836 

OAM, num. 1.822821 2.396060 2.900522 2.999974 2.900522 2.396060 1.822821 

Fig. 2.10 Patterns of intensity and phase for the hIG mode (p, q) = (3, 3)

Summing up, the following results have been obtained. Explicit analytical 
formulae for complex amplitudes of hIG modes at p = 2, 3, Eqs. (2.58)–(2.60), 
have been derived. Using those equations, one can easily deduce expressions for hIG 
modes at the limiting cases, ε = 0 and ε = ±∞, which are in compliance with 
the general relationships (2.64). For the hIG modes studied, we have also deduced 
explicit relationships for the OAM as a function of the parameter ε, Eq.  (2.63), and 
in the limiting cases, Eq. (2.60). In the general case, the ε-dependence of the OAM 
has been shown to be an even function, Eq. (2.71). It has been shown that at ε = 
0, the TC of hIG modes equals that of a LG mode, i.e. the index q, being equal to 
the index p at ε = +∞. Thus, the TC of hIG modes is not conserved with varying 
parameter ε.
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Chapter 3 
New Type of Laguerre-Gaussian Beams 

3.1 Product and Squared Laguerre-Gaussian Beams 

Among a host of familiar laser beams, most popular and well-understood are 
Laguerre-Gaussian (LG) beams [1–3]. Initially, these beams were looked upon as 
intra-cavity modes, but later on out-of-resonator LG beams were generated from 
Hermite-Gaussian (HG) beams using an astigmatic converter [4]. Particular interest 
in the LG beams was provoked by Allen’s et al. [5] in which the LG beams were 
found to carry the angular orbital momentum (OAM). Extensively studied beams 
include generalized LG beams in the form of Hermite–Laguerre-Gaussian beams 
[6, 7], elegant [8] and elliptic [9] LG beams. These days have seen no signs of 
waning interest in studying the LG beams thanks to their wide use in telecommuni-
cations, micromanipulation, probing atmospheric turbulence, quantum information, 
and atom cooling. By way of illustration, a comparative analysis of LG beams and 
Bessel-Gaussian (BG) beams has been conducted [10]. Various approaches to gener-
ating LG modes discussed in Refs. [11–13] included the use of a specialized laser 
utilizing intra-cavity spherical aberration [11], q-plates [12], and a special metasur-
face [13]. Reciprocal HG-to-LG and LG-to-HG mode conversion was studied in 
Ref. [14]. Of essential significance is the study of elegant LG beams that have shown 
outstanding characteristics for many application areas such as optical communica-
tions and optical trapping [15]. A method for measuring a topological charge of 
a partially coherent elegant LG beam has been proposed [16]. The LG beams have 
formed a basis for developing new types of optical beams with a variety of promising 
properties. A family of asymmetric LG laser beams has been discussed [17] and a 
technique for generating high-power asymmetric LG beams has been proposed [18]. 
Using the LG beams, a vector beam with space dependent transverse polarization 
has been generated by a method of nonlinear magnetooptic rotation [19]. A new 
class of composite vortex beams generated by coaxially superimposing LG beams 
with identical waist location and parameters has been proposed [20]. A new type of 
a partially coherent beam with a peculiar correlation function, which has been given
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the name an elliptic correlated Laguerre–Gauss-Shell model, has been theoretically 
and experimentally studied [21]. In the far field, the intensity pattern of such beams 
is in the form of an ellipse-shaped ring. The LG beams are of great practical value for 
optical communication [22–25], micromanipulation [26], and photo-induced atom 
excitation [27]. 

In this section, we propose a new type of laser beams generated by multiplying two 
LG beams, also termed as a product of LG (pLG) beams. We show that the complex 
amplitude of the pLG beams can be decomposed into a finite sum of conventional 
LG beams, deriving a relationship for a Fresnel transform of such beams. For some 
particular cases of the pLG beams, an explicit form of a Fourier transform is deduced. 

3.1.1 Theoretical Background 

Let us consider a conventional LG beam described in the source plane (z = 0) by a 
complex amplitude [1]: 

LGp,±m(r, ϕ)  = exp
(

− 
r2 

2w2 
± imϕ

)( r 

w

)m 
Lm p

(
r2 

w2

)
, (3.1) 

where (r,φ) are the polar coordinates, w is the waist radius of a Gaussian beam, and 
Ln m(x) is a Laguerre polynomial. With Eq. (3.1) describing a modal beam, i.e. the 
one which preserves its intensity pattern upon free-space propagation, the complex 
amplitude of a LG beam at any plane z is described by a relationship similar to 
Eq. (3.1): 

LGp,m(r, ϕ,  z) = 
w 

w(z) 
exp

(
izr2 

z0w2(z) 
+ i(2p + m + 1)γ (z)

)

LGp,m

(
wr 

w(z) 
, ϕ

)
, (3.2) 

where w(z) = w[1 + (z/z0)2]1/2 is the Gaussian beam radius, γ(z) = arctan(z/z0), γ(z) 
is the Gough phase, z0 = kw2 is the Rayleigh range, and k is the wavenumber of 
light. 

The product of two LG beams in Eq. (3.1) with identical waist radii, also termed 
as a pLG beam, is given by 

pLGp,q,m,n(r, ϕ)  = LGp,m(r, ϕ)LGq,n(r, ϕ)  

= exp
(

− 
r2 

w2 
+ i(m + n)ϕ

)( r 

w

)m+n 

Lm p

(
r2 

w2

)
Ln q

(
r2 

w2

)
. (3.3)
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A four-parameter family of beams in Eq. (3.3) presents a generalization of conven-
tional LG beams of Eq. (3.1), as it becomes identical to single-ring LG beams at p 
= q = 0: 

pLG0,0,m,n(r, ϕ)  = exp
(

− 
r2 

w2 
+ i(m + n)ϕ

)( r 

w

)m+n 

= 2−(n+m)/ 2 LG0,m+n

(√
2r, ϕ

)
. (3.4) 

From (3.4), the topological charge (TC) of a pLG beam can be found as a sum of 
TCs of two constituent LG beams. The power-normalized orbital angular momentum 
(OAM) of the pLG beam is also found as a sum of two constituent LG beams, i.e. 
equals m + n. Then, we proceed to derive a relationship for the Fresnel transform of 
function (3.4). The pLG beam can be decomposed into a finite sum of conventional 
LG beams: 

Lm p (x)L
n 
q(x) = 

p+q∑
k=0 

CkL
m+n 
k (2x), (3.5) 

where Ck = 2q−kP(k+m−q,k+n−p) 
p+q−k (0)P(k−q,p−k) 

q (0) and Pμ,ν 
α (0) denote Jacobi polyno-

mials at zero [28]. From (3.5), the amplitude of the pLG beam in (3.4) is given  by  a  
finite sum of conventional LG beams: 

pLGp,q,m,n(r, ϕ)  = exp
(

− 
r2 

w2 
+ i(m + n)ϕ

)( r 

w

)m+n 

p+q∑
k=0 

CkL
m+n 
k

(
2r2 

w2

)

= 2−(m+n)/2 
p+q∑
k=0 

CkLGk,m+n(
√
2r, ϕ). (3.6) 

The relationship in (3.6) enables the amplitude of field (3.4) to be derived at any 
distance z: 

pLGp,q,m,n(r, ϕ,  z) = w 

2(n+m)/2w(z) 
exp

(
− r2 

2w2(z) 
+ 

ikr2 

2R(z) 
+ i(m + n)ϕ

)

×
(

r 

w(z)

)n+m p+q∑
s=0 

CsL
n+m 
s

(
r2 

w2(z)

)

exp(i(2s + m + n + 1)γ (z)). (3.7) 

With the constituent beams in superposition (3.7) having different Gough phase, 
we can infer that the pLG beam of Eq. (3.4) does not preserve its structure upon
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free-space propagation. However, with the transverse intensity pattern of beam (3.7) 
given by a set of concentric intensity rings whose maximum number is p + q + 
1, changes in the intensity pattern upon free-space propagation of beam (3.7) are  
limited to the inter-ring energy flow. 

It would be of interest to analyze a particular case of pLG beams whose constituent 
Laguerre polynomials are identical. In the source plane, the beam, which has been 
given the name ‘squared’ LG beam, or (LG)2 beam, is given by, instead of (3.4) 

pLGp,p,m,m(r, ϕ)  = [
LGp,m(r, ϕ)

]2 

= exp
(

− 
r2 

w2 
+ i2mϕ

)( r 

w

)2m
[
Lm p

(
r2 

w2

)]2 

. (3.8) 

Similar to the general pLG beam in (3.4), beam (3.8) is not modal and does not 
preserve the intensity structure upon free-space propagation. At the same time, unlike 
beam (3.4), in the far field beam (3.8) preserves its structure, being Fourier-invariant: 

Ff
{
pLGpp,mm(r, ϕ)

} =
(
iz0 
f

)
(−1)m+1 pLGpp,mm(ρ, θ ) 

=
(
iz0 
f

)
(−1)m+1 exp

(
2imθ − y2

)
(y)2m

[
Lm p

(
y2

)]2 
, (3.9) 

where y = kwρ/f , f is the focal length of a spherical lens, and (ρ, θ) are the polar 
coordinates in the Fourier plane. A comparison of relationships for complex ampli-
tudes in the source plane, Eq. (3.8), and at the focus of a spherical lens, Eq. (3.9), 
shows that they are identical up to a constant. In the Fresnel diffraction zone, the 
(LG)2 beam is described by a finite superposition of conventional LG beams, which 
are similar to Eq. (3.7) but have different coefficients:Г 

pLGpp,mm(r, ϕ,  z) =
(
iz0 
z

)
(−1)m+1�(m + p + 1) 

πm!σ 2m+1 
(y)2m 

exp

(
ikr2 

2z 
+ 2imϕ
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−y2 

σ

)

× 
p∑

s=0 

(−1)s 

(p − s)!
�(p − s + 1)�(s + 1/2)

�(m + s + 1)
(

σ − 2 
2

)2s 

L2m 2s

(
y2 

σ(2 − σ)

)
, (3.10) 

where y = kwρ/z, σ = 1 − iz0/z, Γ(x) is the gamma-function. In the general case, 
Eq. (3.10) is consistent with Eq. (3.7) because in both cases the complex amplitude 
is expressed via a finite sum of conventional LG beams. The difference between Eqs. 
(3.7) and (3.10) is that the latter only contains LG beams with even radial indices. 
Equation (3.10) also suggests that at p = 0 (zero-valued radial index) the intensity
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pattern of the LG beam is a single ring, as Ln 0(x) = 1, so in the  sum in Eq.  (3.10) 
only the first term is retained, meaning that beam (3.1) with a squared amplitude 
preserves upon free-space propagation. 

Another particular case of pLG beams in Eq. (3.4) is obtained by considering the 
product of two LG beams with even TC and tailored values of azimuthal numbers in 
the Laguerre polynomials: 

pLGp,q,n−m,n+m(r, ϕ)  = exp
(

− 
r2 

w2 
+ i2nϕ

)

×
( r 

w

)2n 
Ln−m 
p

(
r2 

w2

)

Ln+m 
q

(
r2 

w2

)
, n ≥ m ≥ 0. (3.11) 

The complex amplitude of beam (3.11) at the focus of a spherical lens (in the 
Fourier plane) is given by an explicit relationship: 

Ff
{
pLGpq,(n−m)(n+m)(r, ϕ)

} =
(
iz0 
f

)
(−1)m+1 exp

(
2inθ − y2

)

× (y)2n Ln−m+p−q 
p

(
y2

)
Ln+m−p+q 
q

(
y2

)
. (3.12) 

From Eq. (3.12), the product of two beams in Eqs. (3.4) and (3.11) is seen to be 
Fourier-invariant at p = q. From (3.11) and (3.12), at p = q and m = 0, conversion 
of a pLG beam into an (LG)2 beam is seen to occur. 

We can derive a relationship for the ‘energy’ of the pLG beam, using it when 
normalizing such beams: 

W = 
∞∫
0 

2π∫
0

∣∣pLGp,q,m,n(r, ϕ)
∣∣2 rdrd ϕ 

= 
πw2 

4 
{(m + p)!(n + q)!}2 

min(2m+p,2n+q)∑
k=0

{
Pm−k,k−m−p 
m+p (0)Pn−k,k−n−q 

n+q (0)
}2 

(2m + p − k)!(2n + q − k)!k!2 . (3.13) 

3.1.2 Numerical Simulation 

We have carried out numerical simulation of focusing the (LG)2 beam by a spherical 
lens using our own MATLAB scripts. The initial field was represented as:
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a)  b) c) 

Fig. 3.1 Initial (LG)2 beam: 2D intensity distribution (a); intensity cross section along the radius 
(b); 2D phase distribution (c) 

a) b) c) 

Fig. 3.2 Field at the focus of a spherical lens after focusing the initial beam from Fig. 3.1: 2D  
intensity distribution (a); intensity cross section along the radius (b); 2D phase distribution (c) 

(LG)2 n,m(r, ϕ)  = exp
(

− 
r2 

w2 
+ i2nϕ

)( r 

w

)2|n|[
L|n| 
m

(
r2 

w2

)]2 

. (3.14) 

Figure 3.1 shows the initial intensity and phase distribution for (LG)2 with the 
following parameters: λ = 532 nm, w = 0.5 mm, n = 3, m = 2. 

Focusing with a spherical lens is described by the Fourier transform. The 
simulation results for this beam in the focus are shown in Fig. 3.2. 

Figures 3.1 and 3.2 differ only by a constant and clearly demonstrate the Fourier 
invariance of (LG)2 beams proved in the first section. After that we consider the 
Fresnel diffraction, which is represented by the following integral: 

E(x, y, z) = −  
i 

λ 
eikz 

z

∫ +∞∫
−∞ 

E(x′, y′, 0) 

exp

{
ik 

2z

[
(x − x′)2 + (y − y′)2]

}
dx′dy′. (3.15) 

For its numerical calculation, the convolution theorem and the properties of the 
Fourier transform are used, which make it possible to calculate the integral (3.15) 
by using direct and inverse Fourier transforms. The calculation program was also
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implemented in the MATLAB package. The simulation results at different distances 
are shown in Figs. 3.3, 3.4, and 3.5. 

Figure 3.3 shows the intensity (a), its cross section (b) and the phase (c) of the 
(LG)2 beam shown in Fig. 3.1, but at a half of the Rayleigh length. It can be seen in 
Fig. 3.3 that instead of three intensity rings (Fig. 3.1), a fourth intensity ring appears 
in the beam. In addition, the brightest ring is no longer the first one (Fig. 3.1). It is 
the second, instead. 

Figure 3.4 shows the intensity (a), its cross section (b), and phase (c) of the same 
beam (Fig. 3.1), but at the Rayleigh distance. It can be seen in Fig. 3.4 that the

a) b) c) 

Fig. 3.3 The Fresnel-transformed field of the initial (LG)2 beam (3.14) at a distance z = z0/2 
(z0 ≈ 1.476 m): 2D intensity distribution (a); intensity cross section along the radius (b); 2D phase 
distribution (c) 

a)  b) c) 

Fig. 3.4 The transformed field of the initial (LG)2 beam (3.14) at a distance z = z0 (z0 ≈ 1.476 m): 
2D intensity distribution (a); intensity cross section along the radius (b); 2D phase distribution (c) 

a) b) c) 

Fig. 3.5 The transformed field of the initial (LG)2 beam (3.14) at a distance z = 2z0 (z0 ≈ 1.476 m): 
2D intensity distribution (a); intensity cross section along the radius (b); 2D phase distribution (c) 
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Fig. 3.6 The transformed field of the initial (LG)2 beam (3.14) at distances z = 0 (a, b), z  = z0/4 
(c, d), z  = z0/2 (e, f), z  = 3z0/4 (g, h), z  = z0 (i, j), z  = 2z0 (k, l), z  = 5z0 (m, n), z  = 10z0 (o, p), z  
= 15z0 (q, r): intensity (a, c, e, g, i, k, m, o, q) and phase (b, d, f, h, j, l, n, p, r) 

beam has four bright rings, but the energy distribution between them differs from 
that presented in Fig. 3.3. 

Figure 3.5 shows the same as Figs. 3.3 and 3.4, but at a distance of two Rayleigh 
lengths. There are still 4 rings in the intensity distribution. 

Figure 3.6 shows together the intensity distributions of the same beam as in 
Figs. 3.1, 3.2, 3.3, 3.4, and 3.5. It is seen that the cross section of the beam consists 
of three bright rings again at a distance of 10 Rayleigh lengths (i.e. in the far field). 
It should be noted that the brightest ring is the first one from the center. And at a 
distance of 15 Rayleigh lengths, the intensity distribution coincides with the initial 
intensity distribution, differing only in scale. Thus, numerical simulation confirms 
all theoretical predictions. 

Figure 3.7 depicts numerically simulated intensity and phase patterns from the 
standard LG beams (3.1) of two different orders and from the pLG beam (3) of the  
same two orders, shown in the source plane and at the Rayleigh range. We note that 
with the waist radius of beam (3.1) taken to be 21/2w, and not w, the Rayleigh range 
of beam (3.1) is twice that of beam (3.3). Shown in Fig. 3.7 are intensity and phase 
patterns at the Rayleigh range for beam (3.3), i.e. at kw2/2. The patterns have been 
numerically simulated using Eqs. (3.1) and (3.3) in the source plane and using a 
Fresnel transform at the Rayleigh range.

From Fig. 3.7, the intensity profiles are seen to be preserved upon free-space 
propagation for the both conventional LG beams, while varying for the pLG beam. 
In particular, in the source plane, the first (from the center) intensity ring is brightest, 
with the second ring becoming brightest at the Rayleigh range. According to Eq. (3.3), 
the beam is supposed to have p + q + 1 = 6 bright intensity rings. However, just 
four and five intensity rings can, respectively, be seen in Fig. 3.7i and k. Meanwhile, 
the intensity profile in Fig. 3.7i and phase pattern in Fig. 3.7k confirm that there are
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Fig. 3.7 Patterns of intensity (columns 1 and 3) and phase (columns 2 and 4, dark—0, white—2π) 
from conventional LG beams (3.1) of the orders (p, m) = (2, 1) (row 1) and (q, n) = (3, 4) (row 2)  
and from a pLG beam (3.3) of the order (p, q, m, n) = (2, 3, 1, 4) (row 3) in the source plane z = 
0 (columns 1 and 2) at the Rayleigh range z = z0 (columns 3 and 4) for the following parameters: 
wavelength λ = 532 nm, waist radius w = 0.5 mm. The scale bar in all pictures is 1 mm. The 
topological charge was measured along a dashed circle in the phase patterns. Shown in the bottom 
row in this figure (i, k) are intensity profiles

six bright rings and five intermitting dark rings (where a phase jump by π occurs). 
In Fig. 3.7k, the rings are fused, reducing the total number to five. 

As predicted by Eq. (3.3), TC of beam (3.3) is found as a sum of TCs of Eq. (3.1): 
1 + 4 = 5. This can be seen from the phase pattern: in Fig. 3.7c, d, TC = 1 (a single 
phase jump by 2π along the dashed circle), in Fig. 3.7f, h TC = 4 (four phase jumps 
by 2π along the circle), and in Fig. 3.7j, l TC = 5 (five phase jumps along the circle). 

With the Rayleigh range of the Laguerre beams (3.1) being twice as large, 
following the propagation over a distance of z = kw2/2, these diverge not by a 
factor of 21/2 ≈ 1.41, but by a factor of just (5/4)1/2 ≈ 1.12 (Fig. 3.7a, c, e, g). In the 
meantime, beam (3.3) expands by a factor of just about 1.5. 

Summing up, we have introduced a four-parameter family of vortex beams over-
lapping well-known LG beams. The new beams represent a product of two different 
LG beams with the same radius of waist and can also be termed as a product of 
LG (pLG) beams [29, 30]. If in a pLG beam both Laguerre polynomials have the 
same indices, such a beam may be referred to as a ‘squared’ LG beam, or (LG)2 

beam. The proposed pLG beams have been expressed as superposition of a finite
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sum of conventional LG beams. For the (LG)2 beams, an explicit Fourier transform 
has been derived. A particular case of pLG beams whose Laguerre polynomials are 
described by specially tailored azimuthal indices n-m and n + m has been analyzed 
and their Fourier transform has been deduced in an explicit form. The pLG beams 
are promising for optical communication applications [22, 24]. 

3.2 Laguerre-Gaussian Beams with an Increased Dark 
Area and Autofocusing 

During many years, vortex Laguerre-Gaussian (LG) beams attract a stable interest 
due to their wide practical applications in optical trapping [31], wireless telecom-
munications [23], atmosphere probing [32], quantum informatics [19], atom cooling 
[33], optical microscopy of single molecules [34] and quantum dots [35]. Besides, the 
LG beams have been very thoroughly studied theoretically. For instance, possibility 
of the orbital angular momentum (OAM) of light was at first shown right for the LG 
beams [5]. There are known many modifications of the LG beams, like, for example, 
elegant LG beams [36], Hermite–Laguerre-Gaussian beams [7], asymmetric LG 
beams [17], products of LG beams [30]. The LG beams can be generated by lasers 
[11, 37–39], mode converters [4], and using a spatial light modulator [40]. However, 
despite the long history of the LG beams, their potential is still not exhausted. 

In this section, we investigate a novel LG beam with its topological charge being 
equal to the difference between the azimuthal (upper) and radial (lower) indices of 
the associated Laguerre polynomial, whereas the radial polar coordinate is raised 
to a power equal to the sum of these indices. Thus, in contrast to the conventional 
LG beams, the topological charge of the studied beam is not equal to the power 
of the radial coordinate. On the one hand, it violates the modal propagation (shape 
invariance) of such a beam in free space. On the other hand, the beam discussed 
demonstrates interesting properties: autofocusing and ability to control the diameter 
of the central dark intensity spot without changing the topological charge of the 
beam. 

3.2.1 Fourier-Invariant Laguerre-Gaussian Beams 
with an Increased Dark Area 

Here, we consider a coherent paraxial monochromatic light field with the following 
complex amplitude in the initial plane (z = 0): 

En,m(r, ϕ)  = exp
(

− 
r2 

w2 
+ i(m − n)ϕ

)( r 

w

)m+n 
Lm n

(
r2 

w2

)
, (3.16)
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where (r, φ) are the polar coordinates, w is the waist radius of the Gaussian beam, 
Lm n (x) is the associated Laguerre polynomial. Using standard LG modes 

LGp,±�(r) = exp
(

− 
r2 

w2 
± i�ϕ

)( r 

w

)�

L�
p

(
2r2 

w2

)
, (3.17) 

the beam (3.16) can be written as a product of two of them: 

En,m(r) = 2(n+m)/ 2 LGn,m

(
r √
2

)
LG0,−n

(
r √
2

)
. (3.18) 

The structure of its light rings does not conserve under the beam propagation 
in free space. However, as we will see later, the beam from Eq. (3.16) has some 
interesting properties useful in practice: (i) the beam from Eq. (3.16) is Fourier-
invariant, (ii) it is also autofocusing at the Rayleigh distance from the waist, and (iii) 
it has an increased dark area near the optical axis, i.e. the diameter of the central dark 
intensity spot can be tuned (increased) without changing the topological charge. 

Equation (3.16) indicates that the topological charge of the optical vortex equals 
m – n, and the orbital angular momentum of the beam (3.16), normalized to the beam 
power, is also equal to m – n. Initially, the beam has n + 1 light rings. However, 
since the beam (3.16) does not conserve its structure on propagation, the number of 
rings can change. Thus, n + 1 is the maximal number of rings of the beam (3.16). 
Differentiating the intensity of the field (3.16), In,m(r) = ∣∣En,m(r)

∣∣2 , with respect 
to r and equating the derivative to zero, we find the intensity maxima [minima are 
evidently zeroes of the beam (3.1)]:

(
s − 1 2 [m + n])Lm n (s) + sLm+1 

n−1 (s) = 0, (3.19) 

where s = (r/w)2. Equation (3.19) is an algebraic equation of the (n + 1)th order and 
can be analytically solved only for small values of n only. For instance, since at n 
= 1 the Laguerre polynomial is equal to Lm 1 (y) = −y + (m + 1), Eq. (3.17) allows 
obtaining the radius of the first light ring: r ∼ w 

√
m

/
2. In the general case, the 

radius of the first light ring depends on the radial index n, as follows  from  Eq. (3.19). 
Below, we consider a particular case of Eq. (3.16), when the topological charge of 
the beam is nonnegative. Replacing m = n + �, , the beam (3.16) can be rewritten as 
follows, 

En,n+�(r) = exp
(

− 
r2 

w2 
+ i�ϕ

)( r 

w

)2n+�

Ln+�
n

(
r2 

w2

)
, (3.20) 

where � ≥ 0. Equation (3.20) shows that, without changing the topological charge 
(� = const), the effective diameter of the dark area near the optical axis can be 
changed by varying only the index n. When n increases, the dark low-intensity domain 
near the optical axis becomes larger, whereas decreasing n reduces this domain.
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The beam (3.16) does not keep the intensity shape during propagation in the 
Fresnel diffraction zone. However, its has an invariant Fourier image. Namely, 
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. (3.21) 

where z0 = kw2
/
2 is the Rayleigh distance, ρ = (ξ, η) = (ρ cos θ,  ρ  sin θ)  is a 2D 

vector, f is the focal length of the spherical lens that performs the Fourier transform. 
It is seen from Eq. (3.21) that the complex amplitude of the light field in the lens 
focus is equal to the amplitude of the light field (3.16) up to scale and a constant 
multiplier. 

3.2.2 Fresnel Transform of the Laguerre-Gaussian Beam 
with an Increased Dark Area 

To evaluate the Fresnel transform of the initial light field (3.3), we apply the 
expansion: 

r2n Ln+l 
p

(
r2

)
Ln q

(
r2

) = 
p+q+n∑
k=0 

CkL
l 
k (2r

2 ), (3.22) 

which may be rewritten in terms of LG modes: 
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The coefficients Ck = Ck (p, q, n, �)  are as follows: 

Ck = (p + n + �)!k! 
2p+q+n+�+1p!(k + �)! ·

[[
uk

]]{
(1 − u)q+n (1 + u)p

}

× [[
vq

]]{
(1 − v)k+�(1 + v)p+q+n−k

}
. (3.24) 

Here, we use the notation proposed in [19]. Namely, if A(t) is any power series∑
k ak t

k , then
[[
tk

]]
A(t) denotes the coefficient of tk in A(t). As result, both [·]
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expressions in Eq. (3.24) are integer numbers and may be written in terms of Jacobi 
polynomials:

[[
tn

]]{
(1 − t)a (1 + t)b

} = (−2)n P(a−n,b−n) 
n (0) = 

min(n,a)∑
j=max(0,n−b) 

(−1)j
(
a 

j

)(
b 

n − j

)
. 

(3.25) 

Substituting p = n and q = 0 into Eq. (3.24) we obtain the expansion of the beam 
(3.18) on the base of LG modes: 

En,n+�(r) = 
2n∑
k=0 

CkLGk,�(r) (3.26) 

with 
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Since
[[
uk

]]
(1 − u2)n = 0 for odd values of k, the expansion (3.27) has only even 

terms: 
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According to Eq. (3.28), the light field (3.16) is a superposition of a finite number 
of the conventional LG beams. Therefore, the complex amplitude of the light field 
(3.18) can be obtained at an arbitrary propagation distance z from the initial plane. 
Since 
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then 
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where w(z) = w
(
1 + z2

/
z2 0

)1/2 
is the Gaussian beam radius at the distance z, z0 = 

kw2
/
2 is the Rayleigh distance, k is the wavenumber of light, ψ(z) = arctan

(
z
/
z0

)
is the Gouy phase. 

If we recast Eq. (3.30) and write all s-independent multipliers out of the sum, then 
the remained sum is given by 

2n∑
s=0 

Cs exp(2isψ(z))Ll s

(
2r2 

w2(z)

)
. (3.31) 

At z = 0, the Gouy phase in Eq. (3.31) is zero and the complex amplitude (3.30) 
coincides with the initial amplitude (3.20). In the far field, when z >> z0, the Gouy 
phase equals π/2 and the exponents in Eq. (3.31) become equal to (−1)s = 1, since s 
= 2r. Thus, the sums (3.31) are coinciding at z = 0 and at z >> z0. This again proves 
that the light field from Eq. (3.16) in the far field coincides with the field in the waist. 
At z = z0, the Gouy phase ψ(z) equals π/4 and the exponents in Eq. (3.31) are equal 
to exp(i2sψ(z0)) = is, or, since only the terms with even s are nonzero in Eq. (3.31), 
is = (−1)r, r = 0, 1, 2, ..., n. Thus, all the terms in the sum are real-valued and of 
alternating signs. 

As seen from Eq. (3.16), the radial (lower) index of the Laguerre polynomial is 
equal to n, and, therefore, the Laguerre polynomial has also n roots and the LG beam 
from Eq. (3.16) has n + 1 light rings. However, the maximal radial index of the 
Laguerre polynomial in Eq. (3.31) is equal to 2n. Thus, it may seem that the sum 
(3.31) has also 2n zeros (roots). But it is not so. Since only the even terms are nonzero 
in the sum, after replacing the argument x of the Laguerre polynomial (x2 = y), the 
sum (3.31) with respect to the argument y has the maximal power n and thus has the 
maximal number of roots equal to n. 

Thus, in this Section, applying the Fresnel transform, we obtained the field distri-
bution of the LG beam (3.16) in an arbitrary transverse plane. To do this, we decom-
posed the light field into a superposition of the conventional LG beams. Strictly 
speaking, the conventional LG beams constitute a full basis and an arbitrary light field 
can in principle be expanded into a series of the conventional LG beams. However, 
our expansion contains only a finite number of terms, the expansion coefficients 
are explicitly derived [Eq. (3.28)], and all the constituent LG beams have the same 
azimuthal index (i.e. a vortex factor of the same order), so that the beam (3.16) 
contains the central optical vortex which on propagation is not split and does not 
move from the center. Such a decomposition remains the topological charge of the 
beam (3.16) predictable, but makes its radial distribution more flexible. 

3.2.3 Numerical Simulation 

In this section, using the Fresnel transform of the LG beam from Eq. (3.16), we 
compute the transverse intensity and phase distributions at different distances from
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the initial (waist) plane. We use the following parameters: wavelength λ = 532 nm, 
waist radius of the Gaussian beam w = 0.5 mm, azimuthal (upper) and radial (lower) 
indices of the associated Laguerre polynomial are respectively m = 4 and n = 3. 
Figure 3.8 illustrates the intensity (columns 1 and 3) and phase (columns 2 and 4) 
distributions of the beam from Eq. (3.16) at the following distances from the waist z/ 
z0: 0 (Fig.  3.8a, b), 1/4 (Fig. 3.8c, d), 1/2 (Fig. 3.8e, f), 3/4 (Fig. 3.8g, h), 1 (Fig. 3.1i, 
j), 1.5 (Fig. 3.8k, l), 2 (Fig. 3.8m, n), 3 (Fig. 3.8o, p), 4 (Fig. 3.8q, r), 10 (Fig. 3.8s, 
t).

According to Fig. 3.8, at the Rayleigh distance z0 from the waist, a single light ring 
is generated with its radius nearly equal to 0.4 mm. This is equivalent to focusing a 
Gaussian beam with the waist radius of 0.5 mm by a spherical lens with очень слабой 
the numerical aperture nearly NA = 1.41w/z0 = 0.0005. Увеличивая радиальный 
индекс n, можно в несколько раз увеличить NA. Заметим, что небольшая 
числовая апертура фокусировки приводит к большой глубине резкости, так 
как deep of focus (DOF) обратно пропорционален квадрату числовой апертуры. 
We note также that in the initial plane the first light ring has a radius almost twice 
as large as the waist radius and equal to nearly 0.9 mm. The conventional LG beam 
with the waist radius of 0.5 mm would have such a radius at the topological charge 
of 3, whereas the LG beam from Eq. (3.1) has the topological charge m – n = 4 – 3  
= 1. Therefore, modeling confirms that the beams (3.1) have an enlarged dark area 
in the initial plane (Fig. 3.1a) and at the Rayleigh distance a focal spot is formed in 
the form of a narrow light ring (Fig. 3.1i) almost without side lobes. Although, to be 
precise, focusing (maximum intensity on the ring) takes place at a distance of 0.75 z0 
(Fig. 3.1g) and 2.38 times greater than the maximum intensity on the ring in the initial 
plane (Fig. 3.1a). At the Rayleigh distance, the intensity is slightly less (Fig. 3.1i) 
and 2.37 times greater than in the initial plane. It can also be seen from Fig. 3.1 
that the far field intensity (Fig. 3.1s) coincides with the initial intensity (Fig. 3.1a). 
This confirms the Fourier invariance property (3.4) of beams (3.1). As to the phase 
evolution, it is seen in Fig. 3.1 that in all transverse planes the phase contains a (m – 
n)th-order singularity in the center, since all the terms in Eq. (3.28) are proportional 
to exp(ilφ). In addition, the vortex phase rotates on propagation and the wavefront 
acquires an additional parabolic shape due to converging and diverging. 

Figure 3.1 was obtained by the numerical Fresnel transform, implemented as a 
convolution with using the fast Fourier transforms (implemented in the SciPy library 
for the Python language). To confirm the expansion (3.23) into a superposition of 
the conventional LG beams, Fig. 3.2 illustrates the same patterns as in Fig. 3.1e, 
f, o, p, but computed analytically, via the Laguerre polynomials and the expansion 
coefficients (3.23). It is seen that Fig. 3.2a–d are quite identical to Fig. 3.1e, f, o, p, 
respectively (Fig. 3.9).

Now when Eq. (3.28) was tested, we can use Eq. (3.30) for computing the longi-
tudinal intensity distributions of the beam from Eq. (3.16) and investigate how the 
beam transforms when the radial and azimuthal indices vary. Figure 3.10 illustrates 
these distributions for the following parameters: wavelength λ= 532 nm, waist radius 
w = 0.5 mm, radial and azimuthal indices (n, m) are respectively (0, 1) (Fig. 3.10a), 
(0, 4) (Fig. 3.10b), (3, 4) (Fig. 3.10c), (3, 7) (Fig. 3.10d), (6, 7) (Fig. 3.10e), (6, 10)
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Fig. 3.8 Intensity (coumns 1 and 3) and phase distributions (columns 2 and 4) of the LG beam from 
Eq. (3.16) in different transverse planes z/z0 = 0 (a, b), 1/4 (c, d), 1/2 (e, f), 3/4 (g, h), 1 (i, j), 1.5 (k, 
l), 2 (m, n), 3 (o, p), 4 (q, r), 10 (s, t). Other computation parameters are: wavelength λ = 532 nm, 
waist radius of the Gaussian beam w = 0.5 mm, azimuthal (upper) and radial (lower) indices of the 
associated Laguerre polynomial are respectively m = 4 and  n = 3. Plots in the intensity distributions 
show the intensity cross-sections. Scale marks in left lower corners (light in columns 1 and 3 and 
dark in columns 2 and 4) show 1 mm
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Fig. 3.9 The same intensity and phase distributions as in Fig. 3.8e, f, o, p, but obtained analytically 
by Eq. (3.21) with using the expansion coefficients (3.22)

(Fig. 3.10f). For these values, the topological charge of the beams in the left column 
of Fig. 3.8 is 1, whereas for the beams from the right column it is equal to 4. Since 
n = 0 in Fig.  3.10a, b, these beams reduce to the conventional single-ringed LG 
beams of the topological charge m. These beams do not possess the autofocusing 
property. At n = 3 and n = 6, Fig. 3.10 confirms that the beams are autofocusing, 
although the pronounced focus, when the intensity decays more than two times from 
its maximum, is only at (n, m) = (6, 7). The depth-of-field in this case is almost equal 
to the Rayleigh length: DOF ≈ 0.9z0. In addition, Fig. 3.10 confirms that the radial 
index affect the size of the dark area inside the main light ring, but in the initial plane 
and in the far field. On the contrary, in the plane of the autofocus, the beam is more 
narrow that the conventional LG beam in its waist (the beam in Fig. 3.10e is more  
narrow than the beam in Fig. 3.10c, which is more narrow than the conventional LG 
beam from Fig. 3.10a). To demonstrate, to what extent we can increase or decrease 
the dark area in the focus, Fig. 3.11 depicts the beam (3.16) with a unit topological 
charge, but with a small and with a large index values: (n, m) = (1, 2) (Fig. 3.11a–c) 
and (n, m) = (20, 21) (Fig. 3.11d–f). At (n, m) = (1, 2), the focal distance decreases 
to 0.7z0, and the ring diameter is nearly equal to the ring diameter of the conventional 
LG beam with the charge of 1 in its waist, i.e. 0.7 mm (21/2w). At (n, m) = (20, 21), 
the beam is much narrower in the focal plane: its main ring has the diameter of nearly 
0.2 mm. The depth-of-field in this case is nearly equal to the half of Rayleigh length: 
DOF ≈ 0.5z0. We believe that further increasing of the values n and m will lead to 
further decreasing (theoretically unlimited) of the ring radius in the autofocus plane, 
but in this case the light beam becomes nonparaxial and we cannot use Eq. (3.30) 
and the Fresnel transform to estimate the ring diameter in the focal plane.

Here, we investigated a new type of Laguerre-Gaussian beam with autofocusing 
[41]. At a fixed value of the topological charge l of these beams, changing the radial 
index n of the Laguerre polynomial allows controlling the focusing degree of these 
beams at the Rayleigh distance from the waist. Although the numerical aperture of 
such focusing is not high (inversely proportional to the Rayleigh distance z0), the 
depth of field, in this case, is significant (proportional to z0). Another interesting 
property of these beams, in contrast to the conventional Laguerre-Gaussian beams, 
is that at the zero topological charge (l = 0), the beams (3.20) generate in the focus 
of a spherical lens a light ring. The diameter of this ring can be adjusted by changing 
the radial index n and the ratio of the lens focal length and the Rayleigh distance (f/
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Fig. 3.10 Longitudinal intensity distributions of the beam from Eq. (3.16) with the topological 
charge of 1 (a, c, e) and 4 (b, d, f) when the radial (lower) index n of the associated Laguerre 
polynomial is as 0 (a, b), 3 (c, d), 6 (e, f). Below each distribution, longitudinal intensity cross-
section is shown. Horizontal and vertical scale marks denote respectively z0/2 and 1 mm. Transverse 
dashed line denotes the autofocus plane z = z0

z0). This property of these beams can be used for simultaneous optical trapping of 
several metallic microparticles into the increased dark area of the light ring in the 
focus of the spherical lens. We note that the Bessel or Bessel-Gaussian [42] beams 
are also able to generate a light ring in focus at a zero topological charge. However, 
the Bessel and Bessel-Gaussian beams are not Fourier-invariant and generate in the 
focus of one light ring. The investigated here LG beams are Fourier-invariant and 
can generate in the focus several light rings with nearly the same intensity.
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Fig. 3.11 Transverse initial (a, d) and focal (b, e) intensity distributions, as well as the longitudinal 
intensity distributions (c, e) of the beam from Eq. (3.1) with the  (n, m) = (1, 2) (a–c) and with the 
(n, m) = (20, 21) (d, f). Curves (b, c, e, f) show the intensity cross-sections. Horizontal scale marks 
in the transverse patterns denote 1 mm. Horizontal and vertical scale marks in longitudinal pattern 
denote respectively z0/2  and 1 mm
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Chapter 4 
New Type of Bessel-Gaussian Beams 

4.1 Double and Square Bessel–Gaussian Beams 

Starting from the well-known work by Gori et al. [1], miscellaneous modifications 
of the Bessel-Gaussian (BG) beams are investigated with a growing interest. Bessel-
Gaussian beams are convenient for probing the turbulent atmosphere, since, on the 
one hand, they are of finite-energy like the Gaussian beam, and, on the other hand, 
they manifest quasi diffraction-free properties, due to the Bessel function [2–5]. As 
was shown in [6], the BG beams are more resistant to the distortions induced by 
turbulent atmosphere, than the Gaussian beam. The work [7] demonstrated that in 
the Kolmogorov-type turbulent atmosphere, the BG beams conserve along a longer 
distance, compared to the Gaussian beam. In [8], modified BG beams were studied, 
that were called “frozen waves”. Free-space propagation of the BG beams in THz 
wavelengths range was studied in [9]. In [10], propagation of asymmetric BG beams 
[11, 12] in the turbulent atmosphere was considered. Bessel-Gaussian beams are 
used for microparticles manipulation [13, 14] and for generating entangled pairs of 
photons in quantum informatics [15, 16]. The BG beams can be generated by an 
axicon, by a light modulator or by other elements [17–19]. Therefore, extending the 
set of different types and modifications of the BG beams is a relevant problem. 

In this section, we obtain modifications of the BG beams, such as square BG 
beams and products of the BG beams. For such beams, we derive explicit analytical 
expressions that describe their evolution on propagation in free space. Similarly to 
standard BG beams, the beams we studied are not structurally stable, but they are 
also composed of a set of concentric light rings. The number of the rings and light 
energy between them are changing upon the beam propagation in free space. In the 
far field, all the beams studied except one are similar to the standard BG beam and 
contain a single light ring with almost no side lobes. Only one beam, vortex-free 
power-function BG beam, contains several rings in the far field and their number 
equals to the beam order.
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4.1.1 Bessel-Gaussian Beams and Modulated 
Bessel-Gaussian Beams 

Bessel-Gaussian (BG) beams, first studied in [1], are not structurally stable ones, 
i.e. their transverse intensity distribution changes when the beams propagate in free 
space. However, the change is insignificant and all the intensities keep their shape of 
concentric circles. The complex amplitude of the BG beam at an arbitrary distance 
along the optical axis z is 

BGm(r, ϕ,  z|c ) = 
1 

q(z) 
exp

(
c2 

4q(z) 
− r2 

w2 
0q(z) 

+ imϕ

)
Jm

(
cr 

w0q(z)

)
, (4.1) 

where q(z) = 1 + iz/z0, z0 = kw2 
0/2 is the Rayleigh range, (r, φ) are the polar 

coordinates in the transverse plane, m is the topological charge, Jm(x) is the  mth-
order Bessel function of the first kind, w0 is the Gaussian beam waist radius, k is the 
wavenumber of light, c is a dimensionless (possibly complex) parameter, affecting 
the transverse component of the wave vector (c/w0 = kr), k2 = k2 r + k2 z , kz is the 
longitudinal component of the wave vector. Here and in the following text, we will 
use a vertical line to separate variables and parameters. 

Complex amplitude of the BG beam (4.1) in the initial plane can be expanded 
into a series of Laguerre-Gaussian (LG) beams: 

BGm(r, ϕ,  0|c ) = exp
(
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)
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(
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23ν+m(ν + m)! , (4.2) 

where LG beams in the initial plane are described by the following expression: 

LGn,m(r, ϕ)  = exp
(

− 
r2 

w2 
0 

+ imϕ

)(
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w0

)m 

Lm n

(
2r2 

w2 
0

)
, (4.3) 

based on the associated Laguerre polynomial Lm n (x). As seen from Eq. (4.2), when 
the parameter c is small (c � 1), only the first term in the series is significant and 
the BG beam in this case is close to the LG beam. 

In addition to standard BG beams, BG beams with quadratic radial dependence 
(qBG) are also known. They were introduced in [20]. Later, in [21] the transformation 
of these beams by an optical ABCD system was investigated, and now qBG beams 
are considered as a part of the classification of circular optical beams [22]. In the 
initial plane, the complex amplitude of qBG beams is defined as 

qBGm(r, ϕ,  0|c ) = exp
(

− 
r2 

w2 
0 

+ imϕ

)
Jm/2

(
cr2 

w2 
0

)
. (4.4)
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As seen from Eq. (4.4), the qBG beams depends on the Bessel function of an 
integer order when m is even and of a half-integer order when m is odd. It is also 
seen that, in contrast with BG beams, the argument of the Bessel function depends 
on the radial coordinate quadratically. The complex amplitude of the qBG beams in 
the Fresnel zone is as follows: 

qBGm(r, ϕ,  z|c ) 
= 

1 √
q+q− 

exp

(
−

[
1 + i(1 + c2 ) 

z 

z0

]
r2 

w2 
0q+q− 

+ imϕ

)
Jm/ 2

(
cr2 

w2 
0q+q−

)
. (4.5) 

The parameters q± in Eq. (4.4) depend on the propagation distance z and the 
parameter c: 

q± = q±(z) = q(z) ± c 
z 

z0 
= 1 + (i ± c) 

z 

z0 
. (4.6) 

Equations (4.5) and (4.6) reveal that when the value c is large enough (c � 1), the 
imaginary part of the factor q+q– in the argument of the Bessel and the exponential 
functions is small compared to the real part, and the BG becomes approximately 
propagation-invariant, i.e. its shape of the intensity distribution is almost conserved, 
changing only in scale. 

Further, we obtain an integral transform that relates BG beams (4.1) with qBG 
beams (4.4). It can be shown that this transform is given by 

∞∫
0 

BGm(r, ϕ,  z|c )Jm/2

(
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4
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1 + a2q2(z) 

exp

(
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a2q(z)r2 

1 + a2q2(z) 
+ imϕ

)
Jm/2

(
ar2 

1 + a2q2(z)

)
. (4.7) 

Comparing right parts of Eqs. (4.5) and (4.7) reveals that the complex amplitudes 
depend on the parameters a and c differently, although the structure of the modulated 
BG beam is the same in Eqs. (4.5) and (4.7). Пучки (4.7) являются модификацией 
пучков (4.4), (4.5). 

4.1.2 Square Bessel-Gaussian Beams 

In our works [23, 24], we considered double Laguerre-Gaussian (dLG) beams and 
square LG beams. Both of them can be expressed via finite sums of LG beams. Here 
we consider square BG beams and show that they can be represented as an infinite 
sum of BG beams (4.1). Complex amplitude of the square BG beam (sBG) in the 
initial plane reads as
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sBGm(r, ϕ,  0|c ) = exp
(
c2 

2 
− 

r2 

w2 
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+ 2imϕ
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J 2 m
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)
. (4.8) 

Here we prefer to scale the parameters of the initial BG beam (c → c 
√
2, w0 → 

w0 

√
2) but to keep the Gaussian factor unchanged. 

The complex amplitude of the BBG beams can be obtained by using generating 
function for the squares of the Bessel functions [25]:

∑
ν∈Z 

J 2 ν (x)(−t2 )ν = J0
[
x

(
t + 

1 

t

)]
. (4.9) 

After rather complicated algebra, we reduce the Fresnel transform of the initial 
complex amplitude (4.8) to the following series of Bessel functions: 
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(4.10) 

Equation (4.10) indicates that the square BG beams do not conserve their shape on 
propagation in free space, but are a superposition of a countable number of products 
of BG beams of the orders, whose sum is equal to 2 m, i.e. the initial topological 
charge. It is interesting to note that in the far field, i.e. when z → ∞, the series in 
Eq. (4.10) reduces to the power function r2m. Thus, in the far field (and in the focus 
of a spherical lens), the square BG beam has the shape of a single light ring without 
side lobes. 

4.1.3 Product of Two Bessel-Gaussian Beams 

Since the series in Eq. (4.10) contains the product of two similar Bessel functions 
depending on r, it seems quite possible that for a product of two different BG beams 
instead of the squared one we can evaluate the Fresnel transform. Let us introduce 
the product of two BG beams in the initial plane z = 0: 

dBGm,n(r, ϕ,  0|a, b ) = exp
(
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4
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)
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Then in same way as the expansion (4.10) has been derived, the initial field (4.11) 
leads to the following solution of the paraxial equation: 

dBGm,n(r, ϕ,  z|a, b ) = 
1 

q(z) 
exp

(
a2 + b2 

4q(z) 
− r2 

w2 
0q(z) 

+ i(m + n)ϕ
)

×
∑
ν∈Z 

(−i)ν Jm+ν

(
ar 

w0q(z)

)
Jn−ν

(
br 

w0q(z)

)
Jν

(
abz 

2z0q(z)

)
. 

(4.12) 

As can be seen from Eq. (4.12), if n = m and a = b = c, the product of two BG 
beams reduces to the square BG beam. It is also seen that, for the case n = b = 0, 
the series (4.12) collapses to the only term with ν = 0 and the product of two BG 
beams reduces to the standard BG beam: 

dBGm,0(r, ϕ,  z|a, 0 ) = BGm(r, ϕ,  z|a ). (4.13) 

Some other particular cases of the dBG beams, Eq. (4.12), are also interesting to 
mention. If n = −m, then dBG beam is a vortex-free beam: 

dBGm,−m(r, ϕ,  0|a, b ) = (−1)m exp

(
a2 + b2 

4 
− 

r2 

w2 
0

)
Jm

(
ar 

w0

)
Jm

(
br 

w0

)
, 

dBGm,−m(r, ϕ,  z|a, b ) = 
(−1)m 

q(z) 
exp

(
a2 + b2 

4q(z) 
− r2 

w2 
0q(z)

)

×
∑
ν∈Z 

iν Jm+ν

(
ar 

w0q(z)

)
Jm+ν

(
br 

w0q(z)

)
Jν

(
abz 

2z0q(z)

)
. 

(4.14) 

Its limiting case, when b vanishes, is a product of the vortex-free BG beam by the 
power function: 

pBGm(r, ϕ,  0|a ) = 2m m! ·  lim 
b→0 

BBGm,−m(r, ϕ,  0|a, b ) 
(−ab)m 

= exp
(
a2 

4 
− 

r2 

w2 
0

)
Jm

(
ar 

w0

)(
2r 

aw0

)m 

. (4.15) 

The beam from Eq. (4.15) can be called vortex-free power-function BG beam. 
Tending the parameter b to zero in Eq. (4.12), we derive the Fresnel transform of the 
beam from Eq. (4.15): 

pBGm(r, ϕ,  z|a ) = 
1 

q(z) 
exp

(
a2 

4q(z) 
− r2 

w2 
0q(z)

)
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× 
m∑

ν=0

(
m 

ν

)(
2r 

aw0q(z)

)m−ν 
Jm−ν

(
ar 

w0q(z)

)(
iz 

z0q(z)

)ν 
. (4.16) 

Expression (4.16) indicates that the power-function vortex-free BG beam in the 
Fresnel diffraction zone is a finite superposition of similar power-function BG beams 
of the orders ν from 0 to m. 

In the far field (z � z0), the argument of the Bessel functions in Eq. (4.16) 
becomes small. Thus, since Jν(ξ ) ≈ (ξ

/
2)ν

/
ν! at ξ ≈ 0, the field from Eq. (4.16) 

transforms into a superposition of single-ringed beams: 

pBGm(r, ϕ,  z � z0|a ) ≈ 
1 

q(z) 
exp

(
a2 

4q(z) 
− r2 

w2 
0q(z)

)

× 
m∑

ν=0 

(−1)ν
(
m 

ν

)
1 

ν!
(
z0 
z 

r 

w0

)2ν 
. (4.17) 

Each if these beams has its own light ring and, consequently, there should be m 
light rings in the far field. 

4.1.4 Numerical Simulation 

In this section, we describe the computation results of the beams from Eqs. (4.5), 
(4.12), and (4.16). All distributions are obtained by two ways: by using the numer-
ical Fresnel transform, implemented as a convolution with adopting the fast Fourier 
transform, and by the theoretical expression. All intensity distributions, obtained 
by these two ways, are visually indistinguishable, while the phase distributions are 
different only in low-intensity areas. This confirms the correctness of the formulae 
(4.5), (4.12), (4.16) for the complex amplitudes on space propagation. 

Shown in Fig. 4.1 are intensity and phase distributions of the modulated Bessel-
Gaussian beam (4.5) in several transverse planes. To obtain a beam with several rings 
and to prove that it is approximately propagation-invariant, we choose a large value 
of the scaling factor c = 30.

Figure 4.1 confirms that when the scaling factor c is large enough, the transverse 
intensity shape almost does not change upon propagation. 

Figure 4.2 illustrates the intensity and phase distributions of two BG beams with 
different parameters, as well as of the beam (4.11), (4.12), constructed as their 
product, in several transverse planes. For computation on the base of Eq. (4.12), 
the series was bounded by 100 terms.

As seen in Fig. 4.2, intensity distributions of both BG beams in the initial plane 
have a shape of one bright ring (Fig. 4.2a, c), but the first beam has the ring of a 
smaller radius and also has a pale second ring (Fig. 4.2a). Between these rings, there 
is a dark zero-intensity ring and multiplication of the complex amplitudes of both
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Fig. 4.1 Intensity (a, c, e, g, i) and phase (b, d, f, h, j) distributions of the modulated Bessel-Gaussian 
beam (4.5) in several transverse planes for the following computation parameters: wavelength λ 
= 532 nm, Gaussian beam waist radius w0 = 1 mm, beam order m = 3, scaling factor c = 30, 
propagation distances z = 0 (a, b), z = z0/2 (c, d), z = z0 (e, f), z = 2z0 (g, h), z = 5z0 (i, j). Dashed 
squares (c, e, g, i) denote the areas corresponding to shown phase distributions (d, f, h, j)

beams in the beam (4.11), (4.12) leads to two bright light rings (Fig. 4.2e), since the 
thick ring in Fig. 4.2c is “cut” into two rings by the dark ring from Fig. 4.2a. 

In the initial phase distributions (Fig. 4.2b, d, f), there are rings with the phase 
jumps by π. The Bessel functions are equal to zero on these rings. However, on 
propagation, the arguments of the Bessel functions become complex and the function 
values are nonzero. Therefore, there are no such phase jumps in Fig. 4.2h, j, l, n, p, 
r, t, v, x. 

Despite the lower topological charge of the first BG beam (m = 2 vs.  n = 3), its 
scaling factor is, vice versa, greater than that of the second beam (a = 8 vs.  b = 5). 
Therefore, on propagation, it diverges faster and at a distance of z = z0/2 its light ring 
has a greater diameter than the ring of the second BG beam, and now it is this ring 
that becomes cut by the minimal-intensity ring of the second beam. Therefore, the 
beam in Fig. 4.2k, l has also two light rings, as in the initial plane in Fig. 4.2e, f. On 
propagation to the Fresnel zone and to the far field (row 3 and 4 in Fig. 4.2), the light 
rings of both BG beams almost do not overlap (rings in Fig. 4.2m, o in the Fresnel 
zone and rings in Fig. 4.2s, u in the far field). Therefore, after multiplication, these 
rings are suppressed and another rings appear, those that are not seen in the initial
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Fig. 4.2 Intensity (columns 1, 3, 5) and phase (columns 2, 4, 6) distributions of two BG beams 
with different parameters (columns 1–4), as well as of the beam (4.11), (4.12), constructed as their 
product (columns 5, 6), in several transverse planes for the following computation parameters: 
wavelength λ = 532 nm, Gaussian beam waist radius w0 = 1 mm, orders of BG beams m = 2 
(columns 1, 2) and n = 3 (columns 3, 4), scaling factors of BG beams a = 8 (columns 1, 2) and  
b = 5 (columns 3, 4), propagation distances z = 0 (row 1), z = z0/2 (row 2), z = z0 (row 3), z = 2z0 
(row 4). Horizontal dashed lines between the figures are shown for matching the radii of the light 
rings in different beams

plane. Thus, the diameter of the outer light ring of the product beam (Fig. 4.2q, w) 
exceeds the ring diameters of both BG beams. 

Figure 4.3 depicts the intensity and phase distributions of the vortex-free power-
function BG beam (4.16) in several transverse planes.

As seen in Fig. 4.3, the intensity distribution in the initial plane consists of multiple 
light rings (there are 7 rings in Fig. 4.3a). On propagation, only two rings remain, 
and then, in the far field, the number of rings increases to three, which is consistent 
with the theory that predicts that there should be m rings in the far field. The phase 
distribution is not shown for the initial plane since it is zero, whereas in other planes it 
is seen to be a rotationally symmetric and the beam does not contain optical vortices. 

In this section, we have obtained the following results [26]. An integral trans-
form (4.7) has been derived that relates the standard BG beams (4.1), (4.3) and 
модифицированные qBG beams, отличающиеся от стандартных qBG beams 
(4.4), (4.5). As seen from Eq. (4.7), the beams can be treated as continuous superpo-
sition of the standard BG beams with the weight function equal to fractional-order 
Bessel function. Square BG (BBG) beams (4.8) have been proposed and studied, 
whose complex amplitude depends on the square of the Bessel function. We have
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Fig. 4.3 Intensity (a, b, d, f, h, j) and phase (c, e, g, i, k) distributions of the vortex-free power-
function Bessel-Gaussian beam (4.16) in several transverse planes for the following computation 
parameters: wavelength λ = 532 nm, Gaussian beam waist radius w0 = 1 mm, beam order m = 3, 
scaling factor a = 15, propagation distances are z = 0 (a), z = z0/2 (b, c), z = z0 (d, e), z = 2z0 (f, 
g), z = 5z0 (h, i), z = 10z0 (j, k). Dashed squares (b, d, f, h, j) denote the areas corresponding to 
shown phase distributions (c, e, g, i, k)

obtained the complex amplitude of the BBG beams in the Fresnel diffraction zone 
in a form of a series of products of three different Bessel functions (4.10). As a 
generalization of square BG beams, we have also investigated double BG (dBG) 
beams (4.11) with their complex amplitude being proportional to a product of two 
Bessel functions of different orders and of different scales. Complex amplitude of 
such beams in the Fresnel diffraction zone has also been represented in a form of a 
series of products of three different Bessel functions (4.12). We have also consid-
ered modified BG beams with their complex amplitude being equal to a product of 
the Bessel function by the power function of the radial variable (4.15). This set of 
pBG beams is a subset of vortex-free BG beams. When such a beam of m-th order 
propagates in free space, it becomes a superposition of a finite number of similar 
vortex-free power-function BG beams of the orders from 0 to m. New varieties of the 
BG beams considered in this section will be useful for probing the atmosphere, wire-
less communications, microparticles manipulations, and in quantum informatics for 
generating entangled pairs of photons. In micromechanics, these laser beams can be 
used to control the movement of microparticles along circular trajectories [27–29].
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4.2 Bessel-Bessel-Gaussian Vortex Laser Beams 

The Bessel [30] and the Bessel-Gaussian [1] beams are known in optics since 
1987. The work [31] contains a contemporary review of the Bessel beams. These 
beams still receive much attention due to their wide applications for nanostructuring 
materials [32–34], manipulating micropartcles [35–37], accelerating atoms [38–40], 
microscopy [41–43], and wireless optical communications [44–46]. Among various 
Bessel beams, many their modifications are known. One such a modification is a 
Bessel-Gaussian beam of a half-integer order and with an argument, quadratically 
dependent on the radial polar coordinate [20]. Another Bessel beam has also a half-
integer order, quadratic argument, and finite energy, but it does not have the Gaussian 
envelope [47]. Asymmetric Bessel-Gaussian beams [12] are similar to the beams we 
study in this work, but the intensity shape of the formers consists of one ‘crescent’ 
rather than of two ‘crescents’. In Refs. [48] and [49], Bessel-Gaussian beams are 
compared in details with Laguerre-Gaussian beams and generalized (dual) Laguerre-
Gaussian beams, respectively. In Ref. [26], double and square Bessel-Gaussian beams 
were introduced and investigated. 

Besides employing a narrow ring aperture [30], which is, surely, very ineffective, 
Bessel beams can be generated by a deformable mirror, spatial light modulator, 
micromirrors array, binary mask [50], hologram [51], and by using an axicon with a 
lens (or a second axicon) for generating a bright ring [52–54], or by a toroidal cavity 
[55]. 

In this section, we obtain and investigate a new one-parametric family of Bessel-
Bessel-Gaussian beams (BBG beams). We derive their complex amplitude as a 
product of the Gaussian function and two nth-order Bessel functions with a similar 
dependence of their arguments on the cylindrical coordinates. It is shown that 
changing the positive beam parameter allows controlling the beam topological 
charge. We also demonstrate anomalously fast transverse rotation of the beam inten-
sity pattern upon propagation in the near field of diffraction. At a distance from the 
waist much shorter than the Rayleigh length, the intensity is already rotated by almost 
45°. 

4.2.1 Bessel-Bessel-Gaussian Beams Based Upon 
the Bessel-Gaussian Beams 

Complex amplitude of the well-known Bessel-Gaussian beams [1] is given  by  

BGn(r, ϕ,  z) = 
1 

q 
exp

(
− 
iα2z 

2kq 
− 

r2 

w2q 
+ inϕ

)
Jn

(
αr 

q

)
, (4.18) 

where q = q(z) = 1+iz
/
z0, z0 = kw2

/
2 is the Rayleigh length, k is the wavenumber 

of light, w is the waist radius of the Gaussian beam, (r, φ, z) are the cylindrical
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coordinates, z is the propagation distance, α is the scaling factor that defines the width 
of the Bessel function Jn(x), n is an integer number equal to the topological charge 
of the optical vortex. Using the following series of the Bessel functions (Sect. 5.7.8 
in [25]): 

∞∑
m=0 

t2m+n 

m!(m + n)! J2m+n(x) 

= Jn
(
x sin

(
1 

2 
arcsin 

4t 

x

))
Jn

(
x cos

(
1 

2 
arcsin 

4t 

x

))
, (4.19) 

we derive the complex amplitude of a new family of Bessel-Bessel-Gaussian vortex 
laser beams (BBG beams): 

BBGn(r, ϕ,  z) = 
1 

q 
exp

(
− 
iα2z 

2kq 
− 

r2 

w2q

) ∞∑
m=0 

(ceiϕ )2m+n 

m!(m + n)! J2m+n

(
αr 

q

)

= 
1 

q 
exp

(
− 
iα2z 

2kq 
− 

r2 

w2q

)

× Jn
(
1 

q 

√
αr 

2

(
αr − √

α2r2 − 16c2q2e2iϕ
))

× Jn
(
1 

q 

√
αr 

2

(
αr + √

α2r2 − 16c2q2e2iϕ
))

, (4.20) 

with a parameter c, which we suppose real and positive, while, of course, it can be 
chosen to be any complex number. The reason is that the replacement c = |c| → 
|c|eiθ leads to the beam (4.20) rotation over the angle −θ due to the presence of the 
term c2e2iϕ in both Bessel factors. The complex amplitude of BBG beams (4.20) 
is written explicitly for an arbitrary propagation distance z. Tending z to infinity 
allows obtaining the complex amplitude of BBG beams in the far field. According to 
Eq. (4.20), BBG beams devoid of rotational symmetry, but they are axially symmetric 
since a replacement of the azimuthal angle φ by the angle φ + π does not change 
the amplitude (4.20). If we suppose φ = πp in the series (4.20), p = 0,1,2…, then 
the series coefficients are all positive for different indices m, i.e. all BG beams in 
the series are summed up in phase, thus yielding a high intensity on the horizontal 
axis. On the vertical axis, i.e., when φ = π/2 + πp, the coefficients are of different 
signs and neighboring BG beams are summed in antiphase, so that the intensity on 
the vertical axis is lower than on the horizontal one. Tending the radial coordinate 
to zero (r → 0) and employing approximations of the Bessel functions at small 
argument, 

Jn(x << 1) ≈ 
1 

n!
( x 
2

)n 
, (4.21) 

we obtain the amplitude of the BBG beam near the intensity zero on the optical axis:
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BBGn(r � 1, ϕ,  z) ≈ 1 

(n!)2q exp
(

− 
iα2z 

2kq 
− 

r2 

w2q

)

×
(

αr 

8q2

(
αr − √

α2r2 − 16c2q2e2iϕ
))n/2 

×
(

αr 

8q2

(
αr +

√
α2r2 − 16c2q2e2iϕ

))n/2 

= 1 

(n!)2q exp
(

− 
iα2z 

2kq 
− 

r2 

w2q

)(
αr 

8q2

)n 

(4cqeiϕ )n 

= 1 

(n!)2q exp
(

− 
iα2z 

2kq 
− 

r2 

w2q

)(
αc 

2|q| · re
i(ϕ−ψ)

)n 

, (4.22) 

where ψ = arctan(z
/
z0). 

Equation (4.22) reveals that the amplitude of the beam (4.20) near the intensity 
zero on the optical axis describes an optical vortex with the topological charge n. It  
is also seen from Eq. (4.22) that the rotation angle of the intensity pattern increases 
counterclockwise upon beam propagation, proportionally to the Gouy phase: φ = ψ. 
If the radial coordinate tends to zero (r → 0), then only the term m = 0 in the series 
(4.20) is significant and Eq. (4.20) reduces to the following form 

BBGn(r << 1, ϕ,  z) ≈ 
1 

qn! exp
(

− 
iα2z 

2kq 
− 

r2 

w2q

)(
ceiϕ

)n 
Jn

(
αr 

q

)
. (4.23) 

This expression is valid also for small values of the parameter c. From Eq.  (4.23), 
near the central intensity zero, the BBG beam coincides with the BG beam (4.18), 
if we select c = (n!)1/n . As seen from Eq. (4.20) and especially from Eq. (4.23), if 
c = 0 then the BBG beam amplitude reduces to zero. Equation (4.20) also indicates 
that in the initial plane, when z = 0 and q(z) = 1, the arguments of the Bessel 
functions have real values at certain azimuthal angles: φ = πp/2, p = 0,1,2,… Thus, 
the arguments of the both Bessel functions in Eq. (4.3) are real on the Cartesian axes 
x and y and at certain values of the radial coordinate r can be equal to the zeros 
of the Bessel functions Jn(γn,p) = 0, p = 1, 2, 3, … Making the arguments of the 
Bessel functions on the Cartesian axes in the initial plane equal to the real zeros of 
the Bessel functions, we get (φ = πp/2): 

αr
(
αr ± 

√
α2r2 ± 16c2

)
= 2γ 2 n,p. (4.24) 

The sign ‘−’ in the radicand in Eq. (4.24) is for the axis x, whereas the sign 
‘+’ is for the axis y. The plus and minus signs before the square root in Eq. (4.24) 
correspond to different Bessel functions in Eq. (4.20). On the axis y, the sign ‘+’ 
should be chosen in the radicand in Eq. (4.24). Thus, since the l.h.s. of Eq. (4.24) 
should be positive, the sign ‘+’ before the square root should be selected. This allows 
unambiguous determining the coordinates of the Bessel function zeros on the vertical



4.2 Bessel-Bessel-Gaussian Vortex Laser Beams 105

Cartesian axis: 

ry,p = ± γ 2 n,p 
α 
√
4c2 + γ 2 n,p 

. (4.25) 

The plus and minus signs in Eq. (4.25) denote the positive and negative coordinates 
of the intensity zeros of the BBG beam on the vertical axis in the initial plane. Since 
for the vertical axis, the plus sign should be chosen in the radicand in Eq. (4.24), the 
second term in Eq. (4.24) exceeds the first one, i.e., the outer radicand of the first 
Bessel function in Eq. (4.20) is negative on the vertical axis and the argument is thus 
purely imaginary: 

√
αr 

2

(
αr −

√
α2r2 + 16c2

)
= ±i 

√
αr 

2

(√
α2r2 + 16c2 − αr

)
. (4.26) 

For the axis x, the minus sign should be chosen in the radicand in Eq. (4.24). Then, 
to make the radicand nonnegative, the following inequality should be satisfied: 

r ≥ 
4c 

α 
. (4.27) 

For large values of the asymmetry parameter c, 4c � α, this inequality indicates that 
the zeros of the Bessel function (intensity zeros) on the horizontal axis are located 
further from the origin than the zeros on the vertical axis. From Eq. (4.27) also follows 
that the intensity zeros on the horizontal axis reside further than the maximal intensity 
value, i.e., the radii of the two intensity maxima increase linearly with increasing 
parameter с and are close to rmax ≈ ±4c/α. Coordinates of the intensity zeros on 
the horizontal axis are given by 

rx,p = ± γ 2 n,p 
α
√

γ 2 n,p − 4c2 
. (4.28) 

The expression (4.28) is valid if the condition (4.27) is satisfied as well as the 
following condition of positive value of the radicand in Eq. (4.28): 

γn,p > 2c. (4.29) 

We note that the intensity zeros (local optical vortices) on the Cartesian axes 
have alternating signs (topological charge is + 1 or  − 1) so that the neighboring 
optical vortices compensate the influence of each other. This is the case with all the 
zeros excepting the degenerate zero at the origin, whose topological charge is n. The  
topological charge (TC) of the BBG beams increases with increasing asymmetry 
parameter c > 0. If the term  m = 0 in the series (4.20) is the dominant, then the 
TC of the beam (4.20) is  n. This is the case when the asymmetry parameter is small
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and approximately meets the condition c < n. When the parameter c increases, the 
TC of the series (4.20) is equal to the TC of the second term, i.e. n + 2. On further 
increasing the parameter c, the third term in the series (4.20) can have the largest 
magnitude (at small r) and then the TC of the superposition of all BG beams in the 
series becomes equal n + 4, and so on. If the parameter tends to infinity, the TC of 
the series (4.20) and of the BBG beam itself tends to infinity also. Upon propagation 
of the beam (4.20) in free space, the intensity zeros with the opposite signs on the 
Cartesian axes disappear (annihilate), and only the optical vortices near the origin 
remain. 

4.2.2 Bessel-Bessel-Gaussian Beams Based Upon 
the Bessel-Gaussian Beams with Quadratic Argument 

In 1999, Caron and Potvliege found a solution of the paraxial Helmholtz equation 
[20]:

(
∂2 

∂x2 
+ 

∂2 

∂y2 
+ 2ik 

∂ 
∂z

)
E(x, y, z) = 0 (4.30) 

as a product of the Gaussian function by the Bessel function of a half-integer order 
and a squared argument (qBG beams) [20]: 

qBGn(r, ϕ,  z) = 1 √
q+q− 

Jn/ 2

(
βr2 

q+q−

)

× exp
(
i(1 + β2w4)zr2 

z0w2q+q− 
− r2 

w2q+q− 
+ inϕ

)
, (4.31) 

where q± = 1 ± βw2z
/
z0 + iz

/
z0 and β is a real parameter defining the scale of the 

Bessel function. 
Based on the beams (4.31) and the series (4.19), qBBG beams can be constructed 

with a half-integer order: 

qBBGn(r, ϕ,  z) = 1 √
q+q− 

exp

(
i(1 + β2w4)zr2 

z0w2q+q− 
− r2 

w2q+q−

)

× 
∞∑
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/
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(
βr2 

q+q−

)

= 
1 √
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(
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)
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√
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2

(
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β2r4 − 16c2(q+q−)2e4iϕ
))
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× J n 
2

(
1 

q+q− 

√
βr2 

2

(
βr2 + √

β2r4 − 16c2(q+q−)2e4iϕ
))

. 

(4.32) 

The beam family (4.32), depending on a parameter c, which we suppose a real 
number, is of finite energy due to the Gaussian envelope. At c = 0, the beam (4.32) 
vanishes for n 
= 0, or reduces to the zero-order qBG beam (4.31) for  n = 0. Similarly 
to Eq. (4.23), near the optical axis (at small r), the beam (4.32) reduces to the 
generating beam (4.31). Analysis of the series (4.32) reveals that at the angles 2φ = 
πp, p = 0, 1, 2…, the series coefficients are positive for all indices m, i.e. all qBG 
beams in the series (4.32) are summed in phase and the intensity should be large 
on the Cartesian axes. On the contrary, if 2φ = π/2 + πp, the coefficients of the 
series (4.32) have alternating signs and the neighboring qBG beams are summed in 
antiphase and the intensity on the diagonals of the four quadrants is lower than on 
the Cartesian axes. Thus, it can be supposed that the qBBG beams have four local 
intensity maxima (four intensity lobes) on the Cartesian axes at a certain distance 
from the optical axis. Similarly to Eq. (4.24), we make the argument of the Bessel 
functions in Eq. (4.32) equal to the zeros of the Bessel function of a half-integer 
order in the initial plane (z = 0) on 8 rays φ = πp/4, p = 0, 1, 2,…: 

βr2
(
βr2 ±

√
β2r4 ± 16c2

)
= 2γ 2 n/2,p. (4.33) 

At angles φ = πp/4, p = 1, 3, 5…, the plus sign should be chosen in the radicand 
and thus the Bessel function zeros are located on the four diagonals in points with 
the following coordinates: 

rx,y,p = ± γ 2 n/2,p √
β · 4

√
γ 2 n/2,p + 4c2 

. (4.34) 

For odd values р, i.e. on the rays φ = πp/4, p = 0, 2, 4…, there is the minus sign 
in the radicand of Eq. (4.33) and the square root has a real value if the following 
condition is satisfied, similar to Eq. (4.27): 

r ≥ 2 
√

c 

β 
. (4.35) 

In Eq. (4.35), the parameter c should be positive. Coordinates of Bessel functions 
zeros in Eq. (4.32) should be sought with accounting the condition (4.35) on the  
Cartesian axes at the following points: 

rx,p = ± γ 2 n/2,p √
β · 4

√
γ 2 n/2,p − 4c2 

. (4.36)
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Since the expression (4.36) should be real, a following condition should be satis-
fied, similar to Eq. (4.29): γn/2,p > 2c. These zeros of the Bessel functions in 
Eq. (4.32), lying on the Cartesian axes and on the diagonals (on 8 rays), yield unitary-
charged optical vortices with alternating sings + 1 and − 1. Therefore, these vortices 
do not affect the topological charge of the beam (4.32), equal to the topological charge 
of the central optical vortex n. Upon propagation in free space, the arguments of the 
Bessel functions in Eq. (4.32) become complex, and all noncentral optical vortices 
compensate each other and disappear. In the section of the beam (4.32) at  z > 0, only 
the central optical vortex remains. 

4.2.3 Bessel-Bessel-Gaussian Beams of the Second Type 

The reference book [56] contains another series which is similar to the series (4.19): 

∞∑
m=0

(
n + 1

/
2
)
mt

m+n 

m!(2n + 1)m 
Jm+n(2x) 

= 22n n!Jn
(
x +

√
x2 − tx

)
Jn

(
x −

√
x2 − tx

)
, (4.37) 

with (a)k = �(a + k)
/

�(a) being the Pochhammer symbol. Based on the series 
(4.37) and the BG beam (4.18), BBG beams of the second type (BBG2 beams) can 
be constructed: 

BBG2n(r, ϕ,  z) = 
1 

q 
exp

(
− iα2z 

2kq 
− 

r2 

w2q

)

× 
∞∑
m=0

(
n + 1

/
2
)
m(ceiϕ )m+n 

22nn!m!(2n + 1)m 
Jm+n

(
αr 

q

)

= 
1 

q 
exp

(
− iα2z 

2kq 
− 

r2 

w2q

)

× Jn
(

1 

2q

(
αr + 

√
α2r2 − 2αcqreiϕ

))

× Jn
(

1 

2q

(
αr − 

√
α2r2 − 2αcqreiϕ

))
. (4.38) 

If c = 0, BBG2 beams vanish for n 
= 0, or reduce to the zero-order BG beam for n 
= 0. As seen from Eq. (4.38), the series yields real values in the initial plane only on 
the axis x. In this case, on the positive part of the axis (φ = 2πp, p = 0, 1, 2…), all the 
terms of the series are summed ‘in phase’ and the intensity magnitude is the highest. 
On the negative part of the axis x (φ = πp, p = 1, 3, 5…), the neighboring terms are 
summed in antiphase and the intensity is thus lower than that on the positive part of
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the axis x. Thus, intensity distribution in the initial plane has a single maximum at x 
> 0. To obtain the coordinates of the intensity zeros in the initial plane (z = 0), we 
make the arguments of the Bessel functions in Eq. (4.38) equal to the Bessel function 
zeros γn, p on the negative part of the horizontal axis x < 0:  

rx<0 =
2γ 2 n,p 

α(2γn,p + c) 
. (4.39) 

On the positive part of the horizontal axis x > 0, the coordinates of the intensity 
zeros can be found only at the following condition, similar to Eq. (4.27): 

r ≥ 
2c 

α 
. (4.40) 

If the condition (4.40) is satisfied, coordinates of the intensity zeros are given by 

rx>0 =
2γ 2 n,p 

α(2γn,p − c) 
, 2γn,p > c. (4.41) 

Comparison of Eqs. (4.39) and (4.41) indicates that if the asymmetry parameter 
c increases then the intensity zeros at x < 0 become closer to the origin, whereas the 
zeros at x > 0 move away from the origin. At the origin itself, on the optical axis, 
there is an intensity zero surrounded by an optical vortex with the topological charge 
n. The intensity zeros (4.39) and (4.41) on the horizontal axis are centers of optical 
vortices with the topological charges + 1 and − 1. When the beam propagates in 
space, these peripheral optical vortices “annihilate” since the argument of the Bessel 
functions in Eq. (4.38) becomes complex, whereas all the Bessel function zeros are 
real. 

4.2.4 Numerical Simulation 

Simulation of propagation of BBG beams (4.20) 

Figure 4.4 illustrates the intensity and phase distributions of the BBG beam (4.20) for  
the following parameters: wavelength λ = 532 nm, waist radius w0 = 1 mm, beam 
order n = 4, scaling factor of the BG beams α= k/1000, asymmetry parameter c = 5. 
The intensity and phase distributions are shown for the following distances from the 
waist plane: z = 0, 0.15z0, 0.25z0, 0.5z0, z0, 2z0. As seen in Fig. 4.4, after propagating 
over a distance which is much shorter than the Rayleigh length, the BBG beam is 
already rotated counterclockwise by almost 45°. At the Rayleigh length, the BBG 
beam (4.20) is rotated by almost 90°. On further propagation, the beam is slowly 
rotates up to 90°. Typically, vortex beams without radial symmetry of the intensity 
distribution rotate by 45° at a distance equal to the Rayleigh length [57, 58]. This is
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because the far field of the Bessel beam (4.20) appears at smaller distances that the 
Rayleigh length. The waist radius of the Gaussian beam can be treated as an aperture 
bounding the Bessel beam, and thus, after the distance wk/α = 1000w = 1 m, the  far  
field already appears for the Bessel beam, although the Rayleigh length is near z0 = 
6 m.

Shown in Fig. 4.5 are the intensity and phase distributions of the BBG beams 
(4.20) for the following parameters: wavelength λ = 532 nm, waist radius w0 = 
1 mm, topological charge n = 4, scaling factor α = k/1000, asymmetry parameter 
c = 1, 2, 3, 4, 5, 6, 7, 8, propagation distance z = z0. Half-size of the computation 
domain is R = 10 mm. As seen in Fig. 4.5, if the parameter c grows, then the BBG 
beam leads to increase of its topological charge. For instance, at с from 1 till 3, the 
TC is n = 4, at с = 4 and c = 5, the TC equals n + 2 = 6, at с = 6 and c = 7, the TC 
is n + 4 = 8, whereas at с = 8, the TC is equal to n + 6 = 10. Thus, we demonstrated 
that changing the parameter c allows controlling the topological charge of the BBG 
beams (4.20), changing it by an even number. Besides, Fig. 4.5 indicates that the 
distance between the two intensity maxima on the horizontal axis in the initial plane 
increases proportionally to the value of c, which is consistent with the theory (4.40). 
The distance from the origin to one of the crescents in the first column of Fig. 4.5 
can be estimated by knowing the first zeros of the first Bessel functions present in 
Eq. (4.20). For example, at c = 1, the main contribution into the series (4.20) is  
given by the first term, proportional to the 4th-order Bessel function. The first zero 
of the 4th-order Bessel function is equal to 7.3. Then, making the argument αr of the 
Bessel function in Eq. (4.20) equal to the half of the first zero, we get an approximate 
distance to the crescent − 310 μm (the exact distance is 440 μm). For larger values 
c, the first zeros of the higher-order Bessel function should be chosen. The exact 
distances to the crescent in the initial plane in Fig. 4.5 (first column) for different 
values c are as follows: 479 μm (c = 2), 537 μm (c = 3), 655 μm (c = 4), 772 μm 
(c = 5). The radius of the inhomogeneous intensity ring in Fig. 4.5a3 is increased 
compared to the intensity radius in the waist (Fig. 4.5a1) nearly 10 times. The radius 
of this ring can be estimated by the formula z0α/k = z0/1000 = 6.2 mm. This is 
consistent with Fig. 4.5a3 (ring radius of 5.8 mm).

Simulation of propagation of qBBG beams (4.32) 

For simulation of the qBBG beams (4.32), we used the following parameters: waist 
radius of the Gaussian beam w0 = 1 mm, topological charge n = 4, wavelength 
λ = 532 nm, scaling factor of the Bessel function β = 10–6k0 2 (k0 = 2π/λ is the 
wavenumber), and the values of the asymmetry parameter are: c = 1, 1.5, 2. Since 
the beams (4.32) are highly diverging, the intensity was computed at a small distance 
from the initial plane, ten times shorter than the Rayleigh length: z = z0/10. The half-
size of the images is R = 5 mm. Half-size in the initial plane is equal to R = 1 mm. 
Shown in Figs. 4.6, 4.7 and 4.8 are beam intensity distributions in the initial plane 
(the initial beam has a radius nearly equal to 0.25 mm) (Figs. 4.6a, 4.7a, 4.8a), and 
two intensity distributions at a distance of z = z0/10, computed by two different 
ways: by using the integral Fresnel transform (Figs. 4.6b, 4.7b, 4.8b), and by the 
series (4.32) of the Bessel functions with a quadratic argument (Figs. 4.6c, 4.7c,
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Fig. 4.4 Intensity and phase distributions of BBG beams, computed by Eq. (4.20), at different 
distances from the beam waist: z = 0, 0.15z0, 0.25z0, 0.5z0, z0, 2z0
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Fig. 4.5 Intensity (columns 1 and 3) and phase (columns 2 and 4) distributions of the BBG beam 
(4.20) in the initial plane (columns 1 and 2) and at the Rayleigh distance (columns 2 and 4) for 
different values of the asymmetry parameter c: 1(row 1), 2(row 2), 3 (row 3), 4 (row 4), 5 (row 5), 
6 (row 6), 7 (row 7) and 8 (row 8). Pink arrows (column 4) show the central nth-order vortex, while 
the red arrows show off-axis vortices with the TC of + 1
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4.8c). Figures 4.6, 4.7 and 4.8 were obtained for different values of the asymmetry 
parameter c: 1 (Fig.  4.6), 1.5 (Fig. 4.7), 2 (Fig. 4.8). According to Figs. 4.6, 4.7 
and 4.8, even at a distance ten times shorter than the Rayleigh length, the beam size 
becomes nearly 10 times wider. Thus, despite the beam (4.36) is paraxial since it 
has the Gaussian envelope, it diverges much stronger then the enveloping Gaussian 
beam. 

The distances between the intensity maxima (along the horizon) in the initial 
plane are equal to 303 μm (Fig. 4.6a), 322 μm (Fig. 4.7a), 342 μm (Fig. 4.8a). At 
the distance z0/10, the distances between the maxima are 4221 μm (Fig. 4.6b, c), 
4396 μm (Fig. 4.7b, c), 4669 μm (Fig. 4.8b, c). Thus, along such a small propagation 
distance, the beam width increases 13.9 (c = 1), 13.6 (c = 1,5), 13.7 (c = 2) times. 

Figure 4.9 illustrates phase distributions in the initial plane for the beams from 
Figs. 4.6, 4.7 and 4.8. Shown in Fig. 4.6a is the phase of the beam with c = 1 
(Fig. 4.3a), Fig. 4.6b shows the phase of the beam with c = 1.5 (Fig. 4.7a), and 
Fig. 4.9c depicts the phase of the beam with c = 2 (Fig. 4.8a). According to Fig. 4.9, 
as the theory predicts, the zeros (intensity zeros) on the Cartesian axes move away 
from the origin with increasing values c (4.36), whereas the zeros on the diagonals 
move closer to the origin (4.34). The first ring in Fig. 4.9a has a shape of a square

Fig. 4.6 Intensity in the initial plane, computed as a product of the Bessel functions (a), as well as 
the intensities at a distance z = z0/10 (b, c), obtained by using the Fresnel transform (b) and by the 
series (4.32) of qBG beams (c), at c = 1 

Fig. 4.7 Same as Fig. 4.6 but for c = 1.5
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Fig. 4.8 Same as Fig. 4.6 but for c = 2

with the sides convex outside, but the same first ring in Fig. 4.9c has a square shape 
with the sides concave inside (pillow). In the beam center (on the optical axis), there 
is an optical vortex with the topological charge n = 4. 

As seen in Figs. 4.6, 4.7 and 4.8, the BBG2 beams are not rotated upon propagation 
and their transverse intensity distribution changes weakly. Nevertheless, these beams 
cannot be considered as propagation-invariant (structurally stable) since the far-field 
intensity distributions of these beams have the shape of concentric light rings. This 
is seen from the series in Eq. (4.32), since the divergence of the Bessel beams in the 
series grows with increasing of their topological charge, whereas the amplitudes of 
these beams (weight coefficients in the series (4.32)) decrease. Thus, the brightest 
light ring in the far field is formed by the Bessel beam with the topological charge of 
n, which is the term m = 0 in the series (4.32). Figure 4.10 illustrates the intensity 
distribution of the BBG2 beam (4.32) with c = 1 at a distance equal to half Rayleigh 
length (z = z0/2). It is seen that even at this distance, the beam with a shape of 
round-corners square (Fig. 4.6) turns into a ring-shape beam surrounded by side 
rings.

Now we estimate the divergence of the beam (4.32). The qBG beam with the 
topological charge n, which is the term m = 0 in the series (4.32), has the initial 
radius equal to that of the conventional BG beams, i.e. r0 � w0 

√
n/2. The qBG beam

Fig. 4.9 Phase distributions in the initial plane of the beams shown in Figs. 4.6a, 4.7 and 4.8a with 
the parameter c equal to 1 (a), 1.5 (b), 2 (c) 
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Fig. 4.10 Intensity distribution of the beam (4.32) at a distance z = z0/2 from the waist plane at 
c = 1. The frame size is 10 × 10 mm

with an argument βr2 propagates as after a spherical lens with the focal distance f 
= k/(2β), i.e. it diverges after passing the focus plane and, at a distance z = z0/10, 
its radius rz increases (z0/10 − f )/f times compared to the initial radius r0. Thus, we 
can estimate the divergence of the beam (4.32) as a ratio of its radii: 

rz 
r0 

= 
z0 
10f 

− 1 = 
w2β 
10 

− 1 = 
(kw)2 

107 
− 1 ≈ 14. 

This value is slightly higher than the value obtained in numerical simulation, 
13.6–13.9. 

Simulation of propagation of BBG2 beams (4.38) 

For simulating the beam (4.38) we used the following parameters: wavelength λ 
= 532 nm, waist radius w0 = 1 mm, topological charge n = 4, scaling factor of 
the constituent BG beams α = k/200, asymmetry parameter c = 1, propagation 
distances z = 0, 0.1z0, 0.2z0, half-size of the computation area R = 10 mm. Intensity 
distributions at several distances are shown in Fig. 4.11, where the initial distribution 
is zoomed 10 times.

As seen from comparison of the intensities in Fig. 4.11, the beam is increased by 
size upon propagation, rotated by 90° and “looses” the side lobes. It is known for 
the conventional Bessel beam that its far-field intensity distribution has the shape 
of a ring without the side lobes. The far-field BG beam has also the shape of a 
ring, but it is thicker. Thus, if two coaxial Bessel beams with different orders are 
superimposed, then in the far field, all they generate a single ring with the intensity 
distribution along this ring being dependent on the weight coefficients in the sum



116 4 New Type of Bessel-Gaussian Beams

Fig. 4.11 Intensity distributions of the BBG2 beam (4.38) at some propagation distances z: 0 (a), 
0.1z0 (c), 0.2z0 (d), as well as the phase distribution in the initial plane (b)

(4.38). If such a superposition has in the initial plane an intensity maximum with 
the center on the horizontal axis as in Fig. 4.11a, then, in the far field, the center of 
the intensity maximum should be on the vertical axis as in Fig. 4.11c, d. Thus, the 
intensity distribution should be rotated by 90°. This follows from the argument of 
each Bessel function in the series (4.38), which acquires in the far field an imaginary 
unit with minus, since the argument of the complex-valued Gouy phase q(z) equals π/ 
2. Therefore, for each Bessel function, we get in the far field: Jn(− ix) = (− i)nIn(x) 
with In(x) being the modified Bessel function. Then, in the sum (4.38), we get the 
coefficients

(
cei(ϕ−π/2)

)m+n 
instead of

(
ceiϕ

)m+n 
. Thus, the form of the intensity 

distribution along the light ring in the far field does not change if the initial pattern is 
rotated 90º counterclockwise. Now we estimate the divergence of the beam (4.38). 
We note that the far field for the Bessel-Gaussian beam is formed in a different way 
than for the Gaussian beam. It is formed earlier, at z > z1 = wk/α, rather than at z > 
z0. Since α = k/200, then z1 = 200w = 200 mm, whereas the Rayleigh length for 
the beam from Fig. 4.11 is equal to z0 = kw2/2 ~ 6000 mm. Thus, even the distance 
0.1z0 = 600 mm (Fig. 4.11c, d) is a far field for the beams (4.38). The ring (crescent) 
radius R1 in Fig. 4.11c can be estimated from an expression R1 ~ z tan θ, where θ is
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the tilt angle of the conical rays that form the Bessel beams in the series (4.38). Since 
tan θ ~ sin  θ = α/k, then R1 = zα/k = (z0/10)/200 = 3 mm. An exact computation 
shows that the distance from the optical axis to the crescent center in Fig. 4.11c is  
2.874 mm. 

Shown in Fig. 4.12 is the intensity of the BBG2 beam (4.38) at a distance z = 
0.04z0. An unusual feature of this intensity distribution is that it contains two beam 
types with different scales. At the origin, there is a small intensity distribution with 
a shape of a crescent, whose center is on the horizontal axis. Besides, an inhomoge-
neous much larger light ring appears, that also has a crescent shape, but with a center 
on the vertical axis. Presence of two different-scale beams in a single optical field 
in Fig. 4.12 can be explained by the nature of BG beams. The Gaussian beam acts 
as a soft aperture that bounds the aperture of the Bessel beam. Therefore, the Bessel 
beam propagates almost diffraction-free, saving its initial size, up to a distance nearly 
equal to z1 = wk/α. This diffraction-free beam is generated by a conical wavefront 
and, at a distance z = 0.04z0 = 240 mm, those rays come to the optical axis that start 
from the “edge of the initial aperture”, i.e., from a distance to the axis equal to the 
waist radius w. The rays that cross the optical axis at a shorter distance z, diverge 
and generate at a distance z = 0.04z0 another beam type, i.e., the far-field beam (a 
crescent without sidelobes, rotated by 90° as in Fig. 4.12). On further propagation, 
diffraction-free part of the beam disappears and only the beam part in the far field 
remains, as in Fig. 4.11c, d. The size of the diffraction-free part of the beam (4.38), 
equal to the beam size in the initial plane (Fig. 4.11a), can be estimated by a half 
distance to the first zero of the 4th-order Bessel function. The zero of the 4th-order 
Bessel function is near 7.3, and thus the distance to the crescent in Fig. 4.11a is  r = 
3.6/α = 3.6 × 200/k = 61 μm. The exact distance is 88 μm. 

The investigated BBG beams can be generated by a spatial light modulator with 
adopting well-known methods of encoding an amplitude-and-phase function (4.20)

Fig. 4.12 Intensity 
distribution of the BBG 
beam (4.38) at a distance z = 
0.04z0. The frame size is 6 × 
6 mm  
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into a phase-only function. Anomalously fast transverse rotation of the two-petal 
intensity pattern can be applied for improving the longitudinal resolution of an optical 
microscope, since a shift of a light source along the optical axis leads to the transverse 
rotation of the two intensity petals [59]. The faster is rotation of the two intensity 
petals, the higher is the longitudinal resolution of the optical microscope. A two-petal 
beam with a shape of two ‘crescents’ can be used for optical trapping biological cells 
by their edges and then moving them without damaging by the high-power irradi-
ance of the Gaussian beam center. Smooth change of the beam parameter c allows 
stretching cells, since with increasing parameter c, not only the beam topological 
charge increases, but also the distance between the two intensity petals. 
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Chapter 5 
Superposition of Helical Laser Beams 

5.1 Topological Charge of a Superposition of Identical 
Parallel Laguerre-Gaussian Beams 

Optical vortices constitute a great family of light fields, which is actively studied 
over 30 years [1]. The studies include various aspects, including direct generation in 
lasers [2], interaction with matter [3], propagation and focusing [4]. Light fields with 
optical vortices are usually characterized by the orbital angular momentum (OAM) 
[5] and the topological charge (TC) [6]. In a number of studies, the topological charge 
(TC) of a superposition of parallel optical vortices (OVs), and in particular, parallel 
Laguerre-Gaussian (LG) beams, was studied. This problem has been of interest 
since 2000, when the number and location of OVs in a superposition of two parallel 
Gaussian beams with embedded OVs were studied in [7]. In [7], a transcendental 
equation was obtained analytically for determining the position of OVs. However, it 
is applicable only for the case when the vortices in both beams are of the first order. 
It is also shown that when two beams are separated by a certain critical distance, 
negative-order vortices appear along with positive-order vortices. Later, in [8], using 
the analysis of forks in the interference pattern of two parallel LG beams, it was shown 
that when varying of the distance between the beams changes the arrangement of 
screw dislocations in the superposition. In addition, the same authors [9] showed that 
the number of vortices in the superposition of two parallel LG beams can change 
during propagation in space, although the total TC remains unchanged. In [10], 
the superposition of two off-axis optical vortices, but with orthogonal polarization, 
is studied. Instead of the dynamics of phase singularities, this paper studied the 
dynamics of polarization singularities and the position of C-points as a function 
of the distance between vortices, their TC, and the phase delay between them. In 
[11], the interference of two off-axis Gaussian beams with different curvature of 
the wave front is also considered. The conditions for vortex dipoles (two OVs of 
opposite orders) formation are obtained. In [12], the coherent and the incoherent 
superposition of two parallel partially coherent OVs is studied. It is shown that the
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type of superposition, the distance between the beams, the propagation distance, and 
the coherence parameter affect the number and location of coherence vortices. The 
number of vortices, however, is determined only numerically. Study [13] considered 
OVs which are formed in a superposition of off-axis vortices while a nonlinear 
process of three-wave mixing. The number of vortices and their TCs have been 
established in some particular cases. In a recent article [14], the interaction of parallel 
Bessel-Gaussian beams is considered. The dependence of formation, annihilation 
and splitting of OVs on the displacement of the beams from the optical axis, on their 
TC, and on the phase difference between them is studied. It is shown that the total 
TC of such a composite field is not necessarily equal to the sum of the TCs of the 
composite beams. In [15], it was shown how to calculate the TC of a superposition 
of only two parallel LG beams. In particular, in [15] it was analytically shown that if 
two beams have the same TC, for example, m, then the superposition of such beams 
with arbitrary distance between them will also have a TC equal to m. 

In this section, we generalize the results on a superposition of a finite number of 
parallel one-ring identical LG beams. And we will show that if the weight coefficients 
of such a superposition are real (that is, all LG beams have the same phase, but can 
have different amplitudes), then the superposition TC is equal to the TC of each beam, 
that is, m. It has already been proven earlier that the power-normalized OAM of such 
a superposition is also equal to the OAM of one LG beam in the superposition, that 
is, also m [16]. 

5.1.1 TC of the Superposition of Identical Parallel LG Beams 
in the Initial Plane 

We consider a superposition of N parallel identical one-ring LG beams in the initial 
plane: 

Em(x, y) = 
N∑

n=1 

cn
(
reiϕ − rneiϕn

)m 
exp
(−r2 − r2 n + 2rrn cos(ϕ − ϕn)

)
, (5.1) 

where (x, y) and (r, φ) are respectively the Cartesian and the polar coordinates (x = 
r cos φ, y = r sin φ). 

The TC of each beam in (5.1) is equal to m, the waist radius is included in the 
radial variable r: r/w. We assume that the weights coefficient cn in (5.1) are real 
numbers. Polar coordinates of beam centers are (rn, ϕn). . The TC of superposition 
(5.1) will be calculated using the Berry formula [6]: 

TC = 
1 

2π 
lim 
r→∞ 

Im 

2π∫

0 

d ϕ 
∂E(r, ϕ)/∂ϕ 

E(r, ϕ) 
, (5.2)
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where lim means the limit at r → ∞, and Im is the imaginary part of a complex 
number. 

Substituting (5.1) into (5.2), we obtain: 

TC = 
1 

2π 
lim 
r→∞ 

Im 

2π∫

0

[
N∑

n=1 

cn
(
reiϕ − rneiϕn

)m 
e−r2 n+2rrn cos(ϕ−ϕn) 

×
(

imreiϕ 

reiϕ − rneiϕn 
− 2rrn sin(ϕ − ϕn)

)]

[
N∑

m=1 

cn
(
reiϕ − rneiϕn

)m 
e−r2 n+2rrn cos(ϕ−ϕn)

]−1 

d ϕ 

= m − 
2r 

2π 
Im 

2π∫

0 

N∑
n=1 

cnrn sin(ϕ − ϕn)
(
reiϕ
)m 
e−r2 n+2rrn cos(ϕ−ϕn) 

N∑
m=1 

cn
(
reiϕ
)m 
e−r2 n+2rrn cos(ϕ−ϕn) 

d ϕ 

= m − 
2r 

2π 
Im 

2π∫

0 

N∑
n=1 

cnrn sin(ϕ − ϕn)e−r2 n+2rrn cos(ϕ−ϕn) 

N∑
m=1 

cne−r2 n+2rrn cos(ϕ−ϕn) 
d ϕ = m. (5.3) 

In (5.3) the imaginary part of the last integral is equal to zero, since it is real. It 
follows from (5.3) that the TC of the superposition of parallel identical single-ring 
LG beams with numbers (0, m) is equal to m in the initial plane. 

5.1.2 TC of the Superposition of Parallel Identical LG Beams 
with Different Weight Coefficients in the Far Field 

We propose that there is a superposition of N identical one-ring LG beams displaced 
from the optical axis in the initial plane. Then the complex amplitude in the initial 
plane is equal to: 

Em(x, y) = 
N∑

n=1 

cn

{√
2 

w0

[
(x − an) + i(y − bn)

]
}m 

exp

[
− (x − an)2 + (y − bn)2 

w2 
0

]
, 

(5.4) 

where (x, y) is Cartesian coordinates in the initial plane, w0 is Gaussian beam waist, 
(an, bn) are coordinates of beam centers, cn are superposition coefficients. In contrast 
to (5.1), in (5.4) the superposition beams are taken with complex weight coefficients 
cm and the Gaussian beam waist radius is explicitly distinguished.
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In the far zone, the displacement of each LG beam turns out to be a slope of 
the wavefront, that is, in the far zone, the LG beams become axial, but with slopes. 
Therefore, the complex amplitude of the entire superposition in the far zone has the 
form: 

Em(r, ϕ,  z >> z0) = exp
(

− 
r2 

w2 
0

)(√
2 

w0 
reiϕ
)m 

× 
N∑

n=1 

cn exp(ikanr cos ϕ + ikbnr sin ϕ). (5.5) 

where (r, φ) are far-field polar coordinates. According to the formula of Berry [6], 
TC is equal to 

TC = 
1 

2π 
lim 
r→∞ 

Im 

2π∫

0 

N∑

n=1 

cn 

∂ 
∂ϕ

[
exp(ikanr cos ϕ + ikbnr sin ϕ)

]

N∑
n=1 

cn exp(ikanr cos ϕ + ikbnr sin ϕ) 
d ϕ 

+ 
1 

2π 
lim 
r→∞ 

Im 

2π∫

0 

∂ 
∂ϕ

[(
reiϕ
)m]

(
reiϕ
)m d ϕ. (5.6) 

Reducing the common factors in the numerator and denominator, we obtain 
further: 

TC = m + 
1 

2π 
lim 
r→∞ 

Im 

2π∫

0 

N∑

n=1 

cn 
∂ 
∂ϕ

[
exp(ikanr cos ϕ + ikbnr sin ϕ)

]

×
[

N∑

n=1 

cn exp(ikanr cos ϕ + ikbnr sin ϕ)

]−1 

d ϕ. (5.7) 

The second term is the TC of some additional field of the form (without a Gaussian 
envelope). 

Eadd(x, y) = 
N∑

n=1 

cn exp(ikanx + ikbny). (5.8) 

Since the numbers an, bn, cn are arbitrary, formula (5.8) can describe a wide class 
of light fields. In particular, the additional field can be a vortex and therefore give an 
additional TС. For example, if we take N = 4, c1 = −i, c2 = 1, c3 = i, c4 = −1, a1 
= −a3 = r0, a2 = a4 = 0, b1 = b3 = 0, b2 = −b4 = r0, then we get an additional
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field in the form 

Eadd(x, y) = 2 sin(kax) + 2i sin(kay), (5.9) 

which is near the center approximately 

Eadd(x ≈ 0, y ≈ 0) = 2ka(x + iy), (5.10) 

that is, it contains a vortex of the first order. If all coefficients cn are real in 
superposition (5.4), then we can show that 

E∗ 
add(x, y) = Eadd(−x, −y). (5.11) 

From (5.11) it follows that if there is a zero amplitude at some point (xnull, ynull), 
then the amplitude is also zero at the point (−xnull,−ynull), and near zero the amplitude 
is complex conjugate. That is, there is a “conjugate” vortex for each vortex in the field 
(5.8). The TCs of these “conjugate” vortices compensate each other, and therefore 
the TC of the field (5.8) with real coefficients cm is equal to zero. Expression (5.11) 
is proved simply: 

E∗(u, v) = 
N∑

n=1 

cn exp(−ixu − iyv) 

= 
N∑

n=1 

cn exp(ix(−u) + iy(−v)) 

= E(−u, −v). (5.12) 

There is also a physical reason why the field (5.8) cannot have other TC than zero. 
Indeed, the amplitude of the form (5.8) is formed in the Fourier plane (in the focus of 
a spherical lens) by a light field, which in the initial plane consists of N point sources 
with different amplitudes, but the same phase. A light field whose amplitude is a real 
function can only create OVs in pairs with +p and −p TCs. This also follows from 
the fact that an OV that has passed through the amplitude mask does not change its 
TC [17, 18]. 

If the TC of the superposition (5.1) in the initial plane and in the far zone is the 
same and equals m, then in any other plane it is equal to m, if the coefficients cn are 
real. 

5.1.3 Numerical Modeling 

For example, Fig. 5.1 shows the intensities and phases of three superpositions of 
off-axis single-ring LG beams with the following parameters: the wavelength is λ
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= 532 nm, the waist radius of all beams is w0 = 0.5 mm, the number of LG beams 
is N = 4, the TC of each of them is m = 3, centers of these beams (in Cartesian 
coordinates) are (a1, b1) = (r0, 0),  (a2, b2) = (0, r0), (a3, b3) = (−r0, 0),  (a4, b4) = (0, 
−r0), where r0 = 3w0, the superposition coefficients for LG beams are c1 = c2 = c3 
= c4 = 1 (Fig. 5.1a, d), c1 = −i, c2 = 1, c3 = i, c4 = −1 (Fig. 5.1b, e), and c1 = −i, c2 
= −1, c3 = i, c4 = 1 (Fig. 5.1c, f, g), computational domain is restricted by |x|, |y| ≤ 
R, where R = 5 mm (Fig. 5.1a–f) and R = 10 mm (Fig. 5.1g), the radius of the circle 
for calculating the TC is R1 = 4.5 mm (Fig. 5.1d–f) and R1 = 9.5 mm (Fig. 5.1g), 
the grid size in each direction is N = 1024. When all superposition coefficients are 
the same (Fig. 5.1a, d), the phase distribution becomes asymmetric, but the total TC 
of four LG beams turned out to be the same as for each of them: TC = 3.0042 ≈ 3. 
If we choose the coefficients, as in Fig. 5.1b, e, then, despite their dissimilarity, the 
phase distribution is symmetrical about the center and the total TC has changed and 
turned out to be equal to TC = 4.0003 ≈ 4. For the other coefficients (Fig. 5.1c, f, g), 
the total TC has also changed and is equal to TC = 5.9234 ≈ 6 (Fig. 5.1f). However, 
according to Eq. (5.2), the TC is computed over an infinite-radius circle and, thus, 
accounts all the vortices in the light field (or, equivalently, the 2π phase jumps in 
the beam periphery). Computation indicates that the figure size 2R = 10 mm was 
sufficient to account all phase jumps in Fig. 5.1d, e, but insufficient for Fig. 5.1f. 
Figure 5.1g illustrates the phase distribution in a wider area (2R = 20 mm). In the 
periphery, there are four phase jumps by 2π and two phase jumps by −2π (denoted 
respectively by ‘+’ and by ‘−’). Thus, the TC should be equal to (4 × 2π − 2 × 2π)/ 
2π = 2. Numerical computation confirms it and yields the value TC = 1.9975 ≈ 2, 
which is, in contrast with Fig. 5.1b, e, less than the TC of the constituent LG beams. 
Thus, the superposition coefficients c1 = −i, c2 = 1, c3 = i, c4 = −1 (Fig. 5.1b, e) 
increment the TC of the whole superposition, whereas the coefficients c1 = −i, c2 
= −1, c3 = i, c4 = 1 (Fig. 5.1c, f, g) decrement this TC.

When propagating in free space, four LG beams expand and begin to interfere with 
each other. Figure 5.2 shows the intensities and phases of the beams from Fig. 5.1 
with the same parameters, but at the Rayleigh distance z = z0 = kw0 

2/2 ≈ 1.476 m. 
When all superposition coefficients are equal to each other (Fig. 5.2a, d), the total 
TC of four LG beams remains equal to three: TC = 2.9968 ≈ 3. For the beam in 
Fig. 5.2b, e, the total TC remains equal to four: TC = 3.9903 ≈ 4. For the beam in 
Fig. 5.2c, f, the total TC is equal to six (TC = 5.9148 ≈ 6), but, again, choosing a 
wider domain (Fig. 5.2g) yields the value TC = 1.9713 ≈ 2.

In the far zone, all four LG beams mix with each other, and the distributions of 
their intensity and phase are shown in Fig. 5.3. All calculation parameters are the 
same as in Fig. 5.1, but the propagation distance z = 3z0 ≈ 4.429 m, computational 
area is limited by |x|, |y| ≤ R, where R = 7.5 mm, circle radius for calculating TC 
is R1 = 7 mm. When all superposition coefficients are the same (Fig. 5.3a, d), the 
total TC of four LG beams remains equal to three: TC = 2.9875 ≈ 3. For the beam 
in Fig. 5.3b, e, the total TC is incremented and is equal to four: TC = 3.9760 ≈ 4. 
For the beam in Fig. 5.3c, f, the total TC is decremented and is equal to two: TC = 
2.0036 ≈ 2.
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Fig. 5.1 Intensities and phases of three superpositions of off-axis single-ring LG beams, in which 
the total TC is the same as that of each beam a, d, or differs from the TC of each beam by +1 b, 
e and by −1 c, f, g due to the presence of complex weight coefficients in the superposition. Black 
and green intensity means respectively zero and maximal values. Black and yellow phase means 
respectively 0 and 2π. Here and in all other figures, red dashed circle on the phase distributions 
denotes the circle of the TC computation, whereas white scale marks in the right bottom denote 
1 mm

Fig. 5.2 Intensities and phases of three superpositions of off-axis single-ring LG beams with the 
initial distribution shown in Fig. 5.1 at Rayleigh distance

It should be noted that all LG beams in the superpositions shown in Figs. 5.1, 5.2 
and 5.3 have the same power. Although, it follows from the theory above that if all 
superposition coefficients are real then the TC does not change even in the case of 
a superposition of LG beams with different power (LG beams are added in phase or 
in anti-phase). So, Fig. 5.4 shows two such superpositions. In one of them, the LG
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Fig. 5.3 Intensities and phases of three superpositions of off-axis single-ring LG beams with the 
initial distribution shown in Fig. 5.1 at triple Rayleigh distance (far zone)

beams on the horizontal axis are twice as powerful as the LG beams on the vertical 
axis: c1 = c3 = 1, c2 = c4 = 1/21/2 (Fig. 5.4a–d). In another superposition, the beam 
power decreases in a circle: c1 = 1, c2 = 31/2/2, c3 = 21/2/2, c4 = 1/2 (Fig. 5.4e–h). 
Other calculation parameters are the same as in Fig. 5.1, but the propagation distance 
z = 0 (Fig. 5.4a, b, e, f) and z = z0/2 (Fig. 5.4c, d, g, h). The numerically calculated 
TC for both beams at both distances along the optical axis turned out to be equal to 
three: TC = 3.0037 (Fig. 5.4a, b), TC = 2.9995 (Fig. 5.4c, d), TC = 3.0035 (Fig. 5.4e, 
f), TC = 2.9993 (Fig. 5.4 g, h).

Thus, we have proved that the superposition of identical one-ring Laguerre-
Gaussian beams with numbers (0, m) which are parallel to the optical axis, have the 
same phase, but different power in the initial plane, has a topological charge equal to 
m, regardless on the distance between the beams and on the power of each beam [19]. 
And only if the beams have a different phase in the initial plane (in the waist plane), 
then the superposition TC changes. The theoretical consideration is confirmed by 
the simulation results, which demonstrated how tuning the phase delays between 
the superposition coefficients allows the TC of the superposition to be conserved, 
or incremented, or decremented. The potential application areas are optical data 
transmission and doing simple arithmetic operations in optical computing machines 
where data are carried by vortex light beams and are encoded by the topological 
charges [20, 21]. 

In wireless optical data transmission, the results can be used by generating consid-
ered superpositions of LG beams using a SLM and by identifying the incoming
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Fig. 5.4 Intensities and phases of two super positions of off-axis single-ring LG beams with 
different powers the initial plane and at the half of the Rayleigh distance

signals by the superposition’s topological charge using a Shack-Hartmann wave-
front sensor. According to Fig. 5.3, simple adding phase delays between the LG 
beams allows changing the TC of the whole superposition, whereas using the super-
position of the LG beams instead of separate LG beams increases the resistance to 
the turbulence-induced distortions, adds degrees-of-freedoms in data encoding, and 
improves the data security, since the TC of a single LG mode can be determined 
simply by the radius of the light ring, while the TC of the superposition depends 
not only on the radii of the constituent beams, but also on the phase delays between 
them. 

In optical computing, for designing compact devices, the LG beams should be 
localized in guiding microstructures rather than propagating in free space. However, 
implementation of LG beams propagation in on-chip devices is now challenging 
for typical semiconductor manufacturing processes since most of integrated optical 
waveguides do not have circular symmetry in their transverse geometries in contrast 
to optical fibers. However, such techniques are developed now. For instance, a ±1st-
order vortex can be implemented in a rectangular-shaped waveguide as a superposi-
tion of the TE01 and TE10 modes with a phase delay of π/2 [22]. In [23], an integrated 
cross-shaped waveguide structure to support high-order OAM modes up to 4th order 
was proposed. This waveguide was designed for the wavelength of 1550 nm and 
has the transverse sizes just 1.626 μm × 1.504 μm. The obtained here results show 
that simple free-space mixing of the LG beams, outcoming from such structures, 
can generate light fields with incremented or decremented TC, although we did not 
investigate the influence of the mode purity of the LG beams.
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5.2 Geometric Progression of Optical Vortices 

Optical vortices are actively studied nowadays. For example, in [24], cylindrical 
vector spatiotemporal optical vortices were experimentally studied. In [25], an optical 
setup was proposed for generating a 2D optical vortex lattice. In [26], a 3D optical 
vortex lattice was generated experimentally. The work [27] contains a review about 
using optical vortices for trapping and rotating microscopic particles. The paper [28] 
investigates optical vortices in nanophotonics. Optical vortices in structured waveg-
uides are studied in [29]. In [30], distortions of spiral vortex beams are considered 
and it is demonstrated that such beams are almost insensitive to the distortions. 

For most well-known optical vortices, the orbital angular momentum (OAM) 
(normalized to the beam power) and the topological charge (TC) have the same 
value. This is the case for the Laguerre-Gaussian beams [5], Bessel modes [31] and 
Bessel-Gaussian beams [32], Gaussian optical vortices [33], hypergeometric modes 
[34] and beams [35], circular beams [36], elliptical beams [37], and many other well-
known vortex beams. As to the beams without cylindrical symmetry, for instance, 
asymmetric Bessel beams [38] or Hermite-Gaussian vortex modes [39], their OAM 
and TC typically have different values. 

Coaxial superpositions of optical vortices can also have different values [18] of  
the TC and of the normalized OAM. The OAM can have both integer and fractional 
value [18] and it conserves on propagation. If the TC in the initial plane is fractional, 
then, on propagation, it acquires an integer value, though indefinite [40] since it is 
‘unclear’ how the fractional number should be rounded: to either greater or lower 
nearest integer. In addition, if a single Gaussian optical vortex has a half-integer TC in 
the initial plane, for instance, n + 1/2, then, on propagation, the TC becomes integer, 
but undefined since at different distances from the optical axis the TC is either n 
or n + 1. In the case of a coaxial superposition of two Gaussian optical vortices, if 
the TC in the initial plane is half-integer ((n + m)/2), then, on propagation of such 
vortex field, the TC becomes integer and equal to max(n, m), and conserves on further 
propagation [18]. 

In this section, we investigate several variants of coaxial superpositions of Gaus-
sian optical vortices, whose complex amplitude has the form of a geometric progres-
sion (either finite or infinite) or of a Newton’s binomial. It is shown that the TC of such 
superpositions in the initial plane can be either integer or half-integer. On propagation 
in free space, the TC can be only integer and conserves its value. In the general case, 
the geometric progression of optical vortices (GPOV) is a four-parameter family of 
laser beams, three parameters are integer (k, n, m) and one parameter is real (a). The 
topological charge of the GPOV in the initial plane depends on all four parameters, 
but after propagation in free space, the TC is equal to the TC of the constituent 
Gaussian optical vortex with the larger weight coefficient in the superposition.
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5.2.1 Geometric Progression of Optical Vortices in the Initial 
Plane 

Here we consider a coaxial superposition of the Gaussian optical vortices that can 
be described by a geometric progression. In the initial plane, such a superposition 
has the following complex amplitude: 

E1n(r, z) = exp
(

− 
r2 

w2

)(
1 + eiϕ + ei2ϕ +  · · ·  +  einϕ

)

= exp
(

− 
r2 

w2

)(
ei(n+1)ϕ − 1 
eiϕ − 1

)
. (5.13) 

Equation (5.13) can be converted so that the argument of the complex number 
[phase of the field (5.13)] would be written explicitly: 

En(r, z) = exp
(

− 
r2 

w2

)(
1 + eiϕ + ei2ϕ +  · · ·  +  einϕ

)

= exp
(

− 
r2 

w2 
+ 

inϕ 
2

)
sin
(
n+1 
2

)
ϕ 

sin
(

ϕ 
2

) . (5.14) 

It is seen in Eq. (5.14) that the argument (phase) of the superposition (5.13) is  
equal to (nφ)/2. Thus, the topological charge TC of the vortex field (5.13) is  

TC = n/2. (5.15) 

It is known that the orbital angular momentum (OAM) Jz of a paraxial beam, 
normalized to its power W, reads as [18] 

Jz = Im 

∞∫

0 

2π∫

0 

E∗(r, ϕ)  
∂E(r, ϕ)  

∂ϕ 
rdrdϕ, (5.16) 

W = 
∞∫

0 

2π∫

0 

E∗(r, ϕ)E(r, ϕ)rdrd ϕ, (5.17) 

with E*(x, y) being the complex conjugate amplitude. It can be shown that the 
normalized OAM of the beam (5.14) is also equal to (5.15), i.e. Jz/W = n/2. 

It is also seen from Eq. (5.14) that the polynomial 1+ z + z2 + z3 +· · ·+  zn (with 
z = eiφ) has n roots. Thus, the field (5.14) has n zero-amplitude rays outgoing from 
the center at the angles φ = 2πp/(n + 1) (p = 1, …, n). In the topological sense, 
these rays are edge dislocations, since the phase along a contour around the center 
jumps by π when intersecting these zero-intensity rays. The intensity distribution of
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the field (5.14) has a shape of a light lobe elongated in the positive direction of the 
horizontal axis, and the maximal intensity is on the ray φ = 0. This follows from 
resolving the 0/0 uncertainty in Eq. (5.14) at  φ = 0. Maximal intensity is equal to (n 
+ 1)2 at r = 0. In addition, the field (5.14) has (n − 1) intensity side lobes residing 
between n edge dislocations. Thus, the total number of intensity lobes (central and 
side lobes) is equal to n. 

5.2.2 Geometric Progression of Optical Vortices 
in the Fresnel Diffraction Zone 

To derive the TC on propagation of the field (5.14), it is necessary to obtain an 
asymptotic of the amplitude of the field (5.14) at arbitrary z > 0 and at r → ∞. 
At first, we apply the Fresnel transform to obtain the amplitude of each term in 
Eq. (5.14). If in the initial plane there is a Gaussian optical vortex 

En(r, ϕ) = e−r2
/
w2+inϕ , (5.18) 

then at a distance z from the initial plane its complex amplitude is given by [18]: 

En(ρ,  θ,  z) = (−i)n+1

√
π 
2 

z0 
zq 

exp

(
ikρ2 

2z 
+ inθ

)

× 
√

ξ exp(−ξ )
[
I n−1 

2 
(ξ ) − I n+1 

2 
(ξ )
]
, (5.19) 

with 

ξ =
( z0 
z

)2(ρ 
w

)2( 1 

2q

)
, q = 1 − i 

z0 
z 

. (5.20) 

In Eq. (5.19), Iμ(x) is the modified Bessel function, k is the wavenumber of light, 
z0 = kw2/2 is the Rayleigh distance, (ρ, θ) are the polar coordinates in the transverse 
plane at the distance z. For large values of the argument ρ >> w, an asymptotic 
expansion of the modified Bessel function can be adopted with only two terms. 
Thus, an approximate expression is derived for the difference of two modified Bessel 
functions of the neighbor orders at large values of the argument: 

I n−1 
2 

(ξ ) − I n+1 
2 

(ξ ) ∼ eξ 
√
2πξ

{
1 − 

1 

8ξ

[
4

(
n − 1 
2

)2 

− 1

]}

− eξ 
√
2πξ

{
1 − 

1 

8ξ

[
4

(
n + 1 
2

)2 

− 1

]}
= neξ 

2ξ
√
2πξ  

. (5.21)
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Then, the field (5.14) at large values ρ >> w is given by 

En(ρ,  θ,  z) = 
−iz0 
4zqξ 

exp

(
ikρ2 

2z

) n∑

p=1 

p exp
(
ipθ
)

= 
−iz0 
4zqξ 

exp

(
ikρ2 

2z

)⎡ 

⎣ 
eiθ
(
1 + nei(n+1)θ − (n + 1)einθ

)

(
1 − eiθ

)2 

⎤ 

⎦, (5.22) 

with θ = θ − π/2. To obtain the expression (5.22), we used that if some function is 
of the form 

F(ϕ) = 
n∑

p=0 

eipϕ , 

then the expression 

n∑

p=0 

peipϕ 

is equal to the derivative −i∂F(ϕ)/∂ϕ. It can be shown that at θ = 0 (i.e. θ = π/ 
2), the intensity is maximal. The expression in square brackets in Eq. (5.22) can be 
rewritten as 

eiθ
(
1 + nei(n+1)θ − (n + 1)einθ

)

(
1 − eiθ

)2 = −
(
1 + nei(n+1)θ − (n + 1)einθ

)

4 sin2
(

θ 
2

) . (5.23) 

At large values of n, we can neglect the unity in the numerator in Eq. (5.23) and, 
therefore, the TC of the field (5.22) is defined by the competition of two optical 
vortices: 

nei(n+1)θ − (n + 1)einθ . (5.24) 

As was shown in [18], the TC of a superposition of two optical vortices, similar 
to Eq. (5.24), equals the TC of a vortex with a greater amplitude. Since n + 1 >  n, 
the TC of the field (5.14) at a distance z from the initial plane is equal to TC = n. 
This is explainable since in the superposition (5.22) Σpeipφ (p = 1, …, n), the last 
term nexp(inφ) has the maximal coefficient (beam power) and therefore the TC of 
this term ‘wins’ in the topological competition. From Eq. (5.24) follows that despite 
the TC of the field (5.14) in the initial plane equals TC = n/2, further, on propagation 
of the field (5.14) in free space, the TC is equal to TC = n.
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5.2.3 Truncated Geometric Progression of Optical Vortices 

Now we revisit the field (5.14) and consider its modifications. It is interesting that 
removing the vortex-free term (i.e. 1) from the amplitude of the light field (5.13) 
leads to the following expression, instead of Eq. (5.14): 

E2n(r, z) = exp
(

− 
r2 

w2

)(
eiϕ + ei2ϕ +  · · ·  +  einϕ

)

= exp
(

− 
r2 

w2 
+ 

i(n + 1)ϕ 
2

)
sin
( nϕ 

2

)

sin
(

ϕ 
2

) . (5.25) 

According to Eq. (5.25), the topological charge of the field (5.25) equals 

TC = (n + 1)/2. (5.26) 

When the light field propagates (z > 0), asymptotic of its complex amplitude at 
large distances from the optical axis (r → ∞) is described by an expression exactly 
the same as Eq.  (5.22). Thus, TC of the field (5.25) at  z > 0 is the same as that of the 
field (5.13), i.e. equal to TC = n. 

Similarly, instead of the field (5.25), we can consider a field described by the 
geometric progression starting with kth term. So, removing the first (k − 1) terms 
from Eq. (5.25), we get: 

Ekn(r, z) = exp
(

− 
r2 

w2

)(
eikϕ + ei(k+1)ϕ +  · · ·  +  einϕ

)

= exp
(

− 
r2 

w2 
+ 

i(n + k)ϕ 
2

) sin
(

(n−k)ϕ 
2

)

sin
(

ϕ 
2

) . (5.27) 

It is seen that the field (5.27) has the phase (n + k)φ/2. Therefore, the TC is equal 
to TC = (n + k)/2. It is interesting that if only one term is remained in the field (1) 
with the order k = n, then the formula (5.27) yields the integer TC equal to TC = n. 

5.2.4 Geometrical Progression of Optical Vortices 
with a Symmetric OAM-Spectrum 

We note that the geometric progressions (5.13), (5.25) and (5.27) have a uniform 
OAM-spectrum, that is, all the angular harmonics in these superpositions have the 
same coefficients equal to unity. As was shown in [41], if the OAM-spectrum of a 
light field is symmetric, then its normalized OAM is equal to the order (topological 
charge) of the central angular harmonic. This is fully applicable to the fields (5.13),
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(5.25) and (5.27). Indeed, the average order of the angular harmonic in the center of 
the OAM-spectrum is n/2, (n + 1)/2 and (n + k)/2, respectively. It can be proved that 
if the superposition (5.13) has real coefficients and a symmetric OAM-spectrum, then 
the TC in the initial plane of such a superposition is equal to the order of the central 
harmonic. Indeed, instead of the progression (5.13) we consider a superposition of 
the form 

Esn(r, z) = exp
(

− 
r2 

w2

)(
C0 + C1e

iϕ + C2e
i2ϕ +  · · ·  +  Cne

inϕ
)
. (5.28) 

We suppose that the coefficients are symmetric with respect to the central coef-
ficient with the number n0 = n/2, i.e. Cn0−k = Cn0+k . If  n is an odd number, then 
the center of the OAM-spectrum of the field (5.28) resides in the middle between the 
orders (n − 1)/2 and (n + 1)/2. For such symmetrical coefficients, the field (5.28) 
can be written as 

Esn(r, z) = exp
(

− 
r2 

w2

) n∑

k=0 

Cke
ikϕ 

= exp
(

− 
r2 

w2

)

(
Cn0e

in0ϕ + 
n0∑

k=1

(
Cn0−ke

i(n0−k)ϕ + Cn0+ke
i(n0+k)ϕ

)
)

= exp
(

− 
r2 

w2

)(
Cn0e

in0ϕ + 2ein0ϕ 
n0∑

k=1 

Cn0−k cos kϕ

)

= exp
(

− 
r2 

w2 
+ in0ϕ

)(
Cn0 + 2 

n0∑

k=1 

Cn0−k cos kϕ

)
. (5.29) 

Since the expression in the right brackets is real-valued, the TC of the expression 
(5.29) is equal to the order of the central angular harmonic TC = n0 = n/2. As 
an example of a superposition (5.28) with the symmetric OAM-spectrum, we can 
consider the following field (a > 0):  

Esn(r, z) = exp
(

− 
r2 

w2

) n0∑

k=−n0 

a|k| 

|k|! exp(i(n0 + k)ϕ) 

= 2 exp
(

− 
r2 

w2 
+ in0ϕ

) n0∑

k=0 

a|k| 

|k|! cos(kϕ), 

n0 = n/2. (5.30) 

Another example of a superposition with the symmetric OAM-spectrum is a super-
position of optical vortices with their weight coefficients chosen so as to describe
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the Newton’s binomial: 

E3n(r, z) = exp
(

− 
r2 

w2

)(
1 + eiϕ

)n 

= 2n exp
(

− 
r2 

w2 
+ 

inϕ 
2

)(
cos
(ϕ 
2

))n 
. (5.31) 

Equation (5.31) indicates that the topological charge of the superposition of optical 
vortices in the form of the Newton’s binomial is also integer or half-integer and is 
equal to the expression (5.15): TC = n/2. 

Instead of Eq. (5.31), a superposition of two optical vortices can be studied, with 
their amplitude raised to a power: 

E3n(r, z) = exp
(

− 
r2 

w2

)(
eipϕ + eiqϕ

)n 

= 2n exp
(

− 
r2 

w2 
+ 

in(p + q)ϕ 
2

)

(
cos

(
ϕ(p − q) 

2

))n 

. (5.32) 

The topological charge of the superposition of optical vortices (5.32) is equal to 

TC = n(p + q)/2 (5.33) 

and can be integer or half-integer. 

5.2.5 Unbounded Geometric Progression of Optical Vortices 

It is interesting to know the TC value of the light field (5.13) if it is written as an 
unbounded geometric progression: 

E∞(r, z) = exp
(

− 
r2 

w2

)

(
1 + qeiϕ + q2 ei2ϕ +  · · ·  +  qn einϕ + ...

)

= exp
(

− 
r2 

w2

)(
1 

1 − qeiϕ

)
, |q| < 1, (5.34) 

The argument (phase) of the complex amplitude (5.34) reads as 

arg E∞(r, z) = arctan
(

q sin ϕ 
1 − q cos ϕ

)
. (5.35)
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Substituting the function (5.35) into the Berry’s formula [6] for the TC calculation, 
we get 

TC = 
1 

2π 
lim 
r→∞ 

⎧ 
⎨ 

⎩ 

2π∫

0 

∂ arg E∞(r, ϕ) 
∂ϕ 

d ϕ 

⎫ 
⎬ 

⎭ 

= 
1 

2π 

2π∫

0 

q cos ϕ − q2 

1 + q2 − 2q cos ϕ 
dϕ = 0, |q| < 1. (5.36) 

Equation (5.36) indicates that despite the field (5.34) is a superposition of an 
infinite number of optical vortices, its TC at |q| < 1 is equal to zero. 

Similarly, it can be shown that the infinite geometric progression obtained on the 
base of the field (5.35) 

E1∞(r, z) = exp
(

− 
r2 

w2

)(
qeiϕ + q2 ei2ϕ +  · · ·  +  qn einϕ +  · · ·)

= exp
(

− 
r2 

w2

)(
qeiϕ 

1 − qeiϕ

)
, |q| < 1, (5.37) 

has the TC equal to 1. Both these results are explainable since the TC of the super-
position (5.34) or (5.37) equals to the TC of the constituent vortex with the maximal 
weight coefficient (power). In the superposition (5.34), the first term (equal to 1) has 
the maximal partial power, and thus the TC equals zero. In the superposition (5.37), 
maximal power is also of the first term qexp(iφ) and, therefore, TC is equal to 1. 

5.2.6 Superposition of Optical Vortices Described 
by a Geometric Progression with the Common Ratio 

Here we study a superposition of optical vortices described by a geometric progres-
sion with a common ratio. Such a superposition has the following complex amplitude 
in the initial plane: 

E1nk 
(5.38) 

If the weight coefficients are of the same value by modulus (i.e. |a| = 1), the 
expression (5.38) can be converted into a form with explicit argument of a complex 
number [phase of the field (5.13)]:
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E1nk (r, ϕ)  = exp
(

− 
r2 

w2 
+ i 

k + n 
2 

mϕ′
)
sin
(
n−k+1 

2 mϕ′)

sin
(
1 
2 mϕ′) , (5.39) 

with φ’ = φ + m−1 arg a. As seen from Eq. (5.39), the argument (phase) of the 
superposition (5.13) is equal to [m(n + k)φ’]/2. Thus, the topological charge TC of 
the vortex field (5.13) is equal to 

TC = m(n + k)/2. (5.40) 

If m = n = 1, the TC (5.40) coincides with Eq. (5.26). However, in a general case, 
when |a| 
= 1, the TC can be obtained by using the residues theory. Substituting the 
right part of Eq. (5.38) into the M.V. Berry’s formula (5.36), we get: 

TC = 
1 

2π 
lim 
r→∞ 

Im 

2π∫

0 

d ϕ 
∂E(r, ϕ)/∂ϕ 

E(r, ϕ) 

= 
1 

2π 
Im 

2π∫

0

[
imaeimϕ 

1 − aeimϕ + 
ikm − i(n + 1)man−k+1ei(n−k+1)mϕ 

1 − an−k+1ei(n−k+1)mϕ

]
dϕ 

= mn + 
m 

2π 
Re 

2π∫

0 

d ϕ 
1 − aeimϕ − 

m(n − k + 1) 
2π 

Re 

2π∫

0 

d ϕ 
1 − an−k+1ei(n−k+1)mϕ . (5.41) 

The first integral in Eq. (5.41) is equal to 

2π∫

0 

dϕ 
1 − aeimϕ = 

⎧ 
⎨ 

⎩ 

2π, |a| < 1, 
π, |a| = 1, 
0, |a| > 1. 

(5.42) 

The second integral is evaluated similarly and equals the first one. Thus, we finally 
obtain that the TC of the geometric progression of optical vortices (5.48) in the initial 
plane significantly depends on the parameter a and is equal to 

TC = 

⎧ 
⎨ 

⎩ 

km, |a| < 1, 
k+n 
2 m, |a| = 1, 

nm, |a| > 1. 
(5.43)
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5.2.7 Numerical Simulation 

Since the superposition (5.38) generalizes the superpositions (5.13), (5.25) and 
(5.27), the simulation is based on Eq. (5.38). Figure 5.5 depicts the intensity and 
phase distributions of the light field (5.38) at  n = 3, k = 0, m = 1, a = 1, w0 = 
500 μm in different transverse planes: z = 0 (Fig. 5.5a, i), z = z0/200 (Fig. 5.5b, j), 
z = z0/50 (Fig. 5.5c, k), z = z0/20 (Fig. 5.5d, l), z = z0/10 (Fig. 5.5e, m), z = z0/2 
(Fig. 5.5f, n), z = z0 (Fig. 5.5 g, o), z = 2z0 (Fig. 5.5 h, p). 

Figure 5.5a confirms that the intensity distribution in the initial plane has a shape 
of a light lobe (m = 1) elongated along the positive direction of the horizontal axis. 
However, the divergence of optical vortices increases with their topological charge.

Fig. 5.5 Intensity (a–h) and phase (i–p) distributions of the light field (5.13) at  n = 3, k = 0, m = 
1, a = 1, w0 = 500 μm in the planes z = 0 (a, i), z = z0/200 (b, j), z = z0/50 (c, k), z = z0/20 (d, 
l), z = z0/10 (e, m), z = z0/2 (f, n), z = z0 (g, o), z = 2z0 (h, p). Scale mark in each figure means 
1 mm  
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Therefore, all the constituent vortices in the superposition (5.13) diverge differently, 
and on propagation, the lobe splits into light bows, as can be seen in Fig. 5.5b–d. 
Then, on further propagation, since the higher divergence of vortices with a large 
topological charge leads to their stronger attenuation, only one light spot remains in 
the picture (Fig. 5.5f–h). 

Numerical TC computation by M.V. Berry’s formula (5.41) yields the following 
values: 1.49 (z = 0), 0.98 (z = z0/200), 2.29 (z = z0/50), 2.97 (z = z0/20), 2.97 (z = 
z0/10), 2.99 (z = z0/2), 3.00 (z = z0), 3.00 (z = 2z0). Thus, the half-integer TC of n/ 
2 in the initial plane (TC = 1.5) acquires an integer value n (TC = 3) on propagation 
in space. 

To demonstrate the influence of the topological charge increment m in the progres-
sion, Fig. 5.6 depicts the intensity and phase distributions of the light field (5.38) 
at n = 3, k = 0, m = 5, a = 1, w0 = 500 μm in different transverse planes: z = 0 
(Fig. 5.6a, i), z = z0/200 (Fig. 5.6b, j), z = z0/50 (Fig. 5.6c, k), z = z0/20 (Fig. 5.6d, 
l), z = z0/10 (Fig. 5.6e, m), z = z0/2 (Fig. 5.6f, n), z = z0 (Fig. 5.6 g, o), z = 2z0 
(Fig. 5.6 h, p).

Figure 5.6a confirms that the intensity distribution in the initial plane consists of 
five lobes (m = 5) elongated at angles φ = 2πp/5 (p = 0, …, 4). As in the case with m 
= 1, due to the different divergence of optical vortices on propagation, the lobes first 
split into the light bows (Fig. 5.6b–e) and then only one spot remains in the pattern 
with the intensity maximum on the optical axis (Fig. 5.6f–h). 

Numerical TC computation based on M.V. Berry’s formula (5.41) gives  the  
following values: 7.48 (z = 0), −1.37 (z = z0/200), 12.84 (z = z0/50), 14.64 (z 
= z0/20), 14.64 (z = z0/10), 14.98 (z = z0/2), 14.94 (z = z0), 14.77 (z = 2z0). Thus, 
half-integer TC of mn/2 (TC = 7.5) in the initial plane acquires the integer value mn 
(TC = 15) on propagation in space. 

Further we study how the topological charge changes when several first terms 
are removed from the progression (5.38), i.e. when k 
= 0. Figure 5.7 illustrates the 
intensity and phase distributions of the light field (5.38) at  n = 11, k = 0 (Fig. 5.7a– 
d), k = 2 (Fig. 5.7e–h), k = 5 (Fig. 5.7i–l), m = 1, a = 1, w0 = 500 μm in the initial 
plane z = 0 (Fig. 5.7a, b, e, f, i, j) and in the far field z = 2z0 (Fig. 5.7c, d, g, h, k, l).

Numerical TC computation by M.V. Berry’s formula (5.41) yields the following 
values in the initial plane z = 0: 5.49 (k = 0), 6.49 (k = 2), 7.99 (k = 5). In the far 
field z = 2z0, the obtained values are 10.96 (for all k, i.e. k = 0, k = 2, k = 5). Thus, 
the half-integer TC of (n + k)/2 in the initial plane becomes equal to the integer value 
n (TC = 11) on propagation in space. Optical vortices in Fig. 5.7 have a structure 
with an interesting property. In the center, on the optical axis, an optical vortex is 
generated with the TC of k: 0 (Fig.  5.7d), 2 (Fig. 5.7h) and 5 (Fig. 5.7l). This on-axis 
optical vortex is surrounded by vortices with the TC of +1 and the number of these 
vortices complements the total TC to n = 11: 11 (Fig. 5.7d), 9 (Fig. 5.3h) and 6 
(Fig. 5.7l). 

In this section, we derived the topological charge (TC) of a four-parametric family 
of vortex beams whose complex amplitude is described by a geometric progression 
of the Gaussian optical vortices [42]. This progression can be either raising, when 
the amplitudes of the constituent vortices increase, or decaying, or stationary. The
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Fig. 5.6 Intensity (a–h) and phase (i–p) distributions of the light field (5.13) at  n = 3, k = 0, m = 
5, a = 1, w0 = 500 μm in the planes z = 0 (a, i), z = z0/200 (b, j), z = z0/50 (c, k), z = z0/20 (d, 
l), z = z0/10 (e, m), z = z0/2 (f, n), z = z0 (g, o), z = 2z0 (h, p). Scale mark in each figure means 
1 mm

first and the last terms in this progression are equal respectively to ak exp(−(r/w)2+ 
ikmϕ) and an exp(−(r/w)2+inmϕ), i.e. the common ratio is a exp(imϕ). The studied 
vortex beams family is described by three integer parameters (k, n, m) and by one 
real parameter a. If  a < 1, the progression is decaying and the TC of the whole 
superposition is equal to the TC of its first term (TC = km, k < n), since this term 
describes an optical vortex of the maximal power in the superposition. If a > 1, the  
progression is raising and its TC is equal to the TC of the last term (TC = nm), since 
it is this term that has the maximal power in the superposition. Finally, if a = 1, the 
progression is stationary, its OAM-spectrum is symmetric and the TC of the whole 
superposition is equal to the order of the average angular harmonic (TC = (k + n)m/ 
2). In the latter case, the superposition can have a half-integer TC in the initial plane. 
On propagation in free space though, the TC of the stationary progression of optical
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Fig. 5.7 Intensity (columns 1 and 3) and phase (columns 2 and 4) distributions of the light field 
(5.13) at  n = 11, k = 0 (a–d), k = 2 (e–h), k = 5 (i–l), m = 1, a = 1, w0 = 500 μm in the initial 
plane z = 0 (a, b, e, f, i, j) and in the far field z = 2z0 (c, d, g, h, k, l). The red circles in phase 
distributions (d, h, l) highlight the optical vortices. Scale mark in each figure means 1 mm

vortices becomes integer (TC = nm) and is conserved on further propagation. Earlier, 
in [43], it was shown that if a spiral phase plate with the transmittance exp(inφ) is  
fabricated for a specific wavelength λ0 and illuminated by a laser light with another 
wavelength λ, then the TC n becomes fractional n(λ0/λ) and, on propagation in space, 
according to [6], the number of vortices should double and the TC should become 
integer and equal to 2n (if λ < λ0). This is, however, only approximately, since when 
an optical vortex with a fractional TC in the initial plane propagates in space, its 
TC becomes undefined [40]. For the geometric progression of optical vortices, if the 
initial TC is half-integer (TC = n/2), then, on propagation, the TC acquires a definite 
integer value, which is twice higher (TC = n).
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5.3 Common Topological Charge of a Superposition 
of Several Identical Off-Axis Vortex Beams 

Optical vortices are characterized by their orbital angular momentum (OAM) [5, 44– 
46] and by the topological charge (TC) [6]. For rotationally symmetric light fields, the 
TC value coincides with the OAM value normalized by the field intensity. Structured 
light of more general form can be characterized by these quantities separately, as well 
as by other propagation-invariant quantities such as the angular harmonics spectrum 
(OAM-spectrum) [47, 48], partial TC [49], OAM moments of higher orders [50]. 

A lot of works exists on measuring the TC of the conventional rotationally 
symmetric optical and acoustic vortices [51–54], but for arbitrary-shape beams it 
should be measured according to the definition given by Berry [6], like, for instance, 
in [55] by using the Shack-Hartmann wavefront sensor. In contrast to the OAM and 
OAM-spectrum, the TC is hard to measure since it depends on the phase distribu-
tion in the beam periphery. However, its advantage is its discreteness, i.e. it changes 
stepwise when the distortions achieve some level. Therefore, the TC of structured 
light beams receives attention even nowadays. 

For example, in work [56], off-axis two-vortex beams were studied and gener-
ated. Besides studying how their intensity shape changes with changing the distance 
between the vortices, TC of such off-axis two-vortex beams was determined by using 
a tilted lens. It was demonstrated that the TC depends not only on the magnitudes 
of the azimuthal indices of the both phase singularities, but also on their signs. It 
was also shown that a tilted lens allows determining the spatial distribution of the 
vortices. 

In works [57, 58] TC of fractional-order optical vortices is investigated in the far 
field. This work is a continuation of works [59–61] on studying the TC of fractional 
vortices in the far field, but it studies also transition curves between two integer TC 
values, which, as turns out, depend also on the waist radius of the vortex beam. 

Besides studying the TC and the OAM of various light fields and ways of their 
measurements, some works suggested using these quantities for optical computations 
[21, 62]. 

In our previous works, we also demonstrated how simple arithmetic operations 
with the TC can be implemented. For example, if the Laguerre-Gaussian beam is 
added with an off-axis Gaussian beam, the TC of the superposition is equal to the 
TC of the Laguerre-Gaussian beam, divided by 2 (integer division) [63]. In [19], we 
shown that choosing the phase delays between parallel Laguerre-Gaussian beams, 
the TC of such a superposition can be made equal to the TC of each constituent beam, 
but incremented or decremented by a unit. In this case, the beams should be located 
in the transverse plane on a circle. Several other works also studied vortex beams 
formed from an array of Gaussian beams with phase delays between them [64–66]. 
In [64, 65], a superposition of beams was considered that comes from a hexagonal 
matrix of fiber lasers, and propagation dynamics of such a synthesized vortex beam 
was compared with the Laguerre-Gaussian beam both in free space and in a turbulent 
medium. In [66], Gaussian beams were located on a circle, and a general expression
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was obtained for the complex amplitude of such a superposition. This expression was 
used for computing the intensity and phase distributions, necessary for observing the 
optical vortex generation, but the vortex order was not obtained analytically by the 
derived formula. 

An array of single-ringed Laguerre-Gaussian, rather than an array of the Gaussian 
beams, with their axes located on a surface of a hyperboloid of revolution, was 
investigated in [67]. Such arrays of identical beams can be generated by a coherent 
beam combining method [25]. A general expression was obtained for the OAM and its 
partial cases were analyzed. It was shown in [67] that the OAM can achieve arbitrary 
large values limited only by the vortices density, but the TC of the whole superposition 
was not studied in this work. The work [68] also deals with an array of single-
ringed Laguerre-Gaussian beams with their axes on the surface of a hyperboloid of 
revolution. For such an array, central critical point was studied (central vortex) and its 
TC, but the common TC of the whole transverse distribution was not considered and, 
in addition, only superposition of the Laguerre-Gaussian beams with only one ring 
was studied. The work [69] also studies arrays of identical beams, but these beams 
are vectorial and generated inside a laser cavity. The considered beam families are 
constructed of several ray-like trajectories with wave properties. Such fields possess 
four degrees of freedom and can be transformed into vortex beams with a large OAM 
value, with several singularities, or into helical star-like structures. For studying 
polarization singularities and topological phase of such fields, distributions of two 
phase parameters was considered: arctan(|Ex |/|Ey|) and arg(Ex/Ey) with Ex and Ey 

being the field components, although the integral values of these quantities for the 
whole field, such as the OAM or TC, were not obtained analytically. 

In this section, we investigate a superposition of arbitrary-shaped off-axis optical 
vortices, not necessarily the Laguerre-Gaussian beams. We show for such superposi-
tions that choosing the phase delays between the beams allows changing the TC and, 
in addition, if the number of the constituent beams increases, the TC can be changed 
by a greater value, increasing it by 2, 3, or 4. Theoretical prove of changing TC is 
given for the far field of diffraction, but these theoretical TC values are confirmed 
numerically for the near field as well. 

5.3.1 Topological Charge of a Superposition of Identical 
Parallel Vortex Beams in the Far Field of Diffraction 

A superposition of identical parallel vortex beams has the following complex 
amplitude in the initial plane: 

E(x, y, 0) = 
N −1∑

n=0 

cnA
{[

(x − an)2 + (y − bn)2
]1/ 2}

× exp
{
im arg

[
(x − an) + i(y − bn)

]}
. (5.44)
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where (x, y) are the Cartesian coordinates in the initial plane, N is the number of 
beams in the superposition, m is the TC of each constituent vortex beam, (an, bn) 
are the Cartesian coordinates of the nth beam’s center, A is a function of the radial 
polar coordinate defining the transverse beam shape (Laguerre-Gaussian [70, 71], or 
Bessel-Gaussian [32, 72], or other), cn are the superposition weight coefficients, i.e. 
|cn| is the amplitude of nth constituent beam, while arg cn is its initial phase. 

In the far field, complex amplitude can be obtained by the Fourier transform [73] 
of the initial amplitude: 

E(x, y, z >> z0) = 
−ik 

2π z 

+∞∫

−∞ 

+∞∫

−∞ 

E(x′, y′, 0) 

exp

[
−i 

k 

z 
(xx′ +  yy′)

]
dx′dy′, (5.45) 

where z0 is some distance that divides the propagation axis into near (z << z0) and 
far (z >> z0) field of diffraction, for instance, the Rayleigh length for light fields with 
the Gaussian envelope. 

Substituting Eq. (5.44) into Eq. (5.45) and using the Fourier transform property 
for the shifted functions, we get 

E(x, y, z >> z0) = 
−ik 

2π z 

N −1∑

n=0 

cn exp

[
−i 

k 

z 
(anx + bny)

]

× 
+∞∫

−∞ 

+∞∫

−∞ 

A
(√

x′2 + y′2
)

exp

[
im arg(x′ +  iy′) − i 

k 

z 
(xx′ +  yy′)

]
dx′dy′. (5.46) 

Now we will use the polar coordinates both in the initial plane and in the far field: 

x = r cos ϕ 
y = r sin ϕ 
x′ =  r′ cos ϕ′
y′ =  r′ sin ϕ′. (5.47) 

Then, after evaluating the integral over the angular polar coordinate φ’ in the  
initial plane, the Fourier transform (5.46) reads as 

E(r, ϕ,  z >> z0) = (−i)m+1 k 

z
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× 
N−1∑

n=0 

cn exp

[
−i 

k 

z 
r(an cos ϕ + bn sin ϕ)

]

exp(imϕ) 
∞∫

0 

A(r′)Jm
(
k 

z 
r′r
)
r′dr′. (5.48) 

It is seen that the far-field complex amplitude of the whole superposition equal the 
far-field complex amplitude of a single constituent vortex beam Evortex, multiplied 
by the complex amplitude of a superposition of plane waves Eplane: 

E(r, ϕ,  z >> z0) = Evortex(r, ϕ,  z >> z0) 
Eplane(r, ϕ,  z >> z0), (5.49) 

where 

Evortex(r, ϕ,  z >> z0) = (−i)m+1 k 

z 
exp(imϕ) 

∞∫

0 

A(r′)Jm
(
k 

z 
r′r
)
r′dr′, (5.50) 

Eplane(r, ϕ,  z >> z0) = 
N−1∑

n=0 

cn exp

[
−i 

k 

z 
r(an cos ϕ + bn sin ϕ)

]
. (5.51) 

Then the topological charge of the superposition is equal to the sum of the topolog-
ical charge of one constituent beam m and of the topological charge of a superposition 
of plane waves (5.51) TCplane: 

TC = m + TCplane (5.52) 

Such a separation of the common TC into the TC of a single constituent beam and 
the TC of a certain superposition of plane waves is possible due to considering the 
light field in the far field of diffraction. Before the far field, the light beam propagates 
in the Fresnel diffraction zone. For this zone, we failed to derive the common TC 
of the superposition (5.44) analytically. However, the work [49] has proved the TC 
conservation upon propagation, even if the field intensity changes. Therefore, we 
will derive the TC analytically for the far field by using Eq. (5.52), while its validity 
for the Fresnel diffraction zone will be verified by numerical computations. 

We can obtain the additive topological charge TCplane in a simple partial case 
when cn = exp(i2πpn/N), an = r0cos(2πn/N), bn = r0sin(2πn/N). In this case, the 
vortex beams are located uniformly on a circle and their phases grow along this circle 
linearly (Fig. 5.8).

In the far field, complex amplitude of such a beam is given by
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Fig. 5.8 Superposition of 
several optical vortices on a 
circle with initial phases 
(bright color means 0, pale 
color means 2π) linearly 
increasing along this circle

Eplane(r, ϕ,  z >> z0) = 
N −1∑

n=0 

exp

[
i2π 

pn 

N 
− i 

k 

z 
r0r cos

(
ϕ − 

2πn 

N

)]
. (5.53) 

It is not difficult to prove the following symmetry property for a superposition of 
plane waves (5.53): 

Eplane(r, −ϕ ± π, z >> z0) = E∗ 
plane(r, ϕ,  z >> z0). (5.54) 

Here we prove the symmetry property (5.54). For this purpose, we consider the light 
field on a ray with the angular polar coordinate −φ ± π: 

Eplane(r, −ϕ ± π, z >> z0) = 
N −1∑

n=0 

exp

[
i2π 

pn 

N 
− i 

k 

z 
r0r cos

(
−ϕ ± π − 

2πn 

N

)]
. 

(5.55) 

The cosine is the even function. In addition, we use the reduction formulas and 
change the summation range from n = 0, …, N − 1 to  n = 1, ..., N. This can be done 
since the terms in the sum at n = 0 and at n = N are the same. Thus, we get 

Eplane(r, −ϕ ± π, z >> z0) = 
N∑

n=1 

exp

[
i2π 

pn 

N 
+ i 

k 

z 
r0r cos

(
ϕ + 

2πn 

N

)]
. (5.56) 

Replacing the summation index from n to N − n yields:
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Eplane(r, −ϕ ± π, z >> z0) 

= 
N −1∑

n=0 

exp

[
i2π 

p(N − n) 
N

+ i 
k 

z 
r0r cos

(
ϕ + 

2π (N − n) 
N

)]
. (5.57) 

Since both the cosine and the exponential in Eq. (5.57) are periodical with the 
period of 2π, the  term  N can be removed in the numerators and thus 

Eplane(r, −ϕ ± π, z >> z0) 

= 
N−1∑

n=0 

exp

[
−i2π 

pn 

N 
+ i 

k 

z 
r0r cos

(
ϕ − 

2πn 

N

)]
, (5.58) 

i.e. we get exactly the right part of Eq. (5.54): E∗
plane(r, ϕ,  z >> z0). 

This means that for any optical vortex, another symmetrical optical vortex exists 
and it has the opposite topological charge. Thus, all off-axis vortices in the field 
Eplane compensate each other and do not affect the common topological charge of 
the whole superposition of plane waves. Only the central vortex on the optical axis 
is not compensated. To determine its topological charge, the superposition of plane 
waves can be expanded into a Taylor series: 

Eplane(r, ϕ,  z >> z0) 

= 
N−1∑

n=0 

exp
(
i2π 

pn 

N

)

∞∑

s=0 

1 

s!
(

−i 
k 

z 
r0r

)s 

coss
(

ϕ − 
2πn 

N

)
. (5.59) 

Representing the cosines as sums of exponentials, applying then the binomial 
theorem to them, and using the following identity 

N −1∑

n=0 

exp
(
i2π 

pn 

N

)
= N δp, (5.60) 

where δp = 1 for  p = 0, N, 2N, … and δp = 0 for other values p, Eq.  (5.59) is  
transformed to the following form: 

Eplane(r, ϕ,  z >> z0) 

= N 
∞∑

s=0

(
−i 

k 

2z 
r0r

)s 

s∑

t=0 

δp−2t+s 

t!(s − t)! exp[i(2t − s)ϕ]. (5.61)
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It is seen that nonzero terms in this sum are those that describe optical vortices 
with the topological charge of p. Due to ciclicity of the values δp, other terms in 
the sum (14) can be also nonzero. These terms describe optical vortices with the 
topological charges p ± N, p ± 2N, …, but their contribution decays due to the 
coefficients 1/[t!(s − t)!]. Thus, the topological charge of the whole superposition 
should be equal to 

TC = m + p. (5.62) 

For this reason, we call the parameter p a topological charge increment. We note that 
if the field is composed of optical vortices, located on several circles, similarly to 
several hexagonal rings in [64], then it is described by a sum of several terms, each 
of the form (5.53). Each of these terms has the symmetry (5.54) and has the central 
optical vortex with the TC given by Eq. (5.62). Thus, as has been shown in [64], the 
number of rings with the vortices affects the shape of the generated vortex beam, but 
the common TC of the whole superposition remains unchanged with changing the 
number of rings and is equal to (5.62). 

Further, we verify the formula (5.62) by the numerical computation for several 
different light fields. 

5.3.2 Numerical Simulation 

Shown in Fig. 5.9 are the intensity and phase distributions of several superpositions 
of eight 7th-order LG beams with a different topological charge increment from −2 
till +3.

The topological charge was computed along a large-radius circle (R = 30 mm) so 
as to bypass the whole area of significant intensity. Computation yields the following 
TC values: 4.9455 ≈ 5 (Fig. 5.9a, d), 5.9333 ≈ 6 (Fig. 5.9b, e), 6.9218 ≈ 7 (Fig. 5.9c, 
f), 7.9103 ≈ 8 (Fig. 5.9 g, j), 8.8988 ≈ 9 (Fig. 5.9 h, k), 9.8870 ≈ 10 (Fig. 5.9i, l). 
Thus, all these cases confirm that the topological charge equals TC = m + p. 

Computation of the topological charge along the same circle, as for Fig. 5.9, 
yields the following TC values: 4.9171 ≈ 5 (Fig. 5.10a, d), 5.8991 ≈ 6 (Fig. 5.10b, 
e), 6.8818 ≈ 7 (Fig. 5.10c, f), 7.8645 ≈ 8 (Fig. 5.10 g, j), 8.8472 ≈ 9 (Fig. 5.10 h, k), 
9.8297 ≈ 10 (Fig. 5.10i, l). Thus, in all these cases, the topological charge value TC 
= m + p is confirmed for the Bessel-Gaussian beams as well. Intensity and phase 
distributions of several superpositions of eight Bessel-Gaussian beams are illustrated 
in Fig. 5.10. As in Fig.  5.9, these beams also have 7th order and the topological charge 
increments from −2 till +3.

Now we determine whether the distance between the beams affects the common 
topological charge. For this purpose, we increase the distance from the beams centers 
to the optical axis a0.
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Fig. 5.9 Intensity (a–c, g–i) and phase (d–f, j–l) distributions of several superpositions of the LG 
beams for the following parameters: wavelength λ = 532 nm, waist radius of the Gaussian beam 
w0 = 1 mm, radial and azimuthal indices of each constituent LG beam q = 2 and  m = 7, number of 
beams M = 8, distance from the beams centers to the optical axis a0 = 3w0 = 3 mm, propagation 
distance z = z0/2, topological charge increment p = −2 (a, d), −1 (b, e), 0 (c, f), +1 (g, j), +2 (h, 
k), +3 (i, l)
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Fig. 5.10 Intensity (a–c, g–i) and phase (d–f, j–l) distributions of several superpositions of the 
Bessel-Gaussian beams for the following parameters: wavelength λ = 532 nm, waist radius of the 
Gaussian beam w0 = 1 mm, scaling factor and the topological charge of each constituent Bessel-
Gaussian beam α = k/2000 and m = 7, number of beams M = 8, distance from the beams centers 
to the optical axis a0 = 3w0 = 3 mm, propagation distance z = z0/2, topological charge increment 
p = −2 (a, d), −1 (b, e), 0 (c, f), +1 (g, j), +2 (h, k), +3 (i, l)
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Fig. 5.11 Intensity (a–c) and phase (d–f) distributions of several superpositions of the LG beams 
(a, b, d, e) and the Bessel-Gaussian (c, f) beams for the following parameters: wavelength λ = 
532 nm, waist radius of the Gaussian beam w0 = 1 mm, radial index of the LG beams q = 2, scaling 
factor of the Bessel-Gaussian beams α = k/2000, topological charge of each constituent beam in 
the superposition m = 7, number of beams M = 8, distance from the beams centers to the optical 
axis a0 = 8w0 = 8 mm, propagation distance z = z0/2, topological charge increment p = 3 (a, d), 
1 (b, e), 2 (c, f) 

Figure 5.11 depicts the intensity and phase distributions of several superpositions 
of eight LG and Bessel-Gaussian beams when the distance from the beams centers 
to the optical axis equals a0 = 8w0 (in Figs. 5.9 and 5.10, a0  = 3w0). 

Computation of the topological charge yields the following values: 9.9256 ≈ 
10 (Fig. 5.11a, d), 7.9425 ≈ 8 (Fig. 5.11b, e), 8.8911 ≈ 9 (Fig. 5.11c, f). Thus, 
a superposition of beams, more remote from the optical axis, has the topological 
charge, also equal to TC = m + p. 

Now we compute the TC for a light field with two rings with the optical vortices. 
Shown in Fig. 5.12 are the intensity and phase distributions of a superposition of 
sixteen LG beams, residing on two rings (eight beams on each ring) with the radii 
a01 = 5w0 and a02 = 10w0.

In the near field (Fig. 5.12a, d), LG beams are clearly seen on the outer ring, as 
well as clearly seen the central dark areas of the LG beams on the inner ring. When 
passing from the near field to the far field, at the Rayleigh distance (Fig. 5.12b, e), 
LG beams on the outer ring can be distinctly seen, whereas the LG beams on the 
inner ring are undistinguishable due to interference. In the far field (Fig. 5.12c, f), 
due to interference, the Laguerre-Gaussian beams are undistinguishable both in the 
outer and on the inner ring.
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Fig. 5.12 Intensity (a–c) and phase (d–f) distributions of a superposition of the LG beams, residing 
on two rings, for the following parameters: wavelength λ = 532 nm, waist radius of the Gaussian 
beam w0 = 1 mm, radial index of the Laguerre-Gaussian beams q = 2, topological charge of each 
constituent beam in the superposition is m = 7, number of beams M = 2 × 8 = 16, distance from 
the beams centers to the optical axis a01 = 5w0 = 5 mm (inner ring) and a02 = 10w0 = 10 mm 
(outer ring), topological charge increment p = 2, propagation distance z = z0/5 (a, d) (near field), 
z = z0 (b, e), z = 2z0 (c, f) (far field)

Despite the radical change of the diffraction pattern, the computed topological 
charge values in all three planes are nearly the same: 8.9512 ≈ 9 (Fig. 5.12a, d), 
8.9172 ≈ 9 (Fig. 5.12b, e), 8.9473 ≈ 9 (Fig. 5.12c, f). Thus, for a superposition of 
light beams, located on two rings, we get the topological charge which is also equal 
to TC = m + p. 

We have studied the common topological charge of a superposition of several 
parallel optical vortices with an arbitrary radial amplitude distribution. For the far 
field of diffraction, we have proved theoretically that if the vortices are located 
uniformly on a circle then the topological charge of the superposition can differ from 
the topological charge of each constituent vortex beam by a given value due to the 
phase difference between the beams. The topological charge of an arbitrary light field 
should not change upon propagation since it characterizes the topology of the field 
phase distribution. Changing this topology requires some nonlinear transforms, and 
thus we suppose that, in homogeneous medium, the above topological charge of the 
superposition should be conserved also in the near field. The numerical simulation, 
conducted for multiple-ringed LG beams and for the Bessel-Gaussian beams, has 
confirmed that the formula TC = m + p is valid even in the near field, at a distance 
from the initial plane, two times shorter than the Rayleigh length. A limitation of
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the considered model is the requirement that the beams should be parallel, i.e. the 
common TC of the beams array cannot be determined if they have some tilts to the 
optical axis. For instance, the model does not allow obtaining the TC of a structurally 
stable superposition similar to that studied in [68]. On the contrary, universality of 
the considered model is independence of the shape of the constituent vortex beams 
[74], since it is not supposed that they are the simplest single-ringed LG beams. The 
obtained feature of superpositions of parallel identical optical vortices can be used 
for optical data transmission if the incoming optical signals are identified by their 
topological charge, as well as for controlling the topological charge of a combined 
beam by inducing phase delays between the constituent beams. 
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Chapter 6 
Orbital Angular Momentum of Helical 
Laser Beams 

6.1 Orbital Angular Momentum of Paraxial 
Propagation-Invariant Laser Beams 

Last years, structured light attracts much attention. There are several review papers 
that describe generation and detection of such light [1–3]. Such light fields can 
be generated both by using lasers [4, 5] and by adopting out-of-resonator optical 
components (for instance, an astigmatic converter [6]). Structured light is a light field 
that has some structure, i.e. either transverse spatial structure (for example, Hermite-
Gaussian (HG) or Laguerre-Gaussian beams [7]), or longitudinal (for example, Airy 
beams [8]), polarizational (for example, radially or azimuthally polarized beams [9]), 
temporal (for example, space–time optical vortices [10, 11]) structure. Propagation-
invariant (or structurally stable) beams is a subclass of structured beams and they 
can be represented in different ways, for example, by embedding a set of shifted 
optical vortices of the same sign into a Gaussian beam [12], or by using a finite 
superposition of the HG beams [13], or using a series [14], or by adopting a 4 × 
4 propagation matrix [15]. Propagation-invariant laser beams are paraxial beams, 
whose transverse intensity structure is conserved on propagation, changing only in 
scale. Such beam can rotate on propagation in free space. Interestingly, in [16], the 
authors consider a finite superposition of the HG beams with complex coefficients 
to analyze the perturbation of the Laguerre-Gaussian mode. In fact, in [16], a special 
type of perturbation of the Laguerre-Gaussian beam is studied, namely, such that the 
perturbed beams still remain propagation-invariant. 

In this section, we investigate propagation-invariant laser beams composed by 
a finite number of the HG beams. We obtain a general expression for the orbital 
angular momentum (OAM) of such beams and give several examples of choosing 
the weight coefficients of the superposition of the HG beams that yield the different 
OAM values. We show that the maximal OAM normalized to the beam power is 
equal to the maximal power of the Hermite polynomial in this sum.
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6.1.1 Derivation of an Expression for the Orbital Angular 
Momentum of Propagation-Invariant Beams 

Under the propagation-invariant (they are also called structured Gaussian) beams, 
we mean here paraxial beams composed of a finite superposition of the HG beams 
with a constant sum of indices equal to N: 

SHGN (x, y) = exp
(

− 
x2 + y2 

w2

)

× 
N∑

p=0 

CpHN−p

(√
2x 

w

)
Hp

(√
2y 

w

)
, (6.1) 

where w is the waist radius of the Gaussian beam, Cp are the complex-valued 
coefficients, Hp(x) are the Hermite polynomials obeying the following recurrent 
identities: 

Hn(x) = 2xHn−1(x) − 2(n − 1)Hn−2(x), 
H0(x) = 1, H1(x) = 2x. (6.2) 

The HG beams are propagation-invariant i.e. their transverse shape is conserved 
on propagation and changes only in scale. The Fresnel transform conserves the HG 
beam: 
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, (6.3) 

where q(z) = 1 + iz/z0, z0 = kw2/2 is the Rayleigh distance, k is the wavenumber of 
light, (x, y) and (ξ,η) are the transverse Cartesian coordinates in the initial plane and at 
the distance of z, z is the third Cartesian coordinate directed along the optical axis of
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the beam. As seen from Eq. (6.3), the HG beams with constant sum of the indices n + 
m = N propagated with the same phase velocity (i.e. they have the same Gouy phase), 
and, therefore, the superposition Eq. (6.1) of such beams is propagation-invariant. 

Summing the beams Eq. (6.3) with the weight coefficients Cp yields the complex 
amplitude of the light field Eq. (6.1) at a distance z: 

SHGN (x, y, z) = exp

[
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w2|q(z)|2 + 
ik
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2R(z)

]

× exp
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)
, (6.4) 

with R(z) = z[1 + (z0/z)2] being the curvature radius of the wavefront. 
Below we derive a general formula for the normalized orbital angular momentum 

(OAM) of propagation-invariant Gaussian beams Eq. (6.1). To do this, we use the 
well-known formulae for the OAM Jz of paraxial light fields and for their power W: 

Jz = Im 

∞∫
−∞ 

∞∫
−∞ 

E∗(x, y)
(
x 
∂E(x, y) 

∂y 
− y 

∂E(x, y) 
∂x

)
dxdy, (6.5) 

W = 
∞∫

−∞ 

∞∫
−∞ 

E∗(x, y)E(x, y)dxdy, (6.6) 

with E*(x, y) being the conjugated complex amplitude and Im being the imaginary 
part of a complex number. Substituting Eq. (6.1) into Eqs. (6.5) and (6.6) as well as by  
using the orthogonality of the Hermite polynomials and the well-known expression 
for their derivative 

∞∫
−∞ 

exp
(−x2

)
Hn(x)Hm(x)dx = √

π 2n n!δn,m, 

dHn(x) 
dx 

= 2nHn−1(x), n = 1, 2, . . .  N (6.7) 

with δn,m being the Kroneccker delta, we obtain the general formulae for the OAM 
and power of the beam Eq. (6.1): 

Jz = π2N 
N −1∑
p=0 

(p + 1)!(N − p)!Im
(
C∗ 
p Cp+1

)
,



162 6 Orbital Angular Momentum of Helical Laser Beams

W = π2N−1 
N∑

p=0 

p!(N − p)!
(
C∗ 
p Cp

)
. (6.8) 

The normalized OAM of the field Eq. (6.1) is thus given by 

Jz 
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= 
2

∑N −1 
p=0 (p + 1)!(N − p)!Im
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∑N 
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. (6.9) 

According to Eq. (6.9), the OAM of a propagation-invariant Gaussian beam Eq. 
(6.1) is nonzero if the coefficients Cp are complex. It is even enough that the coef-
ficients Cp are not all complex, but through one. The minimum sufficient condition 
for the beam Eq. (6.1) to have nonzero OAM is the phase difference of at least one 
coefficient in the sum Eq. (6.1) from the phases of other coefficients. 

Now we derive particular cases from the general formula (6.9). In a simple case, 
when only the first two coefficients in the sum Eq. (6.1) are nonzero (C0 = 1, C1 = 
iγ), the OAM [Eq. (6.9)] of such a structured Gaussian beam with the amplitude 

SHGN (x, y) = exp
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(6.10) 

is equal to 

Jz 
W 

= 2γ 
1 + γ 2/N 

. (6.11) 

As seen from Eq. (6.11), at large value of N � 1, the OAM of the beam Eq. (6.10) 
is determined by the value of γ: Jz/W ≈ 2γ. It can be shown that the topological 
charge of the field (6.10) is equal to N at any values γ > 0. Indeed, the amplitude in 
Eq. (6.10) equals zero when both the real and the imaginary parts of the amplitude 
are equal to zero. The real part equals zero when the Hermite polynomial HN (x) is  
also equal to zero, i.e. in N points, when the argument x is equal to the polynomial’s 
roots. The imaginary part of the amplitude in Eq. (6.10) equals zero at y = 0. If y �= 0, 
then the imaginary part equals zero in the points where the argument x is equal to the 
roots to the Hermite polynomial HN–1(x). Since the roots to the polynomials HN (x) 
and HN–1(x) do not coincide, the field from Eq. (6.10) is equal to zero in the roots 
of the polynomial HN (x) and at у = 0. There are N such roots and the topological 
charge of the field from Eq. (6.10) is thus equal to N. For  N = 1, the expression (10) 
reduces to an elliptic first-order vortex (topological charge is + 1) with the amplitude 
SHG1(x, y) =

(
23/2/w

)
exp

(−(x2 + y2)/w2
)
(x + iγ y) and, according to Eq. (6.11),
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its OAM is equal to Jz/W = 2γ(1 + γ2)−1. The last expression coincides with one 
obtained earlier in [17]. 

Now we consider another simple example of the OAM being proportional to the 
number N = 2s + 1. To do this, we choose only two coefficients in the sum Eq. (6.1) 
to be nonzero. These are the following two neighboring coefficients: 

C(N −1)/2 = 1, C(N +1)/2 = iγ,  N = 2s + 1. (6.12) 

Then the complex amplitude of such a superposition of two HG beams is given 
by 

SHGN (x, y) = exp
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(6.13) 

and its OAM Eq. (6.9) reads as 

Jz 
W 

= (s + 1) 
2γ 

1 + γ 2 
=

(
N + 1 

2

)
2γ 

1 + γ 2 
. (6.14) 

The vortex beam Eq. (6.13) was studied in [18], while its topological charge was 
obtained in [19] and is equal to N. Indeed, both terms in Eq. (6.13) are equal to 
zero simultaneously when the arguments of the Hermite polynomials Hs+1(x) in the  
first term and Hs+1(y) in the second term coincide with the roots to the (s+1)th-order 
Hermite polynomial or when the arguments of the polynomials Hs(у) in the first 
term and Hs(x) in the second term coincide with the roots to the sth-order Hermite 
polynomial. Thus, in total, 2s + 1 zero-intensity points occur, near which the light 
field from Eq. (6.13) is described by an elliptic first-order optical vortex: x + iγy. 
Therefore, the topological charge of the field from Eq. (6.13) equals N = 2s + 1. 

Now we consider an example of the coefficients in Eq. (6.1) so that  the OAM  
reaches its maximum value. To do this, we choose the coefficients in Eq. (6.1) being 
proportional to the binomial coefficients: 

Cp = 
N !(iγ )p 

p!(N − p)! . (6.15) 

Then the OAM Eq. (6.9) of the beam Eq. (6.1) with the weight coefficients Eq. 
(6.15) is equal to 

Jz 
W 

= N 
2γ 

1 + γ 2 
. (6.16)
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A propagation-invariant Gaussian beam with coefficients Eq. (6.15) can be written 
in a simpler form using the summation rule of the Hermite polynomials: 

SHGN (x, y) = exp
(

− 
x2 + y2 

w2

)

× 
N∑
p=0 

N !(iγ )p 

p!(N − p)!HN −p

(√
2x 

w

)
Hp

(√
2y 

w

)

= exp
(

− 
x2 + y2 

w2

)(
1 − γ 2

)N /2 
HN

(√
2 

w 

x + iγ y √
1 − γ 2

)
. (6.17) 

Beams with the amplitude Eq. (6.17) are called Hermite-Gaussian vortex beams 
[17]. At γ= 1, the beam from Eq. (6.17) reduces to a single-ringed Laguerre-Gaussian 
mode with zero radial index (p= 0). In this case, all optical vortices with the charge of 
1, whose positions are determined by the real-valued zeros of the Hermite polynomial 
HN (x), “combine” into a single optical vortex on the optical axis, since at large 
argument values (x � 1) the Hermite polynomial is nearly equal to the term with 
maximal power (HN (x)≈ (2x)N ). The OAM of the beam Eq. (6.17) becomes maximal 
(16) (γ = 1) and equal to the OAM of the Laguerre-Gaussian beam Jz/W = N = l. 
The topological charge of the beams Eq. (6.17) was derived in [19] and is equal to 
N for any value of γ. At  γ = 1, the amplitude of the field from Eq. (6.17) is given  by  

SHGN (x, y) ≈
√
2 

w 
exp

(
− 
x2 + y2 

w2

)
(x + iγ y)N . (6.18) 

We note that in all three above considered examples [Eqs. (6.10), (6.13) and 
(6.17)], the topological charge is the same and equals N, despite the normalized OAM 
is different and is given by Eqs. (6.11), (6.14) and (6.16), respectively. Example of 
non-coinciding topological charge and OAM can be found in [20]. 

If the coefficients in Eq. (6.1) are chosen as follows: 

Cp = Cn,m 
p (α) 

= ip cosn−p α sinm−p αPn−p,m−p 
p (− cos 2α), 

N = n + m, (6.19) 

with Pv,μ 
p (x) being the Jacobi polynomials, then we obtain the Hermite-Laguerre-

Gaussian (HLG) beams, depending by a parameter α and investigated in [21]. We 
note that for the HLG beams, the number N defines a beams family (rather than a 
single beam) with different values n and m (N = m + n) at a given value of the 
parameter α. In [21], the normalized OAM has been obtained for the beams with the 
coefficients Eq. (6.19):
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Jz 
W 

= (n − m) sin 2α. (6.20) 

The indices n and m in Eqs. (6.19) and (6.20) can be related with the azimuthal 
l and radial p indices of the LG beam: N = n + m = 2p + l, n = p + l, m = p 
(see Eq. (6.11) in [16]). Then, if α = π/4 and n – m = l, the HLG beam with the 
coefficients Eq. (6.19) reduces to the Laguerre-Gaussian beam with the topological 
charge l and with the maximal OAM equal to Jz/W = l. 

6.1.2 Numerical Simulation 

To confirm that the topological charge of the beams from Eq. (6.10) is equal to N, 
we computed intensity and phase distributions of such beam for N = 3 and N = 4 
in three different transverse planes. These distributions are illustrated in Fig. 6.1.

As seen in Fig. 6.1, in the initial plane, there are N phase jumps by 2π in the beam 
periphery. There are also areas where phase changes fast but without the jumps. 
These areas do not affect the topological charge. Then, on propagation, intensity 
shape is conserved and each phase distribution contains exactly N first-order optical 
vortices residing on the horizontal Cartesian axis. Therefore, Fig. 6.1 confirms that 
the topological charge of the beam from Eq. (6.10) equals N. The numerical OAM 
value for Fig. 6.1a, d is Jz/W = 1.4998, whereas the theoretical value, according to 
Eq. (6.11), is Jz/W = 1.5. For Fig. 6.1g, j, the numerical and theoretical OAM values 
are 1.5997 and 1.6, respectively. 

Figure 6.2 illustrates the intensity and phase distributions of two propagation-
invariant superpositions of the HG beams Eq. (6.1) with quasi-random weight 
coefficients.

As seen in Fig. 6.2, both beams conserve their transverse intensity shape on 
propagation. The theoretical OAM value Eq. (6.9) for the beam from Fig. 6.2a–f is 
equal to 1.4452. Numerical OAM value was computed by using the integrals in Eq. 
(6.5) and Eq. (6.6). The discrete complex amplitude E(xi, yi) (256 × 256 pixels) 
from Fig. 6.2a was substituted into the integral in Eq. (6.5), which was computed by 
the trapezium method. As a result, the value Jz was obtained. Similarly, using the 
integral from Eq. (6.6) for the light field with the complex amplitude E(xi, yi), the 
power W was obtained. Dividing Jz by W yields the numerical OAM value Jz/W 
= 1.4451 for Fig. 6.1a. The OAM values for Figs. 6.2(b) and 2(c) were computed 
similarly and they turned out to be quite the same (Jz/W = 1.4451). Comparison of the 
OAM value obtained by Eq. (6.9) (Jz/W = 1.4452) and numerically (Jz/W = 1.4451) 
indicates that the difference is just in the fourth digit after the decimal point. The 
theoretical OAM value for the beam from Fig. 6.2g–l is equal to 2.2466. Numerically 
obtained values are 2.2463 (for all three transverse planes). The topological charge 
was computed using the M.V. Berry’s formula [22]. For Fig. 6.2a–f, TC = – 1, while 
for Fig. 6.2g–l it equals TC = 3.
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Fig. 6.1 Intensity (a–c, g–i) and phase (d–f, j–l) distributions of superpositions (6.10) of two  
Hermite-Gaussian beams for the following parameters: wavelength λ = 532 nm, Gaussian beam 
waist radius w = 0.5 mm, weight factor γ = 1, summary order of the Hermite polynomials N = 3 
(a–f) and  N = 4 (g–l), propagation distances along the optical axis z = 0 (initial plane) (a, d, g, j), 
z = z0 (Fresnel diffraction zone) (b, e, h, k), and z = 2z0 (far field) (c,f,i,l), The topological charge 
was calculated along the dashed circle



6.1 Orbital Angular Momentum of Paraxial Propagation-Invariant Laser … 167

Fig. 6.2 Intensity (a–c, g–i) and phase (d–f, j–l) distributions of superpositions of the Hermite-
Gaussian beams (6.1) and  (6.3) with random weight coefficients for the following parameters: 
wavelength λ = 532 nm, Gaussian beam waist radius w = 0.5 mm, summary order of the Hermite 
polynomials N = 3, propagation distances along the optical axis z = 0 (initial plane) (a, d, g, j), 
z = z0 (Fresnel diffraction zone) (b, e, h, k), and z = 2z0 (far field) (c, f, i, l), weight coefficients Cp 
= [0.77, 0.62i, –0.23, –0.44i] (at-f) and Cp = [0.55, 0.63i, – 0.84, – 0.07i] (g–l). The topological 
charge was calculated along the dashed circle
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We note that in random weight coefficients, the phase of each of them differs from 
the phase of the previous one by π/2. The phase delay – π/2 would change the TC to 
the values + 1 and – 3, respectively. 

These numerical examples indicate that the maximal (by modulus) TC of the 
beam Eq. (6.1) can be equal to the number N or – N from the sum Eq. (6.1). In this 
case, the normalized OAM is less than N. 

We have obtained a general expression for the OAM of a propagation-invariant 
light field composed of a finite number of the Hermite-Gaussian beams with arbitrary 
weight coefficients [23]. This expression has been derived in the form of a finite 
sum and it indicates that such a light field has a nonzero OAM if at least one of 
two neighboring weight coefficients in the finite superposition is complex. We have 
shown that if the superposition consists of an even number of the HG beams and 
only two neighboring central terms have nonzero coefficients, and one of them is 
purely imaginary while the other is real, then the OAM can be equal to the half of the 
total number of terms. If the coefficients are chosen as binomial coefficients, then the 
OAM of the beam can reach its maximal value and be equal to the total number of 
beams in the superposition. Since the intensity structure of the investigated beams is 
conserved on propagation, the same structure is generated in the focus of a spherical 
lens. Tuning the weight coefficients in the superposition of the Hermite-Gaussian 
beams allows obtaining a given focal-plane intensity distribution and a given OAM 
value. This advantage of considered here propagation-invariant beams can be used 
for optical trapping and rotation of microscopic particles [24]. 

Such beams can be generated by using a phase SLM, with the amplitude-phase 
function [Eq. (6.1)] being preliminary encoded into phase-only function by using 
one of the numerous encoding algorithms, for instance, [25]. 

6.2 Optical Vortex Beams with a Symmetric and Almost 
Symmetric OAM-Spectrum 

Recently, a number of works increased, studying the OAM-spectrum of vortex beams 
[26]. It is known that, in addition to the topological charge (TC) [27] and to the 
orbital angular momentum (OAM) [28], the vortex beams are characterized by the 
OAM-spectrum [29]. By the OAM-spectrum is meant the distribution of vortex beam 
energy (power) by angular harmonics [29]. These harmonics are complex amplitudes 
of the form exp(inφ) with n being an integer number and (r, φ) being the polar 
coordinates in the beam cross-section. For optical decomposition of a light field 
into the OAM-spectrum, several methods are known, which employ multi-order 
diffractive optical elements [29–32] or light modulators [33, 34]. Light fields with 
a wide OAM-spectrum can be generated by using perturbed fork-gratings [35–37], 
circular diaphragms [38], complicated spiral phase plates [39], or separate holes in 
an opaque screen [40]. The OAM-spectrum of a light beam can be obtained from 
an interferogram [35] or simply from a measured beam intensity distribution [36,
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37]. Measuring the OAM by using the OAM-spectrum is investigated in many works 
[41–47]. The OAM of light beams can be measured by using an interferometer [41], 
by measuring an intensity distribution [43, 47], by using cylindrical lenses [46], or 
by a single point photodetector [45]. Many methods of sorting the laser modes and 
optical vortices are based on the decomposition into the OAM-spectrum [48–50]. 

An optical vortex beam with rotational symmetry has in its transverse cross-
section a single n-order intensity null in the center. Among such vortex beams, the 
well known are the Laguerre-Gaussian modes [50], Bessel-Gaussian beams [51], 
hypergeometric beams [52, 53], circular beams [54], and the others. TC of such 
beams is equal to their normalized-to-power OAM and equals n. The OAM-spectrum 
of such beams consists of a single angular harmonic. A simple shift of the screw 
dislocation center from the center of the host Gaussian beam allows generation of 
different OAM-spectrum [46]. 

An inverse problem is also of interest. Light fields are known with multiple sepa-
rate screw dislocations distributed over the cross-section of the host Gaussian beam. 
Examples of these beams are form-invariant beams with their complex amplitude 
being described by a finite number of isolated intensity nulls [13]. Form-invariant 
(or structurally stable) beams are coaxial superpositions of the Laguerre-Gaussian 
optical vortices with the TCs of the same sign. As was proven in [13], such beams 
conserve their transverse structure on propagation, changing only in scale and rota-
tion. Obtaining the OAM-spectrum of such beams with distributed screw dislocations 
is equivalent to constructing a polynomial from its roots. A beam with multiple screw 
dislocations can be obtained from a source rotationally symmetric vortex beam by 
interfering with a plane wave [55], by elliptical deformation [56], by a complex trans-
verse shift of the complex amplitude function [57], or by an astigmatic transform 
[6]. 

In this section, we analyze theoretically a symmetrical OAM-spectrum of optical 
vortex beams. We show that the order of the central OAM-harmonic of a symmet-
rical OAM-spectrum is equal to the normalized orbital angular momentum of the 
light field. In addition, we study two form-invariant beams with an almost symmet-
rical OAM-spectrum and confirm that, indeed, the order (topological charge) of 
the average OAM-harmonic in the OAM-spectrum is approximately equal to the 
normalized-to-power OAM of the beam. 

6.2.1 Orbital Angular Momentum of a Beam 
with a Symmetric OAM-Spectrum 

Complex amplitude of a paraxial light field in the initial plane can be expanded into 
an angular-harmonic series: 

E(r, ϕ)  = 
∞∑

n=−∞ 
En(r) exp(inϕ), (6.21)
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with (r, φ) being the polar coordinates in the plane z = 0. Complex amplitude of 
each angular harmonic is given by 

En(r) = 
1 

2π 

2π∫
0 

E(r, ϕ)  exp(−inϕ)dϕ. (6.22) 

Each angular harmonic has the following energy (power): 

Wn = 2π 
∞∫
0 

|En(r)|2 rdr, (6.23) 

while the total energy (power) of the beam is the sum of all the angular harmonic 
energies: 

W = 
∞∑

n=−∞ 
Wn. (6.24) 

The orbital angular momentum of the beam (6.21) can be obtained by the well 
known expression [58, 59]: 

Jz = Im 

∞∫
−∞ 

∞∫
−∞ 

E∗(x, y)
(
x 

∂ 
∂y 

− y 
∂ 
∂x

)
E(x, y)dxdy 

= Im 

∞∫
0 

2π∫
0 

E∗(r, ϕ)  
∂E(r, ϕ)  

∂ϕ 
rdrd ϕ, (6.25) 

where Im is the imaginary part of a complex number, E* means the complex conju-
gation. Substituting Eq. (6.21) into Eq. (6.25) and by using Eq. (6.23), we obtain a 
well known expression for the OAM of an arbitrary paraxial beam [60]: 

Jz = 
∞∑

n=−∞ 
nWn. (6.26) 

In this work, we obtain some general properties of a symmetric OAM-spectrum 
and study several examples. We suppose that the powers of the angular harmonics 
(OAM-spectrum) are distributed symmetrically with respect to some average 
harmonic of the order n0, i.e. 

Wn0+n = Wn0−n. (6.27)
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For such a symmetric OAM-spectrum, order (TC) of the average angular harmonic 
equals the OAM of the whole beam, normalized to its power. Indeed, 

Jz = 
∞∑

n=−∞ 
nWn = n0Wn0 

+ 
∞∑
n=1

[
(n0 + n)Wn0+n + (n0 − n)Wn0−n

]

= n0Wn0 + 2n0 
∞∑
n=1 

Wn0+n = n0W . (6.28) 

Equation (6.28) is derived by using Eqs. (6.24) and (6.27). This equation means 
that the normalized-to-power OAM of the beam with a symmetrical OAM-spectrum 
is equal to the TC of the average angular harmonic. According to Eq. (6.28), all light 
fields with a symmetrical OAM-spectrum and with the same order of the central 
harmonic have the same normalized-to-power OAM, equal to the order of this central 
angular harmonic. Thus, Eq. (6.28) leads to yet another method for changing the shape 
of a light field by changing the width and shape of its OAM-spectrum, but with the 
beam OAM remained unchanged. Other methods of varying the light field amplitude 
with the OAM remaining unchanged are also known [61]. 

6.2.2 Sample Beam with Symmetric OAM-Spectrum 

Complex amplitude of a light field with the symmetric OAM-spectrum can be 
obtained by shifting the OAM-spectrum, symmetric with respect to the 0th angular 
harmonic: 

Es(r, ϕ)  = 
∞∑

n=−∞ 
E|n|(r) exp(i(n + n0)ϕ). (6.29) 

The OAM of the beam (6.29) can be shown to equal Jz = n0W. Now we show that 
the field (6.29) has the OAM-spectrum, symmetric with respect to the central angular 
harmonic n0. If  m = n0 ± n, then the amplitude Em of the mth OAM-harmonic of 
the field (6.29) is equal (the argument r is omitted for brevity): 

Em = 
1 

2π 

2π∫
0 

Es(r, ϕ)  exp(−imϕ)d ϕ 

= 
1 

2π 

2π∫
0 

∞∑
p=−∞ 

E|p|(r) exp
[
i(p + n0 − m)ϕ

]
d ϕ
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= E|m−n0| = E|n0+n−n0| = E|n| = E|n0−n−n0| = E|−n|. (6.30) 

For instance, we can consider a simple light field with the symmetric OAM-spectrum: 

Es(r, ϕ)  = exp
(

− 
r2 

w2

)

× 
∞∑

n=−∞ 
Cn

(√
2r 

w

)|n| 
exp[i(n + n0)ϕ], (6.31) 

with w being the waist radius of the Gaussian beam and Cn being the superposition 
coefficients. For example, if Cn = 1/|n|!, each OAM-harmonic of the field (6.31) has 
the following energy (6.23): 

Wn = 
πw2 

2|n|! . (6.32) 

In this case, the total power (6.24) of the beam is W = πw2(e − 1/2). The order 
n0 of the central OAM-harmonic of the beam (6.31) is coinciding exactly with its 
the normalized-to-power OAM Jz/W = n0. Unfortunately, the beam (6.31) is not a 
mode and changes its transverse intensity shape on propagation, since its radial and 
azimuthal factors have different indices. In the Fresnel diffraction zone, each term 
in the sum (6.31) is proportional to the confluent hypergeometric function 1F1(a, b, 
ξ) [52, 53]. 

6.2.3 Family of Form-Invariant Beams with an Almost 
Symmetric OAM-Spectrum 

As another example, we consider here a family of form-invariant light fields with the 
complex amplitude of the following form: 

Ess(r, ϕ)  = exp
(

− 
r2 

w2

)
f (reiϕ ) 

= exp
(

− 
r2 

w2

) ∞∑
n=0 

Cnrn 

n! exp(inϕ). (6.33) 

In Eq. (6.33), Сn = dnf (z)/dzn at z = 0. The function f (reiφ) in Eq.  (6.33) is an  
entire function and, therefore, can be expanded into a converging Taylor series. As 
seen in Eq. (6.33), the OAM-spectrum of the form-invariant field is positive, i.e. all 
angular harmonics have a nonnegative TC (n ≥ 0). Such light fields preserve their 
transverse structure on propagation, only changing in scale and rotating around the
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optical axis. However, the OAM-spectrum of the beams (6.33) is not symmetric. 
Only for some fields, almost symmetric spectrum can be obtained. For example, if 
we consider a function f (reiϕ ) = cos(reiϕ /α) (with α being some constant), then 
instead of Eq. (6.33) we get 

Ec(r, ϕ)  = exp
(

− 
r2 

w2

)
cos

( r 

α 
eiϕ

)

= exp
(

− 
r2 

w2

) ∞∑
p=0 

(−1)p 

(2p)!
( r 

α

)2p 
exp(2ipϕ). (6.34) 

It is seen from Eq. (6.34) that the OAM-spectrum contains only even nonnegative 
angular harmonics. From Eq. (6.34), the energy of each OAM-harmonic is given by 

W2p = 
πw2 

2(2p)!
(

w2 

2α2

)2p 

. (6.35) 

The total (summary) energy of the beam (6.34) is  

W = 
∞∑
p=0 

W2p = 
π w2 

2 
cosh

(
w2 

2α2

)
. (6.36) 

The orbital angular momentum of the beam (6.34) is equal to 

Jz = 
∞∑

n=−∞ 
nWn =

(
πw2 

2

)(
w2 

2α2

)
sinh

(
w2 

2α2

)
, (6.37) 

and the normalized-to-power OAM is thus given by 

Jz 
W 

=
(

w2 

2α2

)
tanh

(
w2 

2α2

)
. (6.38) 

If the cosine period in the complex amplitude (6.34) is small, i.e. w2 � 2α2, the  
hyperbolic tangent in Eq. (6.38) is approximately equal to 1. Therefore, the OAM is 
nearly equal to Jz/W ≈ w2/(2α2)� 1. Now we show that if w2 � 2α2, the order (TC) 
of the OAM-harmonic contributing the most into the OAM-spectrum of the beam 
(6.34), is equal to the normalized-to-power OAM of this beam. Indeed, if the cosine 
period is small (i.e. w2 � 2α2), the energy (6.35) of each OAM-harmonic (6.35) is  
proportional to an expression Wn ~ ξn/n! (with ξ = w2/(2α2)), which achieves its 
maximal value, according to the Stirling’s formula (n! ≈ nn), at n = ξ. 

The same considerations can also be done for another example, for comparison. 
If we consider a function f (reiϕ ) = cos2(reiϕ /α), then, instead of Eq. (6.34), we get
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Ec(r, ϕ)  = exp
(

− 
r2 

w2

)
cos2

( r 

α 
eiϕ

)

= exp
(

− 
r2 

w2

) ∞∑
p=0 

θn(−1)p 

2(2p)!
(
2r 

α

)2p 

e2ipϕ , (6.39) 

with θn = {1, n > 1; 2, n = 0}. Expression (6.39) differs from (6.34) since the 
cosine function is squared. Light fields described by Eq. (6.39) or by Eq.  (6.34) are  
the examples of optical vortex beams with an almost symmetric OAM-spectrum. 
The OAM-spectrum is symmetric only approximately, since only OAM-harmonics 
of nonnegative even orders are nonzero. 

It is seen from Eq. (6.39) that the OAM-spectrum has only even nonnegative 
angular harmonics. The energy of each OAM-harmonic in Eq. (6.39) is given by 

W2p = 
πw2 

8(2p)!
(
2w2 

α2

)2p 

, p > 0, 

W0 = 
πw2 

2 
, p = 0. (6.40) 

If 2w2 > α2, then with increasing p the energy of OAM-harmonics (6.40) at first  
grows, but then decays (because of the factorial in the denominator). Since, according 
to the Stirling’s formula, the factorial n! at large n is approximately equal to nn, the  
energy (6.40) is maximal when the numerator and denominator are nearly equal (i.e. 
Wn ~ ηn/n! ≈ (η/n)n = 1, where η = 2w2/α2): 

2w2 

α2 
≈ 2p. (6.41) 

Total energy of the beam (6.39) is equal to 

W = 
∞∑

n=−∞ 
Wn = 

3πw2 

8
+

(
πw2 

8

)
cosh

(
2w2 

α2

)
, (6.42) 

while the beam’s OAM is 

Jz = 
∞∑

n=−∞ 
nWn =

(
πw2 

8

)(
2w2 

α2

)
sinh

(
2w2 

α2

)
. (6.43) 

If the cosine period is small, i.e. 2w2 � α2, the normalized-to-power OAM of the 
beam (6.39) equals 

Jz 
W 

= η sinh(η) 
3 + cosh(η) 

≈ η = 
2w2 

α2 
. (6.44)



6.2 Optical Vortex Beams with a Symmetric and Almost Symmetric … 175

The OAM-spectra (6.35) and (6.40) of the light fields (6.34) and (6.39) are  
symmetric only approximately, and the order of the central harmonic (2w2/α2 ≈ 2p), 
which contributes the most into the OAM-spectrum, coincides with the approximate 
expression for the normalized-to-power OAM: Jz/W ≈ 2w2/α2 > >  1.  

Thus, we have shown that the light fields (6.29) with the symmetric OAM-
spectrum do not conserve their shape on space propagation, while the form-invariant 
fields (6.34) and (6.39) have the OAM-spectrum, only approximately symmetric. 
However, in all three given examples [Eqs. (6.31), (6.34) and (6.39)], the order (TC) 
of the average OAM-harmonic is coinciding (either exactly or approximately) with 
the normalized-to-power OAM of the vortex beam. We note that the beams (6.34) 
and (6.39) have a countable number of screw dislocations, each with the TC = 1 [for  
beam (6.34)] or TC = 2 [for beam (6.39)]. Therefore, both beams have the infinite 
TC. Thus, it seems that the beams cannot be compared by their TC. However, the 
beams (6.34) and (6.39) can be compared by their OAM. For instance, the normalized 
OAM of the beam (6.39) (Jz/W ≈ 2w2/α2) is four times greater than that of the beam 
(6.34) (Jz/W ≈ w2/(2α2)). Since the central OAM-harmonic of the OAM-spectrum 
of the beam (6.39) has the TC four times higher than the central OAM-harmonic of 
the beam (6.34), the TC of the central OAM-harmonic of the beam (6.39) is also four 
times greater than that of the beam (6.34). 

6.2.4 Numerical Simulation 

Simulation of beams with a symmetric OAM-spectrum 

In this section, we consider as an example a light beam (6.31) with normally 
distributed contributions of the OAM-harmonics, i.e. Cn = exp[– n2/(2σ2)]. In the 
initial plane, complex amplitude of such beam reads as 

Es(r, ϕ) = exp
(

− 
r2 

w2

)

× 
∞∑

n=−∞ 
exp

(
− 

n2 

2σ 2

)(√
2r 

w

)|n| 
exp[i(n + n0)ϕ], (6.45) 

where σ defines the decay ratio of the OAM-harmonics contributions from the central 
n0th harmonic to the periphery. 

Figure 6.3 depicts the OAM-spectra, as well as the intensity and phase distributions 
of the beam (6.45) in the initial plane and at the Rayleigh distance, for several 
symmetrical OAM-spectra with the 10th-order central harmonic and with different 
decaying ratios of secondary (noncentral) harmonics contributions.

In the initial plane, maximal intensity of each harmonic in Eq. (6.45) is on a  
ring with a radius rmax,n = w(|n|/2)1/2 and is equal to Imax,n = |n||n|exp(–|n| –  n2/σ2). 
Therefore, even at the slowest decaying of the angular harmonics contributions in
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Fig. 6.3 OAM-spectra (a, f, k, p), as well as distributions of the normalized-to-maximum intensity 
(b, d, g, i, l, n, q, s) and phase (c, e, h, j, m, o, r, t) in the initial plane (b, c, g, h, l, m, q, r) and  at  the  
Rayleigh distance (d, e, i, j, n, o, s, t) of the beam (6.45) for the following parameters: wavelength 
λ = 532 nm, Gaussian beam waist radius w = 0.5 mm, order of the central OAM-harmonic n0 = 
10, decaying ratio of the OAM-harmonics contributions σ = 0.25 (a-e), σ = 0.5 (f-j), σ = 0.75 
(k–o), σ = 1.00 (p–t), computation domain |x|, |y| ≤ R with R = 1.5 mm (intensity in the initial 
plane), R = 5 mm (phase in the initial plane), and R = 7.5 mm (intensity and phase at the Rayleigh 
distance). The dashed circles on the phase distributions at the Rayleigh distance (e, j, o, t) show the 
area with optical vortices (their number is also written near the circles). The white dotted line (b, 
g, l, q) shows the shift of the Gaussian beam center

Fig. 6.3, i.e. at σ = 1, maximal intensity of the ± 2nd harmonics is only 1% of the 
maximal intensity of the 0th harmonic, while the intensity of higher-order harmonics 
is even lower. Therefore, the intensity distribution in the initial plane consists mainly 
from the zero harmonic and is slightly distorted by ± 1st-order harmonics. As a 
result, the initial pattern for all four values σ has a Gaussian shape, which slowly 
moves to the right with increasing σ. For instance, at σ = 0.25, the superposition 
(6.45) is contributed mostly from the following three terms: 

Es(r, ϕ) = exp
(

− 
r2 

w2

)
exp(i10ϕ)
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+ exp(−8) exp
(

− 
r2 

w2

)(√
2r 

w

)
exp(i11ϕ) 

+ exp(−8) exp
(

− 
r2 

w2

)(√
2r 

w

)
exp(i9ϕ) + . . . (6.46) 

It is seen from Eq. (6.46) that the second and the third terms have much weaker 
amplitude than the first term. Therefore, in the initial plane, the vortex beam (6.45) has 
a shape of the Gaussian beam (Fig. 6.3b). The beam (6.46) has the TC of 10 (Fig. 6.3c), 
since for an arbitrary value of r the first term of the series (6.46) overwhelms all the rest 
terms. However, since the high-TC optical vortex is unstable, then, due to the other 
terms in (6.46) in addition to the main first term, the central 10th-order vortex splits 
on propagation into 10 optical vortices with TC of + 1, located close to each other 
(Fig. 6.3e). We note that the separate vortices in the center of the phase distribution 
(Fig. 6.3e) are not the additional vortices occurring due to the spin–orbit interaction 
[62]. We limit our study here by the paraxial scalar approximation and the beams do 
not have circular polarization as in [62]. 

The beams in Eq. (6.45) are not modes and, on space propagation, other, noncen-
tral, harmonics become more eminent. When σ is small, the OAM-spectrum is very 
narrow. Therefore, at σ = 0.25, the intensity distribution at the Rayleight distance 
is rotationally symmetric (Fig. 6.3d). When σ = 0.5, the OAM-spectrum is visually 
almost unchanged, but the intensity distribution acquires a shape of an asymmetric 
light ring (Fig. 6.3i), which, with increasing contributions of secondary harmonics 
(i.e. with increasing σ), is broken up and becomes a crescent (Fig. 6.3n, s). Despite 
the distorted intensity shape, the normalized OAM, according to Eq. (6.28), should 
be equal to n0 = 10 in all cases. Indeed, in all four phase distributions (Fig. 6.3e, 
j, o, t), 10 optical vortices can be seen (marked by dashed circles in Fig. 6.3), one 
of which moves away from the center with increasing σ. The normalized-to-power 
OAM, computed by Eq. (6.25) and divided by the beam power, also has the values 
close to 10: 9.35 (Fig. 6.3b, c), 9.46 (Fig. 6.3d, e), 9.37 (Fig. 6.3g, h), 9.43 (Fig. 6.3i, 
j), 9.48 (Fig. 6.3l, m), 9.45 (Fig. 6.3n, o), 9.58 (Fig. 6.3q, r), 9.50 (Fig. 6.3s, t). 

The shift of the Gaussian beam (Fig. 6.3b, g, l, q) in the initial plane to the right 
along the x-axis with increasing σ can be explained by Eq. (6.46), which can be 
rewritten as 

Es(r, ϕ) = exp
(

− 
r2 

w2

)
exp(i10ϕ)

(
1 + 

αr 

w 
cos ϕ

)
+  · · · (6.47) 

with α = 23/2exp[− 1/(2σ2)]. According to Eq. (6.47), the intensity maximum shifts 
along the axis x = r cosφ with increasing α: 

I (r, ϕ)  = |Es(r, ϕ)|2 ≈ exp
(

− 
2r2 

w2 
+ 

2αx 

w

)
+  · · · (6.48)
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Equation (6.47) also demonstrates that near x ≈ −  w/α, the amplitude is zero, i.e. 
there is a phase jump by π (edge dislocation) along the vertical line x ≈ −  w/α. This  
phase jump is clearly seen in Fig. 6.3h. With further increase of α, contribution of 
the other terms of the series (6.45) into Eq. (6.47) is also increasing: 

Es(r, ϕ) = exp
(

− 
r2 

w2

)
exp(i10ϕ) 

×
(
1 + 

αr 

w 
cos ϕ + 

βr2 

w2 
cos 2ϕ

)
+  · · · (6.49) 

with β = 4exp(− 2/σ2). According to Eq. (6.49), the line of zero amplitude, where 
the phase has a jump by π (Fig. 6.3m), is now not a straight line as in Fig. 6.3h, 
but a curve (Fig. 6.3m). The separation of one vortex with the TC + 1 from the  
10 vortices in the center (Fig. 6.3o, t) can be explained by interaction between the 
edge dislocation with an optical vortex (screw dislocation) (Fig. 6.3m, r) [63, 64]. 
The difference from [64, 65] is that, instead of the straight edge dislocation, it is 
bended in Fig. 6.1m, r. In order to give a detailed explanation of this phenomenon, 
the Fresnel transform of the function (6.49) should be obtained. This would lead to 
rather cumbersome expressions including the difference of two Bessel functions of 
half-integer orders [65], analysis of which would lead us far from the goal of this 
work. 

In conclusion of this section, we give a general formula for the field (6.45), similar 
to (6.49), which clearly illustrates that both the TC and the normalized-to-power 
OAM of the beam with a symmetric OAM-spectrum is equal to n0: 

Es(r, ϕ) = exp
(

− 
r2 

w2

)
exp(in0ϕ) 

×
[
1 + 

∞∑
n=1 

cnrn cos nϕ 
wn

]
, (6.50) 

where 

cn = 2(|n|+2)/2 exp

(
− 

n2 

2σ 2

)
. (6.51) 

As seen from Eq. (6.50), since the sum is a real-valued, the TC of the field (6.50) 
is equal to n0 and the OAM (6.25), normalized to the beam power (6.24), is also equal 
to Jz/W = n0. In this work, we do not consider the intrinsic and extrinsic components 
of the OAM (6.25), and in all cases we calculate it relative to the origin. Of course, in 
the cases when the ‘center of mass’ of the beam intensity distribution is shifted from 
the optical axis (i.e. the beam has an asymmetric intensity distribution), the OAM is 
a sum of two terms, only one of which is the intrinsic OAM.
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Fig. 6.4 OAM-spectra (a, e, i), normalized-to-maximum intensity (b, f, j) and phase (c, g, k) distri-
butions, as well as intensity distributions with an interfering plane wave (d, h, l) of the beams (6.34) 
(a–h) and  (6.39) (i−l) in the initial plane for the following parameters: wavelength λ = 532 nm, 
Gaussian beam waist radius w = 1 mm (a–d) and  w = 0.5 mm (e–l), scaling factor of the vortex 
cosine function α = w/10, computation domain |x|, |y| ≤ R with R = 7.5 mm. The insets (h, l) show  
the 3 × magnified fragments of the interference patterns 

Numerical simulation of form-invariant beams with an almost symmetric oam-
spectrum 

In this Section, we investigate numerically the form-invariant light beams (6.34) 
and (6.39). Figure 6.4 shows the OAM-spectra, as well as the intensity and phase 
distributions of these beams in the initial plane. 

Figures 6.4a–d and e–h show the beams (6.34) with the different waist radius w, but  
with the same ratio w/α = 10. Therefore, according to Eq. (6.38), their OAM-spectra 
should be the same (up to a constant multiplier) and, indeed, the normalized-to-
maximum OAM-spectra in Fig. 6.4a, e look similar. The theory predicts that the 
normalized OAM equals Jz/W ≈ w2/(2α2) = 50 in both cases. The OAM values 
obtained numerically using Eq. (6.25) are 49.82 (Fig. 6.4a–d) and 49.27 (Fig. 6.4e– 
h). Despite the different shape of the beams (6.34) at  w = 1 mm (Fig. 6.4a–d) and 
w = 0.5 mm (Fig. 6.4e–h), their effective TC is the same and the number of stripes 
in the interference patterns is also the same (in Fig. 6.4d, h, five stripes are clearly 
seen). The equal OAMs of the beams from Fig. 6.4a–d and e–h can be physically 
explained by an analogy with the mechanical torque. 

Compared to the beam with w = 0.5 mm (Fig. 6.4e–h), the beam with w = 1 mm  
(Fig. 6.4a–d) has a twice greater leverage (the distance from the center of the pattern 
to the light spots), but two times lower transverse force (velocity of phase changes in 
the transverse plane). According to the theory, the beam (6.39) (Fig. 6.4i–l) should
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have the maximal-energy OAM-harmonic with the TC four times higher, and the 
normalized OAM should also increase four times. Numerical calculation gives the 
OAM value 188.66, while the largest contribution is given by 200th OAM-harmonic 
(Fig. 6.4i). The interference pattern (Fig. 6.4l) has two times more interference stripes 
(clearly seen 9 stripes), but, at the same time, the light spots themselves in Fig. 6.4j are  
also two times further from the center compared to Fig. 6.4f, i.e., by analogy with the 
mechanical torque, both the leverage and the force increase two times. The analogy 
between the transverse force, acting onto a particle in the light field, and the velocity 
of the phase change has the following explanation. The force is proportional to the 
transverse energy flow, which is proportional to the energy (intensity) density in the 
current point multiplied by the phase gradient. The greater is the phase gradient, the 
greater is the energy flow and the force. In [66], the energy flow, expressed via the 
phase gradient of a scalar field, is called an optical current. That is why the OAM 
increases four times. Similarly, it can be shown that the effective TC for the case from 
Fig. 6.4i–l is four times greater than that for the case from Fig. 6.4e–h. Indeed, for 
a conventional (circular) optical vortex with the phase nφ, the TC equals the length 
of a circumference with the radius R divided by a period T of phase change by 2π: 
TC = 2πR/T. And since the period T of the phase change by 2π in Fig. 6.4l is two  
times smaller than that in Fig. 6.4h (i.e. two times more interference stripes), and the 
distance R to the center of the Gaussian beam in Fig. 6.4l is two times greater than 
in Fig. 6.4h, then the effective TC of the beam in Fig. 6.4l is four times greater than 
TC of the beam from Fig. 6.4h. 

Thus, we have shown theoretically and confirmed numerically that if a vortex 
beam has a symmetrical OAM-spectrum, then the TC of the central OAM-harmonic 
coincides with the beam’s the normalized-to-power OAM [67]. This general property 
of the vortex beams is also valid for beams with an approximately (almost) symmet-
rical OAM-spectrum. For two examples of form-invariant beams with an infinite TC 
and with a finite OAM, we have demonstrated that they have almost symmetrical 
OAM-spectrum and that the TC of the central angular harmonic is almost equal 
to the tnormalized-to-power OAM of these beams. Therefore, varying the width of 
the symmetrical OAM-spectrum without changing the central OAM-harmonic (i.e. 
without changing its position), vortex beams can be obtained with different intensity 
distributions, but with the same OAM value. This is yet another method of changing 
the beam shape without changing its ‘effective’ TC and orbital angular momentum. 
In practice, laser beams with the symmetric OAM-spectrum can be generated by 
using either a SLM or diffractive optical elements [25, 68]. 

References 

1. A. Forbes, Structured light from lasers. Las. Phot. Rev. 13, 1900140 (2012) 
2. J. Wang, Y. Liang, Generation and detection of structured light: a review. Front. Phys. 9, 688284 

(2021) 
3. Y. Bai, H. Lv, X. Fu, Y. Yang, Vortex beam: generation and detection of orbital angular 

momentum. Chin. Opt. Lett. 20, 012601 (2022)



References 181

4. S. Scholes, H. Sroor, K. Ait-Ameur, Q. Zhan, A. Forbes, General design principle for structured 
light lasers. Opt. Express 28, 35006–35017 (2020) 

5. J. Pan, Y. Shen, Z. Wan, X. Fu, H. Zhang, Q. Liu, Index-tunable structured light beams from a 
laser with an intracavity astigmatic mode converter. Phys. Rev. Appl. 14, 044048 (2020) 

6. E.G. Abramochkin, V.G. Volostnikov, Beam transformations and nontransformed beams. Opt. 
Commun.Commun. 83, 123–135 (1991) 

7. S. Restuccia, D. Giovannini, G. Gibson, M.J. Padgett, Comparing the information capacity of 
Laguerre-Gaussian and Hermite-Gaussian modal set in a finite-aperture system. Opt. Express 
24, 27127–27136 (2016) 

8. G.A. Siviloglou, J. Broky, A. Dogariu, D.N. Christodoulides, Observation of accelerating airy 
beams. Phys. Rev. Lett. 99, 213901 (2007) 

9. Q.W. Zhan, Cylindrical vector beams: from mathematical concepts to applications. Adv. Opt. 
Photon. 1, 1–57 (2009) 

10. C. Chong, J. Wan, Q.W. Chen, Zhan, Generation of spatiotemporal optical vortices with 
controllable transverse orbital angular momentum. Nat. Photon. 14, 350–354 (2020) 

11. L. Rego, K.M. Dorney, N.J. Brooks, Q.L. Nguyen, C.T. Liao, J.S. Roman, D.E. Couch, A. 
Liu, E. Pisanty, M. Lewenstein, L. Plaja, H.C. Kapteyn, M.M. Murnane, C. Hernández-García, 
Generation of extreme-ultraviolet beams with time-varying orbital angular momentum. Science 
364, eaaw9486 (2019) 

12. G. Indebetouw, Optical vortices and their propagation. J. Mod. Opt. 40, 73–87 (1993) 
13. E.G. Abramochkin, V.G. Volostnikov, Spiral-type beams: optical and quantum aspects. Opt. 

Commun.Commun. 125, 302–323 (1996) 
14. V.V. Kotlyar, Optical beams with an infinite number of vortices. Computer Opt. 45, 490–496 

(2021) 
15. M. Soskind, R. Soskind, Y. Soskind, Shaping propagation invariant laser beams. Opt. Engin. 

54, 111309 (2015) 
16. V. Volyar, E. Abramochkin, Yu. Egorov, M. Bretsko, Ya. Akimova, Fine structure of perturbed 

Laguerre-Gaussian beams: Hermite-Gaussian mode spectra and topological charge. Appl. Opt. 
59, 7680–7687 (2020) 

17. V.V. Kotlyar, A.A. Kovalev, A.P. Porfirev, Vortex Hermite-Gaussian laser beams. Opt. Lett. 40, 
701–704 (2015) 

18. V.V. Kotlyar, A.A. Kovalev, Hermite-Gaussian modal laser beams with orbital angular 
momentum. J. Opt. Soc. Am. A 31, 274–282 (2014) 

19. V.V. Kotlyar, A.A. Kovalev, Topological charge of asymmetric optical vortices. Opt. Express 
28, 20449–20460 (2020) 

20. V.P. Aksenov, V.V. Dudorov, G.A. Filimonov, V.V. Kolosov, V.Y. Venediktov, Vortex beams 
with zero orbital angular momentum and non-zero topological charge. Opt. Las. Technol. 104, 
159–163 (2018) 

21. E.G. Abramochkin, V.G. Volostnikov, Generalized Gaussian beams. J. Opt. A Pure Appl. Opt. 
6, S157–S161 (2004) 

22. Pure and Appl, M.V. Berry, Optical vortices evolving from helicoidal integer and fractional 
phase steps. J. Opt. A Pure Appl. Opt. 6, 259–268 (2004) 

23. V.V. Kotlyar, A.A. Kovalev, Orbital angular momentum of paraxial propagation-invariant laser 
beams. J. Opt. Soc. Am. A 39, 1061–1065 (2022) 

24. Y. Yang, Y. Ren, M. Chen, Y. Arita, C. Rosales-Guzman, Optical trapping with structured light: 
a review. Adv. Phot. 3, 034001 (2021) 

25. O. Mendoza-Yero, G. Mínguez-Vega, J. Lancis, Encoding complex fields by using a phase-only 
optical element. Opt. Lett. 39, 1740–1743 (2014) 

26. V.V. Kotlyar, A.A. Kovalev, A.P. Porfirev, Vortex laser beams (CRC Press, Boca Raton, 2018) 
27. V.V. Kotlyar, A.G. Nalimov, Evolution of a fractional-charge optical vortex upon free-space 

propagation. Optik 261, 169158 (2022) 
28. L. Allen, M.V. Beijerbergen, R.J.C. Spreeuw, J.P. Woerdman, Orbital angular momentum of 

light and the transformation of Laguerre-Gaussian laser mode. Phys. Rev. A 45, 8185–8189 
(1992)



182 6 Orbital Angular Momentum of Helical Laser Beams

29. V.V. Kotlyar, S.N. Khonina, V.A. Soifer, Light field decomposition in angular harmonics by 
means of diffractive optics. J. Mod. Opt. 45, 1495–1506 (1998) 

30. S.N. Khonina, V.V. Kotlyar, V.A. Soifer, P. Paakkonen, J. Turunen, Measuring the light field 
orbital angular momentum using DOE. Opt. Memory Neural Networks 10, 241–255 (2001) 

31. T. Kaiser, D. Flamm, S. Schroter, M. Duppare, Complete modal decomposition of optical fibers 
using CGH-based correlation filter. Opt. Express 17, 9347–9356 (2009) 

32. M.V. Vasnetsov, J.P. Torres, D.V. Petrov, L. Torner, Observation of the orbital angular 
momentum spectrum of a light beam. Opt. Lett. 28, 2285–2287 (2003) 

33. A. Forbes, A. Dudley, M. McLaren, Creation and detection of optical modes with spatial light 
modulators. Adv. Opt. Phot. 8, 200 (2016) 

34. A. D’Errico, R. D’Amelio, B. Piccirillo, F. Cardano, L. Marrucci, Measuring the complex 
orbital angular momentum spectrum and spatial mode decomposition of structured light beams. 
Optica 4, 1350–1357 (2017) 

35. S. Fu, Y. Zhai, J. Zhang, X. Liu, R. Song, H. Zhou, C. Gao, Universal orbital angular momentum 
spectrum analyzer for beams. Photonix 1, 19 (2020) 

36. A. Volyar, M. Bretsko, Ya. Akimova, Yu. Egorov, Measurement of the vortex and orbital angular 
momentum spectra with a single cylindrical lens. Appl. Opt. 58, 5748–5755 (2019) 

37. A. Volyar, M. Bretsko, Ya. Akimova, Yu. Egorov, Orbital angular momentum and informational 
entropy in perturbed vortex beams. Opt. Lett. 44, 5687–5690 (2019) 

38. J. Pinnell, V. Rodriguez-Fajardo, A. Forbes, Single-step shaping of the orbital angular 
momentum spectrum of light. Opt. Express 27, 28009–28021 (2019) 

39. L. Zhu, J. Wang, A review of multiple optical vortices generation: methods and applications. 
Fron. Optoelectr. 12, 52–68 (2019) 

40. Y. Yang, Q. Zhao, L. Liu, Y. Liu, C. Rosales-Guzman, C. Qiu, Manipulation of orbital angular 
momentum spectrum using pinhole plates. Phys. Rev. Appl. 12, 064007 (2019) 

41. J. Leach, M.J. Padgett, S.M. Barnett, S. Franke-Arnold, J. Courtial, Measuring the orbital 
angular momentum of a single photon. Phys. Rev. Lett. 88, 257901 (2002) 

42. C. Schulze, A. Dadley, D. Flamm, M. Duparre, A. Forbes, Measurements of the orbital angular 
momentum density of light by modal decomposition. New J. Phys. 15, 073025 (2013) 

43. P. Bierdz, M. Kwon, C. Roncaioli, H. Deng, High fidelity detection of the orbital angular 
momentum of light by time mapping. New J. Phys. 15, 113062 (2013) 

44. S. Li, P. Zhao, X. Feng, K. Cui, F. Liu, W. Zhang, Y. Huang, Measuring the orbital angular 
momentum spectrum with a single point detector. Opt. Lett. 43, 4607–4610 (2018) 

45. V.V. Kotlyar, A.A. Kovalev, A.P. Porfirev, Calculation of fractional orbital angular momentum 
of superpositions of optical vortices by intensity moments. Opt. Express 27, 11236–11251 
(2019) 

46. A. Volyar, M. Bretsko, Ya. Akimova, Yu. Egorov, Vortex avalanche in the perturbed singular 
beams. J. Opt. Soc. Am. A 36, 1064–1071 (2019) 

47. E. Karimi, B. Piccirillo, E. Nagali, L. Marucci, E. Santamato, Efficient generation and sorting 
of orbital angular momentum eigenmodes of light by thermally tuned q-plates. Appl. Phys. 
Lett. 94, 231124 (2009) 

48. G.C.G. Berghout, M.P.J. Lavery, J. Cortial, M.W. Beijersbergen, M.J. Padgett, Efficient sorting 
of orbital angular momenyum states of light. Phys. Rev. Lett. 105, 153601 (2010) 

49. M. Mirhosseini, M. Malik, Z. Shi, R.W. Boyd, Efficient separation of the orbital angular 
momentum eigenstates of light. Nat. Commun.Commun. 4, 1–6 (2013) 

50. H. Zucker, Optical resonators with variable reflectivity mirrors. Bell Syst. Techn. Journ. 49, 
2349–2376 (1970) 

51. F. Gori, G. Guattary, C. Padovani, Bessel-Gauss beams. Opt. Commun.Commun. 64, 491–495 
(1987) 

52. V.V. Kotlyar, R.V. Skidanov, S.N. Khonina, V.A. Soifer, Hypergeometric modes. Opt. Lett. 32, 
742–744 (2007) 

53. E. Karimi, G. Zito, B. Piccirillo, L. Marrucci, E. Santamato, Hypergeometric-Gaussian modes. 
Opt. Lett. 32, 3053–3055 (2007) 

54. M.A. Bandres J.C. Gutierrez-Vega, Circular beams. Opt. Lett. 33, 177–179 (2008)



References 183

55. I.V. Basisty, V.Yu. Bazhenov, M.S. Soskin, M.V. Vasnetsov, Optics of light beams with screw 
dislocations. Opt. Commun. 103, 422–428 (1993) 

56. V.V. Kotlyar, A.A. Kovalev, A.P. Porfirev, Elliptic Gaussian optical vortices. Phys. Rev. A 95, 
053805 (2017) 

57. V.V. Kotlyar, A.A. Kovalev, V.A. Soifer, Asymmetric Bessel modes. Opt. Lett. 39, 2395–2398 
(2014) 

58. J. Courtial, K. Dholakia, L. Allen, M.J. Padgett, Gaussian beams with very high orbital angular 
momentum. Opt. Commun.Commun. 144, 210–213 (1997) 

59. J. Serna, J. Movilla, Orbital angular momentum of partially coherent beams. Opt. Lett. 26, 
405–407 (2001) 

60. S.N. Khonina, V.V. Kotlyar, V.A. Soifer, P. Paakkonen, J. Simonen, J. Turunen, An analysis 
of the angular momentum of a light field in terms of angular harmonics. J. Mod. Opt. 48, 
1543–1557 (2001) 

61. I. Martinez-Castellanos, J. Gutiérrez-Vega, Shaping optical beams with non-integer orbital-
angular momentum: a generalized differential operator approach. Opt. Lett. 40, 1764–1767 
(2015) 

62. Y.  Yang,  L.  Wu, Y. Liu, D. Xie, Z. Jin, J. Li,  G.  Hu, C. Qiu, Deuterogenic plasmonic vortices.  
Nano Lett. 20, 6774–6779 (2020) 

63. D.V. Petrov, Vortex-edge dislocation interaction in a linear medium. Opt. Commun.Commun. 
188, 307–312 (2001) 

64. D.V. Petrov, Splitting of an edge dislocation by an optical vortex. Opt. Quant. Electr. 34, 
759–773 (2002) 

65. V.V. Kotlyar, A.A. Almazov, S.N. Khonina, V.A. Soifer, H. Elfstrom, J. Turunen, Generation 
of phase singularity through diffracting a plane or Gaussian beam by a spiral phase plate. J. 
Opt. Soc. Am. A 22, 849–861 (2005) 

66. M.V. Berry, Optical currents. J. Opt. A Pure Appl. Opt. 11, 094001 (2009) 
67. V.V. Kotlyar, A.A. Kovalev, Optical vortex beams with a symmetric and almost symmetric 

OAM spectrum.J. Opt. Soc. Am. A. 38, 1276–1283 (2021) 
68. D. Hebri, S. Rasouli, Combined half-integer Bessel-like beams: A set of solutions of the wave 

equation. Phys. Rev. A 98, 043826 (2018)



Conclusion 

This book contains the authors’ results on helical beams obtained in 2023-2024. We 
will briefly list these results. 

We have derived novel exact solutions of the paraxial propagation equation. Rela-
tionships have also been deduced for complex amplitudes that describe the propaga-
tion of generalized asymmetric HG and LG beams. The derived relationships contain 
parameter sets, with an amplitude of a generalized asymmetric LG beam described 
by two complex parameters, namely, the scale parameter and the asymmetry degree 
parameter. The amplitude of a generalized asymmetric HG beam contains four param-
eters, a pair for each Cartesian axis. With the original generalized elegant HG and LG 
beams not retaining their intensity pattern upon free-space propagation, the deriva-
tive generalized asymmetric HG and LG beams also do not retain their intensity 
pattern in the course of their propagation evolution. The generalized LG beams are 
not orthogonal with regard to the radial indices, meaning that the asymmetric LG 
beams are also non-orthogonal with regard to the radial indices. For the generalized 
LG beams, we have proved that their topological charge is independent on the asym-
metry and equals the upper index of the Laguerre polynomial. We have also found 
that the asymmetric LG beam is anomalously rotated upon propagation in free space, 
i.e. it is rotated clockwise when the vortex factor has a positive topological charge. 

We derived analytical expressions for 24 IG modes with the indices p = 3, 4, 5, 
6 via 2, 3 or 4 LG modes (more exactly, via their real or imaginary parts) and HG 
modes The expansion coefficients of the IG modes by the LG and HG modes are 
expressed via the ellipticity parameter ε. Using the expressions obtained, one can 
immediately derive expressions for the IG modes when the parameter ε either equals 
zero or tends to plus (or minus) infinity. Explicit dependence of the IG modes on the 
ellipticity parameter allows controlling their intensity by varying this parameter. We 
have derived the symmetry properties for the even and odd IG modes. In particular, 
we demonstrated how these modes are interrelated when the ellipticity parameter 
changes its sign. The obtained representations of the IG modes via the HG and LG 
modes are not only convenient from the theoretical point of view, since they reveal 
the properties of these beams without simulation, but also from the practical point 
of view, since they allow rather easily programming complex amplitudes of the IG
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modes for their numerical simulation or generation by using a spatial light modulator. 
Explicit analytical formulae for complex amplitudes of hIG modes at p = 2 − 5 have  
been derived. Using those equations, one can easily deduce expressions for hIG 
modes at the limiting cases, ε = 0 and ε = ±∞, which are in compliance with 
the general relationships. For the hIG modes studied, we have also deduced explicit 
relationships for the OAM as a function of the parameter ε and in the limiting cases. 
In the general case, the ε-dependence of the OAM has been shown to be an even 
function. It has been shown that at ε = 0, the TC of hIG modes equals that of a LG 
mode, i.e. the index q, being equal to the index p at ε = +  ∞. 

We have introduced a four-parameter family of vortex beams overlapping well-
known LG beams. The new beams represent a product of two different LG beams 
with the same radius of waist and can also be termed as a product of LG (pLG) beams. 
If in a pLG beam both Laguerre polynomials have the same indices, such a beam may 
be referred to as a ‘squared’ LG beam, or (LG)2 beam. The proposed pLG beams 
have been expressed as superposition of a finite sum of conventional LG beams. 
For the (LG)2 beams, an explicit Fourier transform has been derived. A particular 
case of pLG beams whose Laguerre polynomials are described by specially tailored 
azimuthal indices n-m and n + m has been analyzed and their Fourier transform has 
been deduced in an explicit form. 

We obtain and investigate a new one-parametric family of Bessel-Bessel-Gaussian 
beams (BBG beams). We derive their complex amplitude as a product of the Gaussian 
function and two nth-order Bessel functions with a similar dependence of their argu-
ments on the cylindrical coordinates. It is shown that changing the positive beam 
parameter allows controlling the beam topological charge. We also demonstrate 
anomalously fast transverse rotation of the beam intensity pattern upon propaga-
tion in the near field of diffraction. At a distance from the waist much shorter than 
the Rayleigh length, the intensity is already rotated by almost 45°.


	Preface
	Introduction
	Contents
	About the Authors
	1 Asymmetric Laser Beams
	1.1 Generalized Asymmetric Hermite-Gaussian and Laguerre-Gaussian Beams
	1.1.1 Generalized Hermite-Gaussian and Laguerre-Gaussian Beams
	1.1.2 Asymmetric Generalized Hermite-Gaussian and Laguerre-Gaussian Beams
	1.1.3 Non-Orthogonality and Power of Generalized Laguerre-Gaussian Beams
	1.1.4 Topological Charge of Generalized Laguerre-Gaussian Beams and Their Anomalous Rotation Upon Propagation
	1.1.5 Numerical Modeling of Generalized Laguerre-Gaussian Beams
	1.1.6 Numerical Modeling of Generalized Hermite-Gaussian Beams

	1.2 Topological Charge of Propagation-Invariant Laser Beams
	1.2.1 Propagation-Invariant Vortex Fields with Multiple Phase Singularities
	1.2.2 Topological Charge of the Hermite–Laguerre-Gaussian Beams
	1.2.3 Topological Charge of a Two-Parametric Vortex Hermite Beam
	1.2.4 Simple Optical Vortices
	1.2.5 Propagation-Invariant Beams in the Laguerre-Gaussian Basis
	1.2.6 Numerical Simulation

	References

	2 Ince-Gaussian Beams
	2.1 Structurally Invariant Higher-Order Ince-Gaussian Beams and Their Expansions into the Hermite-Gaussian or Laguerre-Gaussian Beams
	2.1.1 Solution of the Paraxial Equation in Elliptic Coordinates
	2.1.2 Expansions of the IG Modes by the HG and LG Modes at Small Values of P
	2.1.3 Numerical Methods and IG Modes
	2.1.4 Applying the Padé Approximants for Approximate Computation of IG Modes
	2.1.5 Numerical Simulation

	2.2 Helical Ince-Gaussian Laser Beams as Superposition of Hermite-Gaussian Beams
	2.2.1 Conventional Normalized Ince-Gaussian Modes
	2.2.2 Expansion of Helical IG Modes into HG Modes
	2.2.3 Orbital Angular Momentum of hIG Modes
	2.2.4 Topological Charge of hIG Modes
	2.2.5 Parity of the OAM Function in Terms of the Parameter ε
	2.2.6 Relationships for the OAM of hIG Modes at P = 4 and 5
	2.2.7 Numerical Modeling

	References

	3 New Type of Laguerre-Gaussian Beams
	3.1 Product and Squared Laguerre-Gaussian Beams
	3.1.1 Theoretical Background
	3.1.2 Numerical Simulation

	3.2 Laguerre-Gaussian Beams with an Increased Dark Area and Autofocusing
	3.2.1 Fourier-Invariant Laguerre-Gaussian Beams with an Increased Dark Area
	3.2.2 Fresnel Transform of the Laguerre-Gaussian Beam with an Increased Dark Area
	3.2.3 Numerical Simulation

	References

	4 New Type of Bessel-Gaussian Beams
	4.1 Double and Square Bessel–Gaussian Beams
	4.1.1 Bessel-Gaussian Beams and Modulated Bessel-Gaussian Beams
	4.1.2 Square Bessel-Gaussian Beams
	4.1.3 Product of Two Bessel-Gaussian Beams
	4.1.4 Numerical Simulation

	4.2 Bessel-Bessel-Gaussian Vortex Laser Beams
	4.2.1 Bessel-Bessel-Gaussian Beams Based Upon the Bessel-Gaussian Beams
	4.2.2 Bessel-Bessel-Gaussian Beams Based Upon the Bessel-Gaussian Beams with Quadratic Argument
	4.2.3 Bessel-Bessel-Gaussian Beams of the Second Type
	4.2.4 Numerical Simulation

	References

	5 Superposition of Helical Laser Beams
	5.1 Topological Charge of a Superposition of Identical Parallel Laguerre-Gaussian Beams
	5.1.1 TC of the Superposition of Identical Parallel LG Beams in the Initial Plane
	5.1.2 TC of the Superposition of Parallel Identical LG Beams with Different Weight Coefficients in the Far Field
	5.1.3 Numerical Modeling

	5.2 Geometric Progression of Optical Vortices
	5.2.1 Geometric Progression of Optical Vortices in the Initial Plane
	5.2.2 Geometric Progression of Optical Vortices in the Fresnel Diffraction Zone
	5.2.3 Truncated Geometric Progression of Optical Vortices
	5.2.4 Geometrical Progression of Optical Vortices with a Symmetric OAM-Spectrum
	5.2.5 Unbounded Geometric Progression of Optical Vortices
	5.2.6 Superposition of Optical Vortices Described by a Geometric Progression with the Common Ratio
	5.2.7 Numerical Simulation

	5.3 Common Topological Charge of a Superposition of Several Identical Off-Axis Vortex Beams
	5.3.1 Topological Charge of a Superposition of Identical Parallel Vortex Beams in the Far Field of Diffraction
	5.3.2 Numerical Simulation

	References

	6 Orbital Angular Momentum of Helical Laser Beams
	6.1 Orbital Angular Momentum of Paraxial Propagation-Invariant Laser Beams
	6.1.1 Derivation of an Expression for the Orbital Angular Momentum of Propagation-Invariant Beams
	6.1.2 Numerical Simulation

	6.2 Optical Vortex Beams with a Symmetric and Almost Symmetric OAM-Spectrum
	6.2.1 Orbital Angular Momentum of a Beam with a Symmetric OAM-Spectrum
	6.2.2 Sample Beam with Symmetric OAM-Spectrum
	6.2.3 Family of Form-Invariant Beams with an Almost Symmetric OAM-Spectrum
	6.2.4 Numerical Simulation

	References

	 Conclusion

